## Entropy, majorization and thermodynamics in general probabilistic systems

Howard Barnum ${ }^{1}$, Jonathan Barrett ${ }^{2}$, Marius Krumm ${ }^{3}$, Markus Mueller ${ }^{3}$

${ }^{1}$ University of New Mexico, ${ }^{2}$ Oxford, ${ }^{3} \mathrm{U}$ Heidelberg, U Western Ontario

## QPL 2015, Oxford, July 16

hnbarnum@aol.com
Collaborators: Markus Mueller (Western; Heidelberg; PI); Cozmin Ududec (Invenia Technical Computing; PI; Waterloo), Jon

## Introduction and Summary

- Project: Understand thermodynamics abstractly by investigating properties necessary and/or sufficient for a Generalized Probabilistic Theory to have a well-behaved analogue of quantum thermodynamics, conceived of as a resource theory.
- Aim for results analogous to "Second Laws of Quantum Thermo", and Lostaglio/Jenner/Rudolph work on transitions between non-energy-diagonal states.
- This talk: some groundwork. Assume spectra in order to have analogue to state majorization.
- We give conditions sufficient for operationally-defined measurement entropies to be the spectral entropies.
- Under these conditions we describe assumptions about which processes are thermodynamically reversibile, sufficient to extend von Neumman's argument that quantum entropy is thermo entropy to our setting.


## Probabilistic Theories

Theory: Set of systems
System: Specified by bounded convex sets of allowed states, allowed measurements, allowed dynamics compatible with each measurement outcome. (Could view as a category (with "normalization process").)
Composite systems: Rules for combining systems to get a composite system, e.g. tensor product in QM. (Could view as making it a symmetric monoidal category)
Remark: Framework (e.g. convexity, monoidality...) justified operationally. Very weakly constraining.

## State spaces and measurements

Normalized states of system $A$ : Convex compact set $\Omega_{A}$ of dimension $d-1$, embedded in $A \simeq \mathbb{R}^{d}$ as the base of a regular cone $A_{+}$of unnormalized states (nonnegative multiples of $\Omega_{A}$ ).
Measurement outcomes: linear functionals $A \rightarrow \mathbb{R}$ called effects whose values on states in $\Omega_{A}$ are in $[0,1]$.
Unit effect $u_{A}$ has $u_{A}\left(\Omega_{A}\right)=1$.
Measurements: Indexed sets of effects $e_{i}$ with $\sum_{i} e_{i}=u_{A}$ (or continuous analogues).
Effects generate the dual cone $A_{+}^{*}$, of functionals nonnegative on $A_{+}$.
Sometimes we may wish to restrict measurement outcomes to a (regular) subcone, call it $A_{+}^{\#}$, of $A_{+}^{*}$. If no restriction, system saturated. ( $A_{+}$is regular: closed, generating, convex, pointed. It makes $A$ an ordered linear space (inequalities can be added and multiplied by positive scalars), with order $a \geq b:=a-b \in A_{+}$.)
Dynamics are normalization-non-increasing positive maps.

## Inner products, internal representation of the dual and self-duality

In a real vector space $A$ an inner product (_,_) is equivalent to a linear isomorphism $A \rightarrow A^{*} . y \in A$ corresponds to the functional $x \mapsto(y, x)$. GPT theories often represented this way (Hardy, Barrett...).

- Internal dual of $A_{+}$relative to inner product:
$A_{+}^{* i n t}:=\left\{y \in A: \forall x \in A_{+}(y, x) \geq 0\right\}$. (Affinely isomorphic to $A_{+}^{*}$ ).
- If there exists an inner product relative to which $A_{+}^{* i n t}=A_{+}, A$ is called self-dual.
- Self-duality is stronger than $A_{+}$affinely isomorphic to $A_{+}^{*}$ ! (examples)
- related to time reversal?


## Examples

Classical: $A$ is the space of $n$-tuples of real numbers; $u(x)=\sum_{i=1}^{n} x_{i}$. So $\Omega_{A}$ is the probability simplex, $A_{+}$the positive (i.e.nonnegative) orthant $x$ : $x_{i} \geq 0, i \in 1, \ldots, n$

Quantum: $A=\mathscr{B}_{h}(\mathbf{H})=$ self-adjoint operators on complex (f.d.) Hilbert space $\mathbf{H} ; u_{A}(X)=\operatorname{Tr}(X)$. Then $\Omega_{A}=$ density operators. $A_{+}=$positive semidefinite operators.

