Some Nearly Quantum Theories

Howard Barnum, Matthew Graydon and Alex Wilce

QPL XII, Oxford, July 2015

Outline

- I Euclidean Jordan algebras
- II Composites of EJAs
- III Categories of embedded EJAs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

I. Euclidean Jordan Algebras

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Euclidean Jordan Algebras

A euclidean Jordan algebra (EJA) is a finite-dimensional real inner product space A with commutative bilinear product $a, b \mapsto a \cdot b$, having identity element u, and satisfying, $\forall a, b, c \in A$,

•
$$a \bullet (a^2 \bullet b) = a^2 \bullet (a \bullet b)$$

•
$$\langle a \bullet b, c \rangle = \langle a, b \bullet c \rangle$$

Examples (and notation):

$$\begin{split} R_n &:= M_n(\mathbb{R})_{sa}, \quad C_n := M_n(\mathbb{C})_{sa}, \quad Q_n := M_n(\mathbb{H})_{sa}, \quad E_3 := M_3(\mathbb{O})_{sa} \\ \text{all with } a \bullet b &= \frac{1}{2}(ab + ba) \quad \text{and} \quad \langle a, b \rangle = \mathsf{Tr}(ab). \end{split}$$

Euclidean Jordan Algebras

Theorem [Jordan, von Neumann, Wigner, 1934] All EJAs are direct sums of the following *simple* types:

- *R_n*, *C_n*, *Q_n*, *E*₃ as above;
- Spin Factors: V_n = the euclidean space ℝ × ℝⁿ, with Jordan product

$$(t, \mathbf{x}) \bullet (s, \mathbf{y}) = (ts + \langle \mathbf{x}, \mathbf{y} \rangle, t\mathbf{y} + s\mathbf{x}).$$

An EJA A is special iff it's a Jordan subalgebra of $M_n(\mathbb{C})_{sa}$ for some n. A is special iff it has no E_3 summand.

EJAs as Probabilistic Models

An EJA A is also an order-unit space with $A_+ = \{a^2 | a \in A\}$ and order-unit u. Thus, A can be viewed as a probabilistic model:

- Effects are elements $a \in A_+$ with $a \le u$
- States are positive linear functionals α : A → ℝ with α(u) = 1; α(a) = probability of effect a in state α.
- Observables are sets $\{a_1, ..., a_n\}$ of effects summing to u.

Can also model continuous dynamics via one-parameter subgroups of G(A) = identity component of group of order-automorphisms.

 $R_n, C_n, Q_n = \mathbb{R}, \mathbb{C}, \mathbb{H}$ QM systems; V_n = generalized bit with *n*-dimensional "Bloch sphere". In particular:

$$V_2 = R_2$$
 (rebit), $V_3 = C_2$ (qubit), $V_5 = Q_2$ (quabit).

EJAs as Probabilistic Models

The order-unit space structure determines the Jordan structure:

Theorem [Koecher 1958; Vinberg 1961] An order-unit space (A, u) arises from an EJA as above iff the cone A_+ is

- homogeneous (order-isomorphisms act transitively on interior of A₊);
- self-dual (∃ inner product such that a ∈ A₊ iff (a, b) ≥ 0 for all b ∈ A₊).

Homogeneity and self-duality can be motivated in various ways (e.g., AW 2012, Barnum-Mueller-Ududec 14). So EJAs form a *reasonably natural* class of probabilistic models!

II. Composites of EJAs

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Composites of EJAs

In general, there's no reasonable way to make $A \otimes B$ into an EJA.

A composite of EJAs A and B: an EJA AB, plus bilinear mapping $A \times B \to AB$, $(a, b) \mapsto a \odot b$, such that (a) $u_A \odot u_B = u_{AB}$; (b) $\langle a \odot b | x \odot y \rangle = \langle a | x \rangle \langle b | y \rangle$ (c) $\phi \in G(A), \psi \in G(B) \Rightarrow \exists \phi \odot \psi \in G(AB)$ with $(\psi \odot \phi)(a \odot b) = \psi(a) \odot \phi(b)$.

(d) $\{a \odot b | (a, b) \in A \times B\}$ generates AB as a Jordan algebra.

Theorem 1: For A, B nontrivial, AB exists \Rightarrow A, B, AB all special!

Embedded JC algebras

An *embedded JC algebra* (*EJC*) is a pair (A, \mathbf{M}_A) :

- \mathbf{M}_A a (unital) *-subalgebra of $M_n(\mathbb{C})$ for some n;
- A a (unital) Jordan sub-algebra of $(\mathbf{M}_A)_{sa}$.

EJCs have a canonical product:

$$(A, \mathbf{M}_A) \odot (B, \mathbf{M}_B) := (A \odot B, \mathbf{M}_A \otimes \mathbf{M}_B),$$

$$A \odot B = J(A \otimes B) \leq (\mathbf{M}_A \otimes \mathbf{M}_B)_{\mathsf{sa}}$$

where J(X) = Jordan subalgebra of M_{sa} generated by $X \subseteq M_{sa}$.

