Entropy, majorization and thermodynamics in general probabilistic systems

Howard Barnum¹, Jonathan Barrett², Marius Krumm³, Markus Mueller³

¹University of New Mexico, ²Oxford, ³U Heidelberg, U Western Ontario

QPL 2015, Oxford, July 16

hnbarnum@aol.com

Collaborators: Markus Mueller (Western; Heidelberg; PI); Cozmin Ududec (Invenia Technical Computing; PI; Waterloo), Jon

Introduction and Summary

- Project: Understand thermodynamics abstractly by investigating properties necessary and/or sufficient for a Generalized Probabilistic Theory to have a well-behaved analogue of quantum thermodynamics, conceived of as a *resource theory*.
- Aim for results analogous to "Second Laws of Quantum Thermo", and Lostaglio/Jenner/Rudolph work on transitions between non-energy-diagonal states.
- This talk: some groundwork. Assume spectra in order to have analogue to state majorization.
- We give conditions sufficient for operationally-defined measurement entropies to be the spectral entropies.
- Under these conditions we describe assumptions about which processes are thermodynamically reversibile, sufficient to extend von Neumman's argument that quantum entropy is thermo entropy to our setting.

< 同 > < 三 > < 三 >

Theory: Set of systems

System: Specified by bounded convex sets of allowed states, allowed measurements, allowed dynamics compatible with each measurement outcome. (Could view as a category (with "normalization process").) **Composite systems**: Rules for combining systems to get a composite system, e.g. tensor product in QM. (Could view as making it a symmetric monoidal category)

Remark: Framework (e.g. convexity, monoidality...) justified operationally. Very weakly constraining.

(口) (同) (三) (三)

Normalized states of system *A*: Convex compact set Ω_A of dimension d-1, embedded in $A \simeq \mathbb{R}^d$ as the base of a regular **cone** A_+ of unnormalized states (nonnegative multiples of Ω_A).

Measurement outcomes: linear functionals $A \to \mathbb{R}$ called **effects** whose values on states in Ω_A are in [0,1].

Unit effect
$$u_A$$
 has $u_A(\Omega_A) = 1$.

Measurements: Indexed sets of effects e_i with $\sum_i e_i = u_A$ (or continuous analogues).

Effects generate the **dual cone** A_{+}^{*} , of functionals nonnegative on A_{+} . Sometimes we may wish to restrict measurement outcomes to a (regular) subcone, call it $A_{+}^{\#}$, of A_{+}^{*} . If no restriction, system **saturated**. (A_{+} is **regular**: closed, generating, convex, pointed. It makes *A* an **ordered linear space** (inequalities can be added and multiplied by positive scalars), with order $a \ge b := a - b \in A_{+}$.) Dynamics are normalization-non-increasing positive maps.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Inner products, internal representation of the dual and self-duality

In a *real* vector space *A* an inner product (_,_) is equivalent to a linear isomorphism $A \rightarrow A^*$. $y \in A$ corresponds to the functional $x \mapsto (y, x)$. GPT theories often represented this way (Hardy, Barrett...).

- Internal dual of A_+ relative to inner product: $A_+^{*int} := \{y \in A : \forall x \in A_+(y, x) \ge 0\}$. (Affinely isomorphic to A_+^*).
- If there *exists* an inner product relative to which A^{*int}₊ = A₊, A is called **self-dual**.
- Self-duality is stronger than A₊ affinely isomorphic to A₊^{*}! (examples)
- related to time reversal?

< 同 > < 回 > < 回 > -

Examples

Classical: *A* is the space of *n*-tuples of real numbers; $u(x) = \sum_{i=1}^{n} x_i$. So Ω_A is the probability simplex, A_+ the positive (i.e.nonnegative) orthant $x : x_i \ge 0, i \in 1, ..., n$

Quantum: $A = \mathscr{B}_h(\mathbf{H})$ = self-adjoint operators on complex (f.d.) Hilbert space \mathbf{H} ; $u_A(X) = \text{Tr}(X)$. Then Ω_A = density operators. A_+ = positive semidefinite operators.

Squit (or P/Rbit): Ω_A a square, A_+ a four-faced polyhedral cone in \mathbb{R}^3 .

Inner-product representations: $\langle X, Y \rangle = \text{tr } XY$ (Quantum) $\langle x, y \rangle = \sum_i x_i y_i$ (Classical)

Quantum and classical cones are self-dual! Squit cone is not, but is isomorphic to dual.

・ロト ・同ト ・ヨト ・ヨト

Face of convex *C*: subset *S* such that if $x \in S \& x = \sum_i \lambda_i y_i$, where $y_i \in C$, $\lambda_i > 0$, $\sum_i \lambda_i = 1$, then $y_i \in S$.

Exposed face: intersection of *C* with a supporting hyperplane. Classical, quantum, squit examples.