Squit (or P/Rbit): $\Omega_{A}$ a square, $A_{+}$a four-faced polyhedral cone in $\mathbb{R}^{3}$.
Inner-product representations: $\langle X, Y\rangle=\operatorname{tr} X Y$ (Quantum) $\langle x, y\rangle=\sum_{i} x_{i} y_{i}$ (Classical)

Quantum and classical cones are self-dual! Squit cone is not, but is isomorphic to dual.

## Faces of convex sets

Face of convex $C$ : subset $S$ such that if $x \in S \& x=\sum_{i} \lambda_{i} y_{i}$, where $y_{i} \in C, \lambda_{i}>0, \Sigma_{i} \lambda_{i}=1$, then $y_{i} \in S$.

Exposed face: intersection of $C$ with a supporting hyperplane. Classical, quantum, squit examples.

For effects $\left.e, F_{e}^{0}:=\{x \in \Omega): e(x)=0\right\}$ and $F_{e}^{1}:=\{x \in \Omega: e(x)=1\}$ are exposed faces of $\Omega$.

## Distinguishability

States $\omega_{1}, \ldots, \omega_{n} \in \Omega$ are perfectly distinguishable if there exist allowed effects $e_{1}, \ldots, e_{n}$, with $\sum_{i} e_{i} \leq u$, such that $e_{i}\left(\omega_{j}\right)=\delta_{i j}$.

Let $e_{i}, i \in\{1, \ldots, n\}$ be a submeasurement. $F_{i}^{1}\left(:=F_{e_{i}}^{1}\right) \subseteq F_{j}^{0}$ for $j \neq i$. So it distinguishes the faces $F_{i}^{1}$ from each other.

A list $\omega_{1}, \ldots, \omega_{n}$ of perfectly distinguishable pure states is called a frame or an n-frame.

## Filters

Convex abstraction of QM's Projection Postulate (Lüders version): $\rho \mapsto Q \rho Q$ where $Q$ is the orthogonal projector onto a subspace of Hilbert space $\mathscr{H}$.
Helpful in abstracting interference.
Filter := Normalized positive linear map $P: A \rightarrow A: P^{2}=P$, with $P$ and $P^{*}$ both complemented.
Complemented means $\exists$ filter $P^{\prime}$ such that im $P \cap A_{+}=\operatorname{ker} P^{\prime} \cap A_{+}$. Normalized means $\forall \omega \in \Omega \quad u(P \omega) \leq 1$.

- Dual of Alfsen and Shultz' notion of compression.
- Filters are neutral: $u(P \omega)=u(\omega) \Longrightarrow P \omega=\omega$.
- $\Omega$ called projective if every face is the positive part of the image of a filter.


## Perfection (and Projectivity)

A cone is perfect if every face is self-dual in its span according to the restriction of the same inner product.

- In a perfect cone the orthogonal (in self-dualizing inner product) projection onto the span of a face $F$ is positive. In fact it's a filter.


## The lattice of faces

- Lattice: partially ordered set such that every pair of elements has a least upper bound $x \vee y$ and a greatest lower bound $x \wedge y$.
- The faces of any convex set, ordered by set inclusion, form a lattice.
- Complemented lattice: bounded lattice in which every element $x$ has a complement: $x^{\prime}$ such that $x \vee x^{\prime}=1, x \wedge x^{\prime}=0$. (Remark: $x^{\prime}$ not necessarily unique.)
- orthocomplemented if equipped with an order-reversing complementation: $x \leq y \Longrightarrow x^{\prime} \geq y^{\prime}$. (Remark: still not necessarily unique.)
- Orthocomplemented lattices satisfy DeMorgan's laws.


