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Introduction and Summary

Project: Understand thermodynamics abstractly by investigating
properties necessary and/or sufficient for a Generalized
Probabilistic Theory to have a well-behaved analogue of quantum
thermodynamics, conceived of as a resource theory.
Aim for results analogous to “Second Laws of Quantum Thermo”,
and Lostaglio/Jenner/Rudolph work on transitions between
non-energy-diagonal states.
This talk: some groundwork. Assume spectra in order to have
analogue to state majorization.
We give conditions sufficient for operationally-defined
measurement entropies to be the spectral entropies.
Under these conditions we describe assumptions about which
processes are thermodynamically reversibile, sufficient to extend
von Neumman’s argument that quantum entropy is thermo entropy
to our setting.
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Probabilistic Theories

Theory: Set of systems
System: Specified by bounded convex sets of allowed states, allowed
measurements, allowed dynamics compatible with each measurement
outcome. (Could view as a category (with “normalization process”).)
Composite systems: Rules for combining systems to get a composite
system, e.g. tensor product in QM. (Could view as making it a
symmetric monoidal category)
Remark: Framework (e.g. convexity, monoidality...) justified
operationally. Very weakly constraining.
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State spaces and measurements

Normalized states of system A: Convex compact set ΩA of dimension
d −1, embedded in A'Rd as the base of a regular cone A+ of
unnormalized states (nonnegative multiples of ΩA).
Measurement outcomes: linear functionals A→ R called effects
whose values on states in ΩA are in [0,1].
Unit effect uA has uA(ΩA) = 1.
Measurements: Indexed sets of effects ei with ∑i ei = uA (or
continuous analogues).
Effects generate the dual cone A∗+, of functionals nonnegative on A+.
Sometimes we may wish to restrict measurement outcomes to a
(regular) subcone, call it A#

+ , of A∗+. If no restriction, system saturated.
(A+ is regular: closed, generating, convex, pointed. It makes A an
ordered linear space (inequalities can be added and multiplied by
positive scalars), with order a≥ b := a−b ∈ A+.)
Dynamics are normalization-non-increasing positive maps.
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Inner products, internal representation of the dual and
self-duality

In a real vector space A an inner product (_,_) is equivalent to a linear
isomorphism A→ A∗. y ∈ A corresponds to the functional x 7→ (y ,x).
GPT theories often represented this way (Hardy, Barrett...).

Internal dual of A+ relative to inner product:
A∗int
+ := {y ∈ A : ∀x ∈ A+(y ,x)≥ 0} . (Affinely isomorphic to A∗+ ).

If there exists an inner product relative to which A∗int
+ = A+, A is

called self-dual.
Self-duality is stronger than A+ affinely isomorphic to A∗+!
(examples)
related to time reversal?
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Examples
Classical: A is the space of n-tuples of real numbers; u(x) = ∑

n
i=1 xi .

So ΩA is the probability simplex, A+ the positive (i.e.nonnegative)
orthant x : xi ≥ 0, i ∈ 1, ...,n

Quantum: A = Bh(H) = self-adjoint operators on complex (f.d.) Hilbert
space H; uA(X ) = Tr(X ). Then ΩA = density operators. A+ = positive
semidefinite operators.

Squit (or P/Rbit): ΩA a square, A+ a four-faced polyhedral cone in R3.

Inner-product representations: 〈X ,Y 〉= tr XY (Quantum)
〈x ,y〉= ∑i xiyi (Classical)

Quantum and classical cones are self-dual! Squit cone is not, but is
isomorphic to dual.
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Faces of convex sets

Face of convex C: subset S such that if x ∈ S & x = ∑i λiyi , where
yi ∈ C, λi > 0, ∑i λi = 1, then yi ∈ S.

Exposed face: intersection of C with a supporting hyperplane.
Classical, quantum, squit examples.

For effects e, F 0
e := {x ∈ Ω) : e(x) = 0} and F 1

e := {x ∈ Ω : e(x) = 1}
are exposed faces of Ω.
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Distinguishability

States ω1, ...,ωn ∈ Ω are perfectly distinguishable if there exist
allowed effects e1, ...,en, with ∑i ei ≤ u, such that ei(ωj) = δij .

Let ei , i ∈ {1, ...,n} be a submeasurement. F 1
i (:= F 1

ei
)⊆ F 0

j for j 6= i . So
it distinguishes the faces F 1

i from each other.

A list ω1, ...,ωn of perfectly distinguishable pure states is called a frame
or an n-frame.
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Filters

Convex abstraction of QM’s Projection Postulate (Lüders version):
ρ 7→QρQ where Q is the orthogonal projector onto a subspace of
Hilbert space H .
Helpful in abstracting interference.

Filter := Normalized positive linear map P : A→ A: P2 = P, with P and
P∗ both complemented.
Complemented means ∃ filter P ′ such that im P ∩A+ = kerP ′∩A+.
Normalized means ∀ω ∈ Ω u(Pω)≤ 1.

Dual of Alfsen and Shultz’ notion of compression.
Filters are neutral: u(Pω) = u(ω) =⇒ Pω = ω.
Ω called projective if every face is the positive part of the image
of a filter.
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Perfection (and Projectivity)

A cone is perfect if every face is self-dual in its span according to the
restriction of the same inner product.