For effects e, $F_e^0 := \{x \in \Omega\}$: $e(x) = 0\}$ and $F_e^1 := \{x \in \Omega : e(x) = 1\}$ are exposed faces of Ω .

States $\omega_1, ..., \omega_n \in \Omega$ are **perfectly distinguishable** if there exist allowed effects $e_1, ..., e_n$, with $\sum_i e_i \leq u$, such that $e_i(\omega_j) = \delta_{ij}$.

Let $e_i, i \in \{1, ..., n\}$ be a submeasurement. $F_i^1(:=F_{e_i}^1) \subseteq F_j^0$ for $j \neq i$. So it distinguishes the faces F_i^1 from each other.

A list $\omega_1, ..., \omega_n$ of perfectly distinguishable *pure* states is called a **frame** or an **n-frame**.

Filters

Convex abstraction of QM's Projection Postulate (Lüders version): $\rho \mapsto Q\rho Q$ where Q is the orthogonal projector onto a subspace of Hilbert space \mathscr{H} .

Helpful in abstracting interference.

Filter := Normalized positive linear map $P : A \rightarrow A$: $P^2 = P$, with P and P^* both complemented.

Complemented means \exists filter P' such that im $P \cap A_+ = \ker P' \cap A_+$. **Normalized** means $\forall \omega \in \Omega \ u(P\omega) \leq 1$.

- Dual of Alfsen and Shultz' notion of **compression**.
- Filters are **neutral**: $u(P\omega) = u(\omega) \implies P\omega = \omega$.
- Ω called **projective** if every face is the positive part of the image of a filter.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A cone is **perfect** if every face is self-dual in its span according to the restriction of the same inner product.

 In a perfect cone the orthogonal (in self-dualizing inner product) projection onto the span of a face F is positive. In fact it's a filter.

- Lattice: partially ordered set such that every pair of elements has a least upper bound x∨y and a greatest lower bound x∧y.
- The faces of any convex set, ordered by set inclusion, form a lattice.
- Complemented lattice: bounded lattice in which every element x has a complement: x' such that x∨x' = 1, x∧x' = 0. (Remark: x' not necessarily unique.)
- orthocomplemented if equipped with an order-reversing complementation: x ≤ y ⇒ x' ≥ y'. (Remark: still not necessarily unique.)
- Orthocomplemented lattices satisfy DeMorgan's laws.

< 同 > < ∃ >

- Orthomodularity: $F \leq G \implies G = F \lor (G \land F')$. (draw)
- For projective systems, define F' := im +P'_F. Then ' is an orthocomplementation, and the face lattice is orthomodular. (Alfsen & Shultz)
- OMLs are "Quantum logics"
- OML's are precisely those orthocomplemented lattices that are determined by their Boolean subalgebras.

Closely related to Principle of Consistent Exclusivity (A. Cabello, S. Severini, A. Winter, arxiv 1010.2163):
 If a set of sharp outcomes *e_i* are pairwise jointly measurable, their probabilities sum to 1 or less in *any* state.
 Limit on noncontextuality.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Symmetry of transition probabilities

• Given projectivity, for each atomic projective unit $p = P^* u$ (*P* an **atomic** (:= minimal nonzero) filter) the face $P\Omega$ contains a single pure state, call it \hat{p} .

 $p \mapsto \hat{p}$ is 1:1 from atomic projective units onto extremal points of Ω (pure states).

• Symmetry of transition probabilities: for atomic projective units $a, b, a(\hat{b}) = b(\hat{a})$.

A self-dual projective cone has symmetry of transition probabilities.

Theorem (Araki 1980; we rediscovered...)

Projectivity \implies (STP \equiv Perfection).

< ロ > < 同 > < 回 > < 回 > < 回 > <

(HB, Jonathan Barrett, Markus Mueller, Marius Krumm; in prep, some have appeared in M. Krumm's masters thesis) Definition

Unique Spectrality: every state has a decomposition into perfectly distinguishable pure states and all such decompositions use the same probabilities.

Stronger than Weak Spectrality (example).

Definition

For $x, y \in \mathbb{R}^n$, $x \prec y$, x is majorized by y, means that $\sum_{i=1}^k x_i^{\downarrow} \leq \sum_{i=1}^k y_i^{\downarrow}$ for k = 1, ..., n-1, and $\sum_{i=1}^n x_i^{\downarrow} = \sum_{i=1}^n y_i^{\downarrow}$.

< ロ > < 回 > < 回 > < 回 > < 回 > <

A measurement $\{e_i\}$ is **fine-grained** if e_i are on extremal rays of A_+^* .