## Orthomodularity

- Orthomodularity: $F \leq G \Longrightarrow G=F \vee\left(G \wedge F^{\prime}\right)$.
(draw)
- For projective systems, define $F^{\prime}:=\mathrm{im}{ }_{+} P_{F}^{\prime}$. Then ' is an orthocomplementation, and the face lattice is orthomodular. (Alfsen \& Shultz)
- OMLs are "Quantum logics"
- OML's are precisely those orthocomplemented lattices that are determined by their Boolean subalgebras.
- Closely related to Principle of Consistent Exclusivity (A.

Cabello, S. Severini, A. Winter, arxiv 1010.2163): If a set of sharp outcomes $e_{i}$ are pairwise jointly measurable, their probabilities sum to 1 or less in any state. Limit on noncontextuality.

## Symmetry of transition probabilities

- Given projectivity, for each atomic projective unit $p=P^{*} u$ ( $P$ an atomic (:= minimal nonzero) filter) the face $P \Omega$ contains a single pure state, call it $\hat{p}$.
$p \mapsto \hat{p}$ is $1: 1$ from atomic projective units onto extremal points of $\Omega$ (pure states).
- Symmetry of transition probabilities: for atomic projective units $a, b, a(\hat{b})=b(\hat{a})$.

A self-dual projective cone has symmetry of transition probabilities.

## Theorem (Araki 1980; we rediscovered...)

Projectivity $\Longrightarrow$ (STP $\equiv$ Perfection).

## Initial results relevant to thermo

(HB, Jonathan Barrett, Markus Mueller, Marius Krumm; in prep, some have anneared in M.Krumm's masters thesis)
Definition
Unique Spectrality: every state has a decomposition into perfectly distinguishable pure states and all such decompositions use the same probabilities.

Stronger than Weak Spectrality (example).

## Definition

For $x, y \in \mathbb{R}^{n}, x \prec y, x$ is majorized by $y$, means that $\sum_{i=1}^{k} x_{i}^{\downarrow} \leq \sum_{i=1}^{k} y_{i}^{\downarrow}$ for $k=1, \ldots, n-1$, and $\sum_{i=1}^{n} x_{i}^{\downarrow}=\sum_{i=1}^{n} y_{i}^{\downarrow}$.

## Spectral measurement probabilities majorize

A measurement $\left\{e_{i}\right\}$ is fine-grained if $e_{i}$ are on extremal rays of $A_{+}^{*}$.

## Theorem (H. Barnum, J. Barrett, M. Müller, M. Krumm)

Let a system satisfy Unique Spectrality, Symmetry of Transition Probabilities, and Projectivity. (Equivalently, Unique Spectrality and Perfection.) Then for any state $\omega$ and fine-grained measurement $e_{1}, \ldots, e_{n}$, the vector $\mathbf{p}=\left[e_{1}(\omega), \ldots, e_{n}(\omega)\right]$ is majorized by the vector of probabilities of outcomes for a spectral measurement on $\omega$.

## Corollary

Let $\omega^{\prime}=\int_{K} d \mu(T) T_{\mu}(\rho)$, where $d \mu(T)$ is a normalized measure on the compact group $K$ of reversible transformations. Then $\omega \preceq \omega^{\prime}$.

## Definition

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called Schur-concave if for every $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}, \mathbf{v}$ majorizes wimplies $f(\mathbf{v}) \leq f(\mathbf{w})$.

Entropy-like; mixing-monotone.

## Proposition

Every concave symmetric function is Schur-concave.

## Definition (Measurement, preparation, spectral "entropies")

Let $\chi$ be a Schur-concave function. Define
$\chi^{\text {meas }}(\omega):=\min _{\text {fine-grained measurements }} \chi\left(\left[e_{1}(\omega), \ldots, e_{\# \text { outcomes }}(\omega)\right]\right)$.
$\chi^{\text {prep }}(\omega):=$ minimum over convex decompositions of $\left.\omega=\sum_{i} p_{i} \omega_{i}\right)$ of $\omega$ into pure states, of $\chi(\mathbf{p})$.
$\chi^{\text {spec }}(\omega):=\chi(\operatorname{spec}(\omega))$.

