A Bestiary of Sets and Relations arXiv:1506.05025

Stefano Gogioso

Quantum Group University of Oxford

17 July 2015

Stefano Gogioso A Bestiary of Sets and Relations

< 17 ▶

Introduction

Today, in this talk: a veritable bestiary of sets and relations.

Credit: Aberdeen Bestiary

Image: A = A

†-SMC Structure Classical Structures Isometries and Unitaries

Section 1

Pure State Quantum Mechanics

Stefano Gogioso A Bestiary of Sets and Relations

< □ > < ^[] >

э

†-SMC Structure Classical Structures Isometries and Unitaries

Pure State Quantum Mechanics in fRel

Looks like fdHilb, but something is not quite right...

Credit: Chimera, Giovannag, DeviantArt

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

†-SMC Structure Classical Structures Isometries and Unitaries

†-SMC Structure

• Objects = finite sets

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

†-SMC Structure Classical Structures Isometries and Unitaries

†-SMC Structure

- Objects = finite sets
- Morphisms $X \to Y =$ relations $R \subseteq X \times Y$

Image: A mathematical states of the state

-

†-SMC Structure Classical Structures Isometries and Unitaries

†-SMC Structure

- Objects = finite sets
- Morphisms $X \to Y =$ relations $R \subseteq X \times Y$
- Non-cartesian symmetric monoidal structure (fRel, \times , 1)

< □ > < 🗇 >

†-SMC Structure Classical Structures Isometries and Unitaries

†-SMC Structure

- Objects = finite sets
- Morphisms $X \to Y =$ relations $R \subseteq X \times Y$
- Non-cartesian symmetric monoidal structure (fRel, \times , 1)
- States $1 \rightarrow X$ in fRel \longleftrightarrow subsets of X

†-SMC Structure Classical Structures Isometries and Unitaries

†-SMC Structure

- Objects = finite sets
- Morphisms $X \to Y =$ relations $R \subseteq X \times Y$
- Non-cartesian symmetric monoidal structure (fRel, \times , 1)
- States $1 \rightarrow X$ in fRel \longleftrightarrow subsets of X
- Dagger $R^{\dagger} := \{(y, x) | (x, y) \in R\}$

†-SMC Structure Classical Structures Isometries and Unitaries

†-SMC Structure

- Objects = finite sets
- Morphisms $X \to Y =$ relations $R \subseteq X \times Y$
- Non-cartesian symmetric monoidal structure (fRel, ×, 1)
- States $1 \rightarrow X$ in fRel \longleftrightarrow subsets of X
- Dagger $R^{\dagger} := \{(y, x) | (x, y) \in R\}$
- Superposition operation = relational union \(\) (distributive enrichment over finite commutative monoids)

†-SMC Structure Classical Structures Isometries and Unitaries

†-SMC Structure

- Objects = finite sets
- Morphisms $X \to Y =$ relations $R \subseteq X \times Y$
- Non-cartesian symmetric monoidal structure (fRel, \times , 1)
- States $1 \rightarrow X$ in fRel \longleftrightarrow subsets of X
- Dagger $R^{\dagger} := \{(y, x) | (x, y) \in R\}$
- Superposition operation = relational union \(\) (distributive enrichment over finite commutative monoids)
- Scalars form a semiring $(\{\emptyset, id_1\}, \lor, \times) \cong \mathbb{B}$

†-SMC Structure Classical Structures Isometries and Unitaries

Classical Structures

[Pavlovic 2009] If $(\bigstar, \forall, \diamond, \diamond)$ is a classical structure in fRel on a set X, then there is a unique abelian groupoid $\bigoplus_{\lambda \in \Lambda} G_{\lambda}$ such that:

†-SMC Structure Classical Structures Isometries and Unitaries

Classical Structures

[Pavlovic 2009] If $(\bigstar, \forall, \diamond, \bullet)$ is a classical structure in fRel on a set X, then there is a unique abelian groupoid $\bigoplus_{\lambda \in \Lambda} G_{\lambda}$ such that:

• The groupoid multiplication is given by the partial function:

$$\bigstar = (g_{\lambda},g_{\lambda'}')\mapsto egin{cases} g_{\lambda}+_{\lambda}g_{\lambda}' ext{ if } \lambda=\lambda' \ ext{undefined otherwise} \end{cases}$$