Theorem (H. Barnum, J. Barrett, M. Müller, M. Krumm)

Let a system satisfy Unique Spectrality, Symmetry of Transition Probabilities, and Projectivity. (Equivalently, Unique Spectrality and Perfection.) Then for any state ω and fine-grained measurement $e_1, ..., e_n$, the vector $\mathbf{p} = [e_1(\omega), ..., e_n(\omega)]$ is majorized by the vector of probabilities of outcomes for a spectral measurement on ω .

Corollary

Let $\omega' = \int_{K} d\mu(T) T_{\mu}(\rho)$, where $d\mu(T)$ is a normalized measure on the compact group K of reversible transformations. Then $\omega \leq \omega'$.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Definition

A function $f : \mathbb{R}^n \to \mathbb{R}$ is called *Schur-concave* if for every $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n, \mathbf{v}$ majorizes \mathbf{w} implies $f(\mathbf{v}) \le f(\mathbf{w})$.

Entropy-like; mixing-monotone.

Proposition

Every concave symmetric function is Schur-concave.

Definition (Measurement, preparation, spectral "entropies")

Let χ be a Schur-concave function. Define $\chi^{meas}(\omega) := \min_{fine-grained measurements} \chi([e_1(\omega),...,e_{\#outcomes}(\omega)]).$ $\chi^{prep}(\omega) := \min$ over convex decompositions of $\omega = \sum_i p_i \omega_i$) of ω into pure states, of $\chi(\mathbf{p}).$ $\chi^{spec}(\omega) := \chi(spec(\omega)).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Rényi entropies

Definition (Rényi entropies)

$$\mathcal{H}_{lpha}(\mathbf{p}) := rac{1}{1-lpha} \log\left(\sum_{i} oldsymbol{
ho}_{i}^{lpha}
ight)$$

for $\alpha \in (0,1) \cup (1,\infty)$.

$$egin{aligned} &\mathcal{H}_0(\mathbf{p}) := \lim_{lpha o 0} \mathcal{H}_lpha(\mathbf{p}) = -\log|\mathrm{supp}\;\mathbf{p}|. \ &\mathcal{H}_1(\mathbf{p}) = \lim_{lpha o 1} \mathcal{H}_lpha(\mathbf{p}) = \mathcal{H}(\mathbf{p}). \ &\mathcal{H}_\infty(\mathbf{p}) = \lim_{lpha o \infty} \mathcal{H}_lpha(\mathbf{p}) = -\log\max_j p_j. \end{aligned}$$

Concave, Schur-concave.

Barnum, Barrett, Krumm, Mueller (UNM) Entropy, majorization and thermodynamics

<ロ> <回> <回> <回> < 回</p>

Proposition (Corollary of "spectral probabilities majorize".)

In a **perfect** system (equivalently one with **spectrality**, **projectivity**, and **STP**), any concave and Schur-concave function of finegrained measurement outcome probabilities is minimized by the spectral measurement.

So e.g. Rényi measurement entropy = spectral Rényi entropy.

Barnum, Barrett, Krumm, Mueller (UNM) Entropy, majorization and thermodynamics

Proposition

Assume Weak Spectrality, Strong Symmetry. Then $H_2^{prep} = H_2^{meas}$. ("Collision entropies".)

< E

< D > < P > < E >

Proposition

Assume Weak Spectrality, Strong Symmetry. If $H_0^{prep} = H_0^{meas}$ then No Higher-Order Interference holds (and vice versa). (So systems are Jordan-algebraic.)

Because $H_0^{prep} = H_0^{meas}$ is basically the covering law given the background assumptions.

Could enable some purification axiom that implies $H_0^{prep} = H_0^{meas}$ via steering (e.g. locally tomographic purification with identical marginals) to imply Jordan-algebraic systems.

イロン 不同 とくほ とくほとう

Definition (Relative entropy)

Assume Strong Symmetry, Weak Spectrality. $S(\rho || \sigma) := -H^{spec}(\rho) - (\rho, \ln \sigma).$

Theorem

 $S(
ho||\sigma) \ge 0.$

To Do: Define more information divergences/"distances". Get monotonicity results. Use these in a resource theory.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Filters allow for **emergent classicality**: generalized *decoherence* onto classical subsets of the state space: $\omega \mapsto P_1 \omega + P_2 \omega + \dots + P_n \rho$, P_i filters.

Open question: the operator projecting out higher-order interference is a projector. Is it positive? If so, **higher-order decoherence** possible. Could make HOI more plausible as potential trans-quantum physics.

Filters might be useful in **information-processing** protocols like computation, data compression ("project onto typical subspace"), coding.