Notation: From now on, overload A for (A, \mathbf{M}_A) .

Theorem 2: $A \odot B$ is a composite in our sense.

Theorem 3: $A, B \mapsto A \odot B$ is naturally associative.

Standard and Universal Embeddings

Special EJAs have both standard and universal embeddedings.

Standard embeddings for simple (special) EJAs:

- $R_n, C_n \leq M_n(\mathbb{C})_{sa};$
- $\mathbb{H} \leq M_2(\mathbb{C})$, so $Q_n \leq M_{2n}(\mathbb{C})_{\mathsf{sa}}$;
- V_n ≤ M_{2^k}(ℂ)_{sa} for n = 2k, 2k + 1 (Details: MG's quantum lunch talk on the 24th).

Standard and Universal Embeddings

Universal embedding $A \mapsto C^*(A)_{sa}$: Jordan homomorphisms $A \to \mathbf{M}_{sa}$, \mathbf{M} a complex *-algebra, factor uniquely through *-homomorphisms $C^*(A) \to \mathbf{M}$.

Universal and standard embeddings agree except:

•
$$C^*(C_n) = M_n(\mathbb{C}) \oplus M_n(\mathbb{C})$$

•
$$C^*(Q_2) = M_4(\mathbb{C}) \oplus M_4(\mathbb{C})$$

•
$$C^*(V_n) = M_{2^k}(\mathbb{C}) \oplus M_{2^k}(\mathbb{C})$$
 for $n = 2k + 1$

Notation: $A \otimes B = A \odot B$ for the universal embedding (Studied by Hanche-Olsen, 1983).

Standard and Universal Tensor Products

For $A, B \in \{R_n, C_n, Q_n | n \ge 2\}$, $A \otimes B$ can be computed explicitly (Hanche-Olsen 83):

$$\begin{array}{c|ccc} A \widetilde{\otimes} B & R_k & C_k & Q_k \\ \hline R_n & R_{nk} & C_{nk} & Q_{nk} \\ \hline C_n & C_{nk} & C_{nk} \oplus C_{nk} & C_{nk} \\ \hline Q_{n>2} & Q_{nk} & C_{nk} & R_{nk} \end{array}$$

The case of two quaternionic bits or quabits is a bit special:

$$Q_2 \widetilde{\otimes} Q_2 = R_{16} \oplus R_{16} \oplus R_{16} \oplus R_{16}.$$

Theorem 4: A, B simple \Rightarrow AB a direct summand of $A \widetilde{\otimes} B$.

So the only possible composites are standard ones, except for C_nC_k (two candidates) and Q_2Q_2 (four candidates).

III. Categories of EJCs

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

CJP Mappings

Let C be any class of EJCs closed under \odot . For $A, B \in C$, a CP mapping $\phi : \mathbf{M}_A \to \mathbf{M}_B$ is completely Jordan preserving (CJP) (rel. C) iff, for all $C \in C$, $\phi \otimes id_{\mathbf{M}_C}(A \odot C) \subseteq B \odot C$.

Theorem 5: With relatively CJP mappings as morphisms, (C, \odot) is a SMC.

If C contains any universally embedded V_n with $n \neq 2, 3$, then $C(A, I) = \{0\}$. Two nicer examples:

- **RSE**: Reversible, Standardly Embedded EJCs (no non-quantum *V_n*);
- **URUE**: Universally Reversible, Universally Embedded EJCs (no V_n , n > 3 so, no Q_2 !)

The category of finite-dimensional matrix *-algebras and CP maps has a natural compact structure: dual of M is \overline{M} (conjugate algebra); unit and counit given by

$$f_{\mathsf{M}} = \sum_{i} e_i \otimes \overline{e}_i ext{ and } \eta_{\mathsf{M}}(a \otimes \overline{b}) = \mathsf{Tr}(ab^*),$$

where $\{e_i\}$ is any Tr-orthonormal basis for **M**.

Theorem 6 Both RSE and URUE inherit this compact structure.

Conclusion and Speculation

- **RSE** unifies real, complex and quaternionic QM. **URUE** almost does so, except that it omits Q₂ and gives the wrong composite for two complex QM systems.
- Real and quaternionic QM = a compact closed subcategory of RSE. Pure-state version: Baez (2011). Guess: Former = CPM(latter).
- A striking feature of both **RSE** and **URUE**:

anything \otimes complex = complex.

Maybe a universe initially containing all three types of quantum systems would evolve into one in which complex systems predominate?

References

J. Baez (2011) arXiv:1101.5690 (also Foundations of Physics **42**, 2012)

H. Barnum, M. Mueller and C. Ududec (2014), arXiv:1403.4147 (also New J. Phys. **16**, 2014)

H. Hanche-Olsen, Canad. J. Math 35, 1983

AW (2012) arXiv:1206.2897