†-SMC Structure Classical Structures Isometries and Unitaries

Classical Structures

[Pavlovic 2009] If $(\bigstar, \forall, \diamond, \diamond)$ is a classical structure in fRel on a set X, then there is a unique abelian groupoid $\bigoplus_{\lambda \in \Lambda} G_{\lambda}$ such that:

• The groupoid multiplication is given by the partial function:

$$\bigstar = (g_{\lambda},g_{\lambda'}')\mapsto egin{cases} g_{\lambda}+_{\lambda}g_{\lambda}' ext{ if } \lambda=\lambda' \ ext{undefined otherwise} \end{cases}$$

• The set of the groupoid units forms the state:

$$\bullet = \{ \mathsf{0}_{\lambda} | \lambda \in \mathsf{\Lambda} \}$$

†-SMC Structure Classical Structures Isometries and Unitaries

Classical Structures

[Pavlovic 2009] If $(\bigstar, \forall, \diamond, \bullet)$ is a classical structure in fRel on a set X, then there is a unique abelian groupoid $\bigoplus_{\lambda \in \Lambda} G_{\lambda}$ such that:

• The groupoid multiplication is given by the partial function:

$$\bigstar = (g_\lambda, g'_{\lambda'}) \mapsto egin{cases} g_\lambda +_\lambda g'_\lambda \ ext{if} \ \lambda = \lambda' \ ext{undefined otherwise} \end{cases}$$

• The set of the groupoid units forms the state:

$$\bullet = \{ \mathsf{0}_{\lambda} | \lambda \in \mathsf{\Lambda} \}$$

• The classical points are the states $|\mathcal{G}_\lambda
angle:1 o X$

< 17 ▶

†-SMC Structure Classical Structures Isometries and Unitaries

Classical Computation

1. Morphisms of classical structures are used to embed partial functions (and thus classical computation) in fdHilb:

$$R_f := \sum_{\lambda \in \operatorname{\mathsf{dom}} f} |f(\lambda)
angle \langle \lambda |$$

< 67 ▶

†-SMC Structure Classical Structures Isometries and Unitaries

Classical Computation

1. Morphisms of classical structures are used to embed partial functions (and thus classical computation) in fdHilb:

$$R_f := \sum_{\lambda \in \operatorname{\mathsf{dom}} f} |f(\lambda)
angle \langle \lambda |$$

2. Morphisms of classical structures $\bigoplus_{\lambda \in \Lambda} G_{\lambda} \to \bigoplus_{\gamma \in \Gamma} H_{\gamma}$ can be used to embed all partial functions $f : \Lambda \rightharpoonup \Gamma$ in fRel:

$$R_f := \bigvee_{\lambda \in \mathsf{dom}\, f} |H_{f(\lambda)}\rangle \langle G_\lambda|$$

†-SMC Structure Classical Structures Isometries and Unitaries

Classical Computation

However, the correspondence in fRel is not 1-to-1.
 For example, consider a family (Φ_λ : G_λ → H_{f(λ)})_{λ∈Λ} of isomorphisms of abelian groups and embed f : Λ → Γ as:

$$R'_f := g_\lambda \mapsto \Phi_\lambda(g_\lambda)$$

†-SMC Structure Classical Structures Isometries and Unitaries

Classical Computation

However, the correspondence in fRel is not 1-to-1.
 For example, consider a family (Φ_λ : G_λ → H_{f(λ)})_{λ∈Λ} of isomorphisms of abelian groups and embed f : Λ → Γ as:

$$R'_f := g_\lambda \mapsto \Phi_\lambda(g_\lambda)$$

4. Non-uniqueness is a consequence of the fact that most classical structures don't have enough classical points.

†-SMC Structure Classical Structures Isometries and Unitaries

Classical Computation

However, the correspondence in fRel is not 1-to-1.
 For example, consider a family (Φ_λ : G_λ → H_{f(λ)})_{λ∈Λ} of isomorphisms of abelian groups and embed f : Λ → Γ as:

$$R'_f := g_\lambda \mapsto \Phi_\lambda(g_\lambda)$$

- 4. Non-uniqueness is a consequence of the fact that most classical structures don't have enough classical points.
- These additional degrees of freedom could be related to microscopic degrees of freedom in computation using the groupoid framework of [Bar&Vicary (2014)].