## Rényi entropies

## Definition (Rényi entropies)

$$
H_{\alpha}(\mathbf{p}):=\frac{1}{1-\alpha} \log \left(\sum_{i} p_{i}^{\alpha}\right)
$$

for $\alpha \in(0,1) \cup(1, \infty)$.

$$
H_{0}(\mathbf{p}):=\lim _{\alpha \rightarrow 0} H_{\alpha}(\mathbf{p})=-\log |\operatorname{supp} \mathbf{p}|
$$

$$
H_{1}(\mathbf{p})=\lim _{\alpha \rightarrow 1} H_{\alpha}(\mathbf{p})=H(\mathbf{p})
$$

$$
H_{\infty}(\mathbf{p})=\lim _{\alpha \rightarrow \infty} H_{\alpha}(\mathbf{p})=-\log \max _{j} p_{j}
$$

Concave, Schur-concave.

## Proposition (Corollary of "spectral probabilities majorize".)

In a perfect system (equivalently one with spectrality, projectivity, and STP), any concave and Schur-concave function of finegrained measurement outcome probabilities is minimized by the spectral measurement.

So e.g. Rényi measurement entropy $=$ spectral Rényi entropy.

## Strong Symmetry

## Proposition

Assume Weak Spectrality, Strong Symmetry. Then $H_{2}^{\text {prep }}=H_{2}^{\text {meas }}$. ("Collision entropies".)

## Proposition

Assume Weak Spectrality, Strong Symmetry. If $H_{0}^{\text {prep }}=H_{0}^{\text {meas }}$ then No Higher-Order Interference holds (and vice versa). (So systems are Jordan-algebraic.)

Because $H_{0}^{\text {prep }}=H_{0}^{\text {meas }}$ is basically the covering law given the background assumptions.

Could enable some purification axiom that implies $H_{0}^{\text {prep }}=H_{0}^{\text {meas }}$ via steering (e.g. locally tomographic purification with identical marginals) to imply Jordan-algebraic systems.

## Relative entropy

## Definition (Relative entropy)

Assume Strong Symmetry, Weak Spectrality.
$S(\rho \| \sigma):=-H^{\text {spec }}(\rho)-(\rho, \ln \sigma)$.
Theorem
$S(\rho \| \sigma) \geq 0$.

To Do: Define more information divergences/"distances". Get monotonicity results. Use these in a resource theory.

## Further observations:

Filters allow for emergent classicality: generalized decoherence onto classical subsets of the state space: $\omega \mapsto P_{1} \omega+P_{2} \omega+\cdots+P_{n} \rho, P_{i}$ filters.

Open question: the operator projecting out higher-order interference is a projector. Is it positive? If so, higher-order decoherence possible. Could make HOI more plausible as potential trans-quantum physics.

Filters might be useful in information-processing protocols like computation, data compression ("project onto typical subspace"), coding.

## Characterization of quantum systems

HB, Markus Müller, Cozmin Ududec
(1) Weak Spectrality: every state is in convex hull of a set of perfectly distinguishable pure (i.e. extremal) states
(2) Strong Symmetry: Every set of perfectly distinguishable pure states transforms to any other such set of the same size reversibly.
(3) No irreducibly three-slit (or more) interference.
(1) Energy observability: Systems have nontrivial continuously parametrized reversible dynamics. Generators of one-parameter continuous subgroups ("Hamiltonians") are associated with nontrivial conserved observables.
$\bullet 1-4 \Longrightarrow$ standard quantum system (over $\mathbb{C}$ )
$\bullet 1-3 \Longrightarrow$ irreducible Jordan algebraic systems, and classical.
$\bullet 1-2 \Longrightarrow$ "projective" (filters onto faces), self-dual systems

## Reference

H. Barnum, M. Müller, C. Ududec, "Higher order interference and single system postulates characterizing quantum theory," New J. Phys 16123029 (2014). Open access. Also arxiv:1403.4147.