Characterization of quantum systems

HB, Markus Müller, Cozmin Ududec

- Weak Spectrality: every state is in convex hull of a set of perfectly distinguishable pure (i.e. extremal) states
- Strong Symmetry: Every set of perfectly distinguishable pure states transforms to any other such set of the same size reversibly.
- So irreducibly three-slit (or more) interference.
- Energy observability: Systems have nontrivial continuously parametrized reversible dynamics. Generators of one-parameter continuous subgroups ("Hamiltonians") are associated with nontrivial conserved observables.
- $\bullet 1 4 \implies$ standard quantum system (over \mathbb{C})
- $\bullet 1 3 \implies$ irreducible Jordan algebraic systems, and classical.
- $\bullet 1 2 \implies$ "projective" (filters onto faces), self-dual systems

H. Barnum, M. Müller, C. Ududec, "Higher order interference and single system postulates characterizing quantum theory," *New J. Phys* **16** 123029 (2014). Open access. Also arxiv:1403.4147.

- Pascual Jordan, (Z. Phys, 1932 or 1933):
 - Jordan algebra: abstracts properties of Hermitian operators.
 - Symmetric product abstracts $A \bullet B = \frac{1}{2}(AB + BA)$.
 - Jordan identity: $a \bullet (b \bullet a^2) = (a \bullet b) \bullet a^2$.
 - Formally real JA: $a^2 + b^2 = 0 \implies a = b = 0$. Makes the cone of squares a candidate for unnormalized state space.
- Jordan, von Neumann, Wigner (Ann. Math., **35**, 29-34 (1934)): irreducible f.d. formally real Jordan algebras are:
 - quantum systems (self-adjoint matrices) over \mathbb{R}, \mathbb{C} , and \mathbb{H} ;
 - systems whose state space is a ball (aka "spin factors");
 - 3×3 Hermitian octonionic matrices ("exceptional" JA).
- f.d. homogeneous self-dual cones are precisely the cones of squares in f.d. formally real Jordan algebras. (Koecher 1958, Vinberg 1960)

・ロト ・同ト ・ヨト ・ヨト

Postulates 1 and 2 together have many important consequences including:

- Saturation: effect cone is full dual cone.
- Self-duality. (Mueller and Ududec, PRL: saturation plus special case of postulate 2, reversible transitivity on *pairs* of pure states
 self-duality.)
- **Perfection**: every face is self-dual in its span according to the restriction of the same inner product
- Every face of Ω is generated by a frame. If F ≤ G, a frame for F extends to one for G. All frames for F have same size.
- The orthogonal (in self-dualizing inner product) projection onto the span of a face *F* is positive, in fact it's a *filter* (defined soon).

< 🗇 🕨 < 🖹 🕨

Multi-slit interference I

To adapt Rafael Sorkin's *k*-th order interference to our framework, need *k*-slit experiments.

k-slit mask: Set of filters $P_1, ..., P_k$ onto distinguishable faces. Define $P_J := \bigvee_{i \in J} P_i$. (Notation: $P_{ij...n} = P_i \lor P_j \lor \cdots \lor P_n$.)

In QM: maps $\rho \mapsto Q_i \rho Q_i$, where Q_i are projectors onto orthogonal subspaces S_i of \mathcal{H} .

• 2nd-order interference if for some 2-slit mask,

$$P_1 + P_2 \neq P_{12}.$$
 (1)

• 3rd-order interference if for some 3-slit mask,

$$P_{12} + P_{13} + P_{23} - P_1 - P_2 - P_3 \neq P_{123}.$$
 (2)

(Zero in quantum theory; easy to check at Hilbert space/pure-state level.)

k-th order interference if for some mask $M = \{P_1, ..., P_k\}$,

$$\sum_{r=1}^{k-1} (-1)^{r-1} \sum_{|J|=k-r} P_J \neq P_M.$$
(3)

• Equivalently $F_M = \lim_{|J|=k-1} F_J$ (no "*k*-th order coherence"). (Ududec, Barnum, Emerson, *Found. Phys.* **46**: 396-405 (2011). (arxiv: 0909.4787) for k = 3, in prep. arbitrary k (& CU thesis).)

Components of a state in $F_M \setminus \lim \bigcup_{|J|=k-1} F_J$ are *k*-th order "coherences". In QM: off-block-diagonal density matrix elements.

• No k-th order \implies no k+1-st order.

Characterizing Jordan algebraic systems

Theorem (Adaptation of Alfsen & Shultz, Thm 9.3.3)

Let a finite-dimensional system satisfy

- (a) **Projectivity**: there is a filter onto each face
- (b) Symmetry of Transition Probabilities, and
- (c) Filters Preserve Purity: if ω is a pure state, then $P\omega$ is a nonnegative multiple of a pure state.

Then Ω is the state space of a formally real Jordan algebra.

Theorem (Barnum, Müller, Ududec)

(Weak Spectrality & Strong Symmetry) \implies Projectivity & STP; WS & SS & No Higher Interference \implies Filters Preserve Purity. Jordan algebraic system thus obtained must be either irreducible or classical. (All such satisfy WS, SS, No HOI.)