†-SMC Structure Classical Structures Isometries and Unitaries

Discrete structures

On each finite set *X*, the **discrete structure** is given by:

- 4 同 6 4 日 6 4 日 6

†-SMC Structure Classical Structures Isometries and Unitaries

Discrete structures

• The discrete structure on X corresponds to groupoid $\bigoplus_{x \in X} 0_x$.

Image: Image:

†-SMC Structure Classical Structures Isometries and Unitaries

Discrete structures

- The discrete structure on X corresponds to groupoid $\bigoplus_{x \in X} 0_x$.
- It has the singletons {x} as its classical points.

- ∢ 🗇 🕨

†-SMC Structure Classical Structures Isometries and Unitaries

Discrete structures

- The discrete structure on X corresponds to groupoid $\bigoplus_{x \in X} 0_x$.
- It has the singletons {x} as its classical points.
- It is the only classical structure with enough classical points.

< A >

†-SMC Structure Classical Structures Isometries and Unitaries

Discrete structures

- The discrete structure on X corresponds to groupoid $\bigoplus_{x \in X} 0_x$.
- It has the singletons {x} as its classical points.
- It is the only classical structure with enough classical points.
- It gives the usual 1-to-1 embedding of partial functions:

$$R_f := \{(x, f(x)) | x \in \operatorname{dom} f\}$$

Image: A matrix

†-SMC Structure Classical Structures Isometries and Unitaries

Isometries and Unitaries

• A morphism $F : X \to Y$ in fRel is an isometry iff it is in the form, for some classical structure $\bigoplus_{\gamma \in \Gamma} H_{\gamma}$ on Y

$$F = \bigvee_{x \in X} |H_{f(x)}\rangle \langle \{x\}|$$

where $f : X \to \Gamma$ is a total injection.

†-SMC Structure Classical Structures Isometries and Unitaries

Isometries and Unitaries

• A morphism $F : X \to Y$ in fRel is an isometry iff it is in the form, for some classical structure $\bigoplus_{\gamma \in \Gamma} H_{\gamma}$ on Y

$$F = \bigvee_{x \in X} |H_{f(x)}\rangle \langle \{x\}|$$

where $f : X \to \Gamma$ is a total injection.

• Isometries are in the form $F = R_f$ for some total injection f

†-SMC Structure Classical Structures Isometries and Unitaries

Isometries and Unitaries

• A morphism $F : X \to Y$ in fRel is an isometry iff it is in the form, for some classical structure $\bigoplus_{\gamma \in \Gamma} H_{\gamma}$ on Y

$$F = \bigvee_{x \in X} |H_{f(x)}\rangle \langle \{x\}|$$

where $f : X \to \Gamma$ is a total injection.

- Isometries are in the form $F = R_f$ for some total injection f
- Forces discrete structure on $X \Rightarrow$ more restrictive than fdHilb

†-SMC Structure Classical Structures Isometries and Unitaries

Isometries and Unitaries

• A morphism $F : X \to Y$ in fRel is an isometry iff it is in the form, for some classical structure $\bigoplus_{\gamma \in \Gamma} H_{\gamma}$ on Y

$$F = \bigvee_{x \in X} |H_{f(x)}\rangle \langle \{x\}|$$

where $f : X \to \Gamma$ is a total injection.

- Isometries are in the form $F = R_f$ for some total injection f
- Forces discrete structure on $X \Rightarrow$ more restrictive than fdHilb
- Indeed this forces unitaries = bijections

Graphs for CPM Purity of states Decoherence Maps

Section 2

CPM and Decoherence

Stefano Gogioso A Bestiary of Sets and Relations

Image: A mathematical states and a mathem

э

∃ >

Graphs for CPM Purity of states Decoherence Maps

Decoherence in fRel

One look at it and things turns to stone. Very classical stone.