## Jordan Algebraic Systems

- Pascual Jordan, (Z. Phys, 1932 or 1933):
- Jordan algebra: abstracts properties of Hermitian operators.
- Symmetric product • abstracts $A \bullet B=\frac{1}{2}(A B+B A)$.
- Jordan identity: $a \bullet\left(b \bullet a^{2}\right)=(a \bullet b) \bullet a^{2}$.
- Formally real JA: $a^{2}+b^{2}=0 \Longrightarrow a=b=0$. Makes the cone of squares a candidate for unnormalized state space.
- Jordan, von Neumann, Wigner (Ann. Math., 35, 29-34 (1934)): irreducible f.d. formally real Jordan algebras are:
- quantum systems (self-adjoint matrices) over $\mathbb{R}, \mathbb{C}$, and $\mathbb{H}$;
- systems whose state space is a ball (aka "spin factors");
- $3 \times 3$ Hermitian octonionic matrices ("exceptional" JA).
- f.d. homogeneous self-dual cones are precisely the cones of squares in f.d. formally real Jordan algebras. (Koecher 1958, Vinberg 1960)


## Consequences of Postulates 1 and 2

Postulates 1 and 2 together have many important consequences including:

- Saturation: effect cone is full dual cone.
- Self-duality. (Mueller and Ududec, PRL: saturation plus special case of postulate 2, reversible transitivity on pairs of pure states $\Longrightarrow$ self-duality.)
- Perfection: every face is self-dual in its span according to the restriction of the same inner product
- Every face of $\Omega$ is generated by a frame. If $F \leq G$, a frame for $F$ extends to one for $G$. All frames for $F$ have same size.
- The orthogonal (in self-dualizing inner product) projection onto the span of a face $F$ is positive, in fact it's a filter (defined soon).


## Multi-slit interference I

To adapt Rafael Sorkin's $k$-th order interference to our framework, need $k$-slit experiments.
k-slit mask: Set of filters $P_{1}, \ldots, P_{k}$ onto distinguishable faces. Define $P_{J}:=\bigvee_{i \in J} P_{i}$. (Notation: $P_{i j \ldots n}=P_{i} \vee P_{j} \vee \cdots \vee P_{n}$.)

In QM: maps $\rho \mapsto Q_{i} \rho Q_{i}$, where $Q_{i}$ are projectors onto orthogonal subspaces $S_{i}$ of $\mathscr{H}$.

- 2nd-order interference if for some 2-slit mask,

$$
\begin{equation*}
P_{1}+P_{2} \neq P_{12} \tag{1}
\end{equation*}
$$

- 3rd-order interference if for some 3-slit mask,

$$
\begin{equation*}
P_{12}+P_{13}+P_{23}-P_{1}-P_{2}-P_{3} \neq P_{123} . \tag{2}
\end{equation*}
$$

(Zero in quantum theory; easy to check at Hilbert space/pure-state level.)

## Multi-slit interference II

k-th order interference if for some mask $M=\left\{P_{1}, . ., P_{k}\right\}$,

$$
\begin{equation*}
\sum_{r=1}^{k-1}(-1)^{r-1} \sum_{|J|=k-r} P_{J} \neq P_{M} . \tag{3}
\end{equation*}
$$

- Equivalently $F_{M}=\operatorname{lin} \cup_{|J|=k-1} F_{J}$ (no " $k$-th order coherence"). (Ududec, Barnum, Emerson, Found. Phys. 46: 396-405 (2011). (arxiv: 0909.4787 ) for $k=3$, in prep. arbitrary $k$ ( \& CU thesis).)

Components of a state in $F_{M} \backslash \operatorname{lin} \cup_{|J|=k-1} F_{J}$ are $k$-th order "coherences". In QM: off-block-diagonal density matrix elements.

- No $k$-th order $\Longrightarrow$ no $k+1$-st order.


## Characterizing Jordan algebraic systems

## Theorem (Adaptation of Alfsen \& Shultz, Thm 9.3.3)

Let a finite-dimensional system satisfy
(a) Projectivity: there is a filter onto each face
(b) Symmetry of Transition Probabilities, and
(c) Filters Preserve Purity: if $\omega$ is a pure state, then $\mathrm{P} \omega$ is a nonnegative multiple of a pure state.
Then $\Omega$ is the state space of a formally real Jordan algebra.

## Theorem (Barnum, Müller, Ududec)

(Weak Spectrality \& Strong Symmetry) $\Longrightarrow$ Projectivity \& STP; WS \& SS \& No Higher Interference $\Longrightarrow$ Filters Preserve Purity. Jordan algebraic system thus obtained must be either irreducible or classical. (All such satisfy WS, SS, No HOI.)