Credit: Medusa, Miragenathalen, DeviantArt

< □ > < 同 >

Graphs for CPM Purity of states Decoherence Maps

The category CPM[fRel]

Morphisms in CPM[fRel] take the usual doubled-up form:

where the compact-closed structure on fRel is given by:

$$\bigcap_X := (x, y) \mapsto \delta_{xy} : X \times X \to 1$$
$$\bigcup_X := \Delta_X : 1 \to X \times X$$

We call \cap_X the **discarding map** $X \xrightarrow{CPM} 1$, and we will say that a CPM morphism $R: X \xrightarrow{CPM} Y$ is **causal** iff $\cap_Y \cdot R = \cap_X$.

Graphs for CPM Purity of states Decoherence Maps

Graphs for CPM

[Marsden 2015] A clever graph-theoretic formalism for CPM[fRel]:

• States $\rho : 1 \xrightarrow{CPM} X$ in CPM[fRel] correspond to subgraphs \mathcal{G}_{ρ} of the complete graph K_X on X.

Graphs for CPM Purity of states Decoherence Maps

Graphs for CPM

[Marsden 2015] A clever graph-theoretic formalism for CPM[fRel]:

- States $\rho : 1 \xrightarrow{CPM} X$ in CPM[fRel] correspond to subgraphs \mathcal{G}_{ρ} of the complete graph K_X on X.
- Morphisms $R: X \xrightarrow{CPM} Y$ correspond to subgraphs \mathcal{G}_R of the complete graph $K_{X \times Y}$.

Graphs for CPM Purity of states Decoherence Maps

Graphs for CPM

[Marsden 2015] A clever graph-theoretic formalism for CPM[fRel]:

- States $\rho : 1 \xrightarrow{CPM} X$ in CPM[fRel] correspond to subgraphs \mathcal{G}_{ρ} of the complete graph K_X on X.
- Morphisms $R: X \xrightarrow{CPM} Y$ correspond to subgraphs \mathcal{G}_R of the complete graph $K_{X \times Y}$.
- Composition is done by lifting and projecting edges.

・ロト ・同ト ・ヨト ・

Graphs for CPM Purity of states Decoherence Maps

Graphs of CPM states (example)

a pure state in a 12 element set
Graphs for CPM Purity of states Decoherence Maps

Graphs of CPM states (example)

a non-pure state in a 12 element set

< 17 ▶

Graphs for CPM Purity of states Decoherence Maps

Graphs of CPM states (example)

a discrete state in a 12 element set

Graphs for CPM Purity of states Decoherence Maps

Graphs of CPM maps (example)

Graphs for CPM Purity of states Decoherence Maps

Graph composition (example)

Graphs for CPM Purity of states Decoherence Maps

Graph composition (example)

Graphs for CPM Purity of states Decoherence Maps

Graph composition (example)

Graphs for CPM Purity of states Decoherence Maps

Graph composition (example)

Graphs for CPM Purity of states Decoherence Maps

Graph composition (example)

Graphs for CPM Purity of states Decoherence Maps

Graph composition (example)

Graphs for CPM Purity of states Decoherence Maps

Purity of states

• A CPM state ρ is pure if and only if \mathcal{G}_{ρ} is a clique.

< 17 >

Graphs for CPM Purity of states Decoherence Maps

Purity of states

- A CPM state ρ is pure if and only if \mathcal{G}_{ρ} is a clique.
- Define a relative purity partial order on states ρ, σ : 1 → X by setting ρ ≤ σ iff G_ρ is a subgraph of G_σ, covering all nodes.

Graphs for CPM Purity of states Decoherence Maps

Purity of states

- A CPM state ρ is pure if and only if \mathcal{G}_{ρ} is a clique.
- Define a relative purity partial order on states ρ, σ : 1 → X by setting ρ ≤ σ iff G_ρ is a subgraph of G_σ, covering all nodes.
- Pure states are the maxima of \leq .

Graphs for CPM Purity of states Decoherence Maps

Purity of states

- A CPM state ρ is pure if and only if \mathcal{G}_{ρ} is a clique.
- Define a relative purity partial order on states ρ, σ : 1 → X by setting ρ ≤ σ iff G_ρ is a subgraph of G_σ, covering all nodes.
- Pure states are the maxima of \leq .
- The lower set ρ ↓ of any pure state ρ is an <u>atomic</u> semilattice under union ∨ of graphs (i.e. convex combination of states).

Graphs for CPM Purity of states Decoherence Maps

Purity of states

- A CPM state ρ is pure if and only if \mathcal{G}_{ρ} is a clique.
- Define a relative purity partial order on states ρ, σ : 1 → X by setting ρ ≤ σ iff G_ρ is a subgraph of G_σ, covering all nodes.
- Pure states are the maxima of \leq .
- The lower set ρ ↓ of any pure state ρ is an <u>atomic</u> semilattice under union ∨ of graphs (i.e. convex combination of states).
- Therefore every pure state ρ (clique G_ρ) can be expressed as a convex combination of non-pure states (the atoms of ρ ↓).

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Graphs for CPM Purity of states Decoherence Maps

Purity of states (example)

Graphs for CPM Purity of states Decoherence Maps

Decoherence Maps in †-SMCs

Let \bullet be a classical structure on some object X of a compact closed \dagger -SMC. The \bullet -**decoherence** map dec(\bullet) is the following causal CPM morphism $X \xrightarrow{CPM} X$:

Graphs for CPM Purity of states Decoherence Maps

Decoherence Maps in fdHilb

In fdHilb, the decoherence map sends any (causal) CPM state to a (probabilistic) convex combination of •-classical points:

$$\mathsf{dec}(ullet)
ho = \sum_{z} \langle z|
ho|z
angle \; |z
angle\langle z|$$

< 67 ▶

Graphs for CPM Purity of states Decoherence Maps

Decoherence Maps in fdHilb

In fdHilb, the decoherence map sends any (causal) CPM state to a (probabilistic) convex combination of •-classical points:

$$\det(\bullet)
ho = \sum_{z} \langle z|
ho|z
angle |z
angle\langle z|$$

This also justifies the following quantum-classical notation when all operations after the decoherence are •-classical:

Graphs for CPM Purity of states Decoherence Maps

Decoherence Maps in fRel

This convex combination assumption fails in fRel:

 The result of decohering a CPM state ρ to dec(•)ρ is not in general a convex combination of •-classical points.

Graphs for CPM Purity of states Decoherence Maps

Decoherence Maps in fRel

This convex combination assumption fails in fRel:

- The result of decohering a CPM state ρ to dec(•)ρ is not in general a convex combination of •-classical points.
- Unless
 is the discrete structure, no causal CPM map exists preserving
 -classical points and always resulting in a convex combination of
 -classical points.

Graphs for CPM Purity of states Decoherence Maps

Decoherence Maps in fRel

This convex combination assumption fails in fRel:

- The result of decohering a CPM state ρ to dec(•)ρ is not in general a convex combination of •-classical points.
- Unless

 is the discrete structure, no causal CPM map exists preserving

 classical points and always resulting in a convex combination of
 classical points.
- In the case of fRel, the CPM category cannot be interpreted as a category of mixed states in the usual sense.

Graphs for CPM Purity of states Decoherence Maps

Decoherence Maps in fRel (example)

Let X be a 5 element set, and \bullet the classical structure of groupoid $\mathbb{Z}_2 \oplus \mathbb{Z}_3$. Then $\mathcal{G}_{dec(\bullet)}$ is the following subgraph of $K_{X \times X}$:

Τq

Graphs for CPM Purity of states Decoherence Maps

Decoherence Maps in fRel (example)

Let X be a 5 element set, and \bullet the classical structure of groupoid $\mathbb{Z}_2 \oplus \mathbb{Z}_3$. Then $\mathcal{G}_{dec(\bullet)}$ is the following subgraph of $K_{X \times X}$:

The cliques on the boxed sets of nodes are the o-classical states.

Graphs for CPM Purity of states Decoherence Maps

Decoherence Maps in fRel (example)

However, the decoherence of the discrete structure always yields a convex combination of singletons (i.e. it eliminates all edges):

This is because the discrete structure has enough classical points.

Non-Demolition Measurements Demolition Measurements Empirical Models and Locality

Section 3

Measurements and Locality

A B >
 A
 B >
 A
 A
 B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Non-Demolition Measurements Demolition Measurements Empirical Models and Locality

Measurements and Locality in fRel

The riddle with no apparent answer. We should ask Oedipus.

Credit: Sphynx, Snaketoast, DeviantArt

< □ > < 同 >

Non-Demolition Measurements Demolition Measurements Empirical Models and Locality

Testing against classical states

 Testing against

 classical points yields a more familiar scenario for decoherence:

Non-Demolition Measurements Demolition Measurements Empirical Models and Locality

Testing against classical states

 Testing against

 classical points yields a more familiar scenario for decoherence:

• However quotienting by equivalence in testing against states trivializes the CPM construction entirely.

Non-Demolition Measurements Demolition Measurements Empirical Models and Locality

Non-Demolition Measurements

Let • be a classical structure in a compact-closed \dagger -SMC on some object Z. A •-valued **non-demolition measurement** on some object X is a causal CPM morphism $M : X \xrightarrow{CPM} X \otimes Z$ taking the following form, and which is •-idempotent and •-self-adjoint:

Causality is equivalent to $P: X \rightarrow X \otimes Z$ being an isometry.

Non-Demolition Measurements Demolition Measurements Empirical Models and Locality

Non-Demolition Measurements: idempotence

The required •-idempotence is defined by the following equation:

Non-Demolition Measurements Demolition Measurements Empirical Models and Locality

Non-Demolition Measurements: self-adjointness

The required •-self-adjointness is defined by the following equation:

Non-Demolition Measurements Demolition Measurements Empirical Models and Locality

Demolition Measurements

If M : X → X ⊗ Z is a non-demolition measurement, the demolition measurement M is defined by discarding X:

$$\bar{M} := (\cap_X \otimes \mathit{id}_Z) \cdot M : X \stackrel{CPM}{\longrightarrow} Z$$

< 17 ▶

Non-Demolition Measurements Demolition Measurements Empirical Models and Locality

Demolition Measurements

If M : X → X ⊗ Z is a non-demolition measurement, the demolition measurement M is defined by discarding X:

$$\bar{M} := (\cap_X \otimes \mathit{id}_Z) \cdot M : X \stackrel{CPM}{\longrightarrow} Z$$

• Because of the convex-combination issues with decoherence in fRel, we are forced to test the demolition measurement \overline{M} against classical points of • to get the classical outcomes:

$$\left(\bar{M}_{\lambda} := \rho^{\dagger}_{G_{\lambda}} \cdot \bar{M} \right)_{\lambda \in \Lambda}$$

Non-Demolition Measurements Demolition Measurements Empirical Models and Locality

Demolition Measurements

Testing against classical points makes things a bit boring:

 The same classical outcomes of a ●-valued demolition measurement *M̄* : *X* ^{CPM} → *Z* can be obtained by using a decoherence dec(●) on *X*, followed by a classical map:

$$\bigvee_{\gamma\in\Gamma}|G_f(\gamma)\rangle\langle H_\gamma|:\bullet o \bullet$$

Non-Demolition Measurements Demolition Measurements Empirical Models and Locality

Demolition Measurements

Testing against classical points makes things a bit boring:

 The same classical outcomes of a ●-valued demolition measurement *M̄* : *X* ^{CPM} → *Z* can be obtained by using a decoherence dec(●) on *X*, followed by a classical map:

$$\bigvee_{\gamma\in\Gamma}|G_f(\gamma)\rangle\langle H_\gamma|:\bullet o \bullet$$

• On the plus side, we only need to consider empirical models coming from decoherences in our proof of locality. This leads to the simplified definition of empirical model that follows.

Non-Demolition Measurements Demolition Measurements Empirical Models and Locality

Possibilistic Empirical Models

• Let ρ be a mixed state in $X_1 imes ... imes X_N$

< 17 ▶
Non-Demolition Measurements Demolition Measurements Empirical Models and Locality

Possibilistic Empirical Models

- Let ρ be a mixed state in $X_1 imes ... imes X_N$
- Let $(\bullet_j^m)_{m=1,\dots,M}$ be a family of classical structures on X_j

- 4 🗗 ▶

Non-Demolition Measurements Demolition Measurements Empirical Models and Locality

Possibilistic Empirical Models

- Let ho be a mixed state in $X_1 imes ... imes X_N$
- Let $(\bullet_i^m)_{m=1,\dots,M}$ be a family of classical structures on X_j
- Let $(\Lambda_i^m)_{jm}$ be the sets indexing the classical points

Non-Demolition Measurements Demolition Measurements Empirical Models and Locality

Possibilistic Empirical Models

- Let ho be a mixed state in $X_1 imes ... imes X_N$
- Let $(\bullet_j^m)_{m=1,...,M}$ be a family of classical structures on X_j
- Let $(\Lambda_j^m)_{jm}$ be the sets indexing the classical points
- The empirical model is the family of boolean functions
 Φ^m(λ₁^m,...,λ_N^m): Λ₁^m × ... × Λ_N^m → {⊥, ⊤} defined as follows

▲□ ► ▲ □ ► ▲

Non-Demolition Measurements Demolition Measurements Empirical Models and Locality

Locality

Theorem

Every empirical model $(\Phi^m)_m$ admits a local hidden variable ν : (i) the mixed state ρ is decohered in the discrete structures • (ii) the discrete classical data is appropriately copied

(a)

э

Key points of the proof (in a nice graph flavour):

• In a measurement framework where we test against classical points, any CPM state ρ is equivalent to the discrete $\tau \leq \rho$.

- 4 🗗 ▶

Key points of the proof (in a nice graph flavour):

• In a measurement framework where we test against classical points, any CPM state ρ is equivalent to the discrete $\tau \leq \rho$. This is immediate to see from the graph perspective:

$$\sigma^{\dagger} \cdot \rho = 1 \iff \mathcal{G}_{\sigma} \wedge \mathcal{G}_{\rho} \neq \emptyset \iff \mathcal{G}_{\sigma} \wedge \mathcal{G}_{\tau} \neq \emptyset \iff \sigma^{\dagger} \cdot \tau = 1$$

Key points of the proof (in a nice graph flavour):

• In a measurement framework where we test against classical points, any CPM state ρ is equivalent to the discrete $\tau \leq \rho$. This is immediate to see from the graph perspective:

$$\sigma^{\dagger} \cdot \rho = 1 \iff \mathcal{G}_{\sigma} \wedge \mathcal{G}_{\rho} \neq \emptyset \iff \mathcal{G}_{\sigma} \wedge \mathcal{G}_{\tau} \neq \emptyset \iff \sigma^{\dagger} \cdot \tau = 1$$

• Decoherence in the discrete structure • turns any CPM state ρ into the discrete state $\tau \preceq \rho$ (i.e. removes all edges).

• □ > • • • • • • • • • • •

Key points of the proof (in a nice graph flavour):

• In a measurement framework where we test against classical points, any CPM state ρ is equivalent to the discrete $\tau \leq \rho$. This is immediate to see from the graph perspective:

$$\sigma^{\dagger} \cdot \rho = 1 \iff \mathcal{G}_{\sigma} \wedge \mathcal{G}_{\rho} \neq \emptyset \iff \mathcal{G}_{\sigma} \wedge \mathcal{G}_{\tau} \neq \emptyset \iff \sigma^{\dagger} \cdot \tau = 1$$

- Decoherence in the discrete structure turns any CPM state ρ into the discrete state $\tau \preceq \rho$ (i.e. removes all edges).
- A discrete state is a convex combination of classical points of the discrete structure •, and can be appropriately copied.

• □ ▶ • □ ▶ • □ ▶ •

Conclusions

• fRel, with all the fundamental ingredients and many exotic features, still provides an excellent sandbox for CQM.

A ▶

Conclusions

- fRel, with all the fundamental ingredients and many exotic features, still provides an excellent sandbox for CQM.
- The issues with decoherence invite a deeper reflection on the quantum-classical boundary in CQM, and on the operational interpretation of CPM as a category of mixed states.

Conclusions

- fRel, with all the fundamental ingredients and many exotic features, still provides an excellent sandbox for CQM.
- The issues with decoherence invite a deeper reflection on the quantum-classical boundary in CQM, and on the operational interpretation of CPM as a category of mixed states.
- In a framework where decoherence doesn't return convex combinations, testing against classical points may not be physically sound. Measurements/locality need revisiting.

Image: A = A

Thank You!

Thanks for Your Attention! Any Questions?

[Pavlovic (2009)] Quantum and classical structures in nondeterministic computation [Bar&Vicary (2014)] Groupoid Semantics for Thermal Computing

[Marsden (2015)] A Graph Theoretic Perspective on CPM(Rel)

A (10) × (10) × (10)