In a perfect cone the orthogonal (in self-dualizing inner product)
projection onto the span of a face F is positive. In fact it’s a filter.
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The lattice of faces

Lattice: partially ordered set such that every pair of elements has
a least upper bound x∨y and a greatest lower bound x∧y .
The faces of any convex set, ordered by set inclusion, form a
lattice.
Complemented lattice: bounded lattice in which every element x
has a complement: x ′ such that x∨x ′ = 1, x∧x ′ = 0. (Remark: x ′

not necessarily unique.)
orthocomplemented if equipped with an order-reversing
complementation: x ≤ y =⇒ x ′ ≥ y ′. (Remark: still not
necessarily unique.)
Orthocomplemented lattices satisfy DeMorgan’s laws.
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Orthomodularity

Orthomodularity: F ≤G =⇒ G = F∨(G∧F ′). (draw)
For projective systems, define F ′ := im +P ′F . Then ′ is an
orthocomplementation, and the face lattice is orthomodular.
(Alfsen & Shultz)
OMLs are “Quantum logics”
OML’s are precisely those orthocomplemented lattices that are
determined by their Boolean subalgebras.
Closely related to Principle of Consistent Exclusivity (A.
Cabello, S. Severini, A. Winter, arxiv 1010.2163):
If a set of sharp outcomes ei are pairwise jointly measurable, their
probabilities sum to 1 or less in any state.
Limit on noncontextuality.
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Symmetry of transition probabilities

• Given projectivity, for each atomic projective unit p = P∗u (P an
atomic (:= minimal nonzero) filter) the face PΩ contains a single pure
state, call it p̂.

p 7→ p̂ is 1:1 from atomic projective units onto extremal points of Ω
(pure states).

• Symmetry of transition probabilities: for atomic projective units
a,b, a(b̂) = b(â).

A self-dual projective cone has symmetry of transition probabilities.

Theorem (Araki 1980; we rediscovered...)
Projectivity =⇒ (STP ≡ Perfection).
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Initial results relevant to thermo

(HB, Jonathan Barrett, Markus Mueller, Marius Krumm; in prep, some
have appeared in M. Krumm’s masters thesis)
Definition
Unique Spectrality: every state has a decomposition into perfectly
distinguishable pure states and all such decompositions use the same
probabilities.

Stronger than Weak Spectrality (example).

Definition

For x ,y ∈Rn, x ≺ y , x is majorized by y , means that ∑
k
i=1 x↓i ≤ ∑

k
i=1 y↓i

for k = 1, ...,n−1, and ∑
n
i=1 x↓i = ∑

n
i=1 y↓i .
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Spectral measurement probabilities majorize

A measurement {ei} is fine-grained if ei are on extremal rays of A∗+.

Theorem (H. Barnum, J. Barrett, M. Müller, M. Krumm)

Let a system satisfy Unique Spectrality, Symmetry of Transition
Probabilities, and Projectivity. (Equivalently, Unique Spectrality and
Perfection.) Then for any state ω and fine-grained measurement
e1, ...,en, the vector p = [e1(ω), ...,en(ω)] is majorized by the vector of
probabilities of outcomes for a spectral measurement on ω.

Corollary

Let ω ′ =
∫

K dµ(T )Tµ (ρ), where dµ(T ) is a normalized measure on the
compact group K of reversible transformations. Then ω � ω ′.

Barnum, Barrett, Krumm, Mueller (UNM) Entropy, majorization and thermodynamics July 16, 2015 15 / 29



Definition
A function f : Rn→ R is called Schur-concave if for every v, w ∈ Rn, v
majorizes w implies f (v)≤ f (w).

Entropy-like; mixing-monotone.

Proposition
Every concave symmetric function is Schur-concave.

Definition (Measurement, preparation, spectral “entropies”)
Let χ be a Schur-concave function. Define
χmeas(ω) := minfine−grained measurements χ([e1(ω), ...,e#outcomes(ω)]).
χprep(ω) := minimum over convex decompositions of ω = ∑i piωi ) of ω

into pure states, of χ(p).
χspec(ω) := χ(spec(ω)).
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Rényi entropies

Definition (Rényi entropies)

Hα (p) :=
1

1−α
log

(
∑
i

pα

i

)
for α ∈ (0,1)∪ (1,∞).

H0(p) := lim
α→0

Hα (p) =− log |supp p|.

H1(p) = lim
α→1

Hα (p) = H(p).

H∞(p) = lim
α→∞

Hα (p) =− logmax
j

pj .

Concave, Schur-concave.
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Proposition (Corollary of “spectral probabilities majorize”.)
In a perfect system (equivalently one with spectrality, projectivity,
and STP), any concave and Schur-concave function of finegrained
measurement outcome probabilities is minimized by the spectral
measurement.

So e.g. Rényi measurement entropy = spectral Rényi entropy.
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Strong Symmetry

Proposition

Assume Weak Spectrality, Strong Symmetry. Then Hprep
2 = Hmeas

2 .
(“Collision entropies”.)

Barnum, Barrett, Krumm, Mueller (UNM) Entropy, majorization and thermodynamics July 16, 2015 19 / 29



Proposition

Assume Weak Spectrality, Strong Symmetry. If Hprep
0 = Hmeas

0 then
No Higher-Order Interference holds (and vice versa). (So systems
are Jordan-algebraic.)

Because Hprep
0 = Hmeas

0 is basically the covering law given the
background assumptions.

Could enable some purification axiom that implies Hprep
0 = Hmeas

0 via
steering (e.g. locally tomographic purification with identical marginals)
to imply Jordan-algebraic systems.
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Relative entropy

Definition (Relative entropy)
Assume Strong Symmetry, Weak Spectrality.
S(ρ||σ) :=−Hspec(ρ)− (ρ, lnσ).

Theorem
S(ρ||σ)≥ 0.

To Do: Define more information divergences/“distances”. Get
monotonicity results. Use these in a resource theory.
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Further observations:

Filters allow for emergent classicality: generalized decoherence onto
classical subsets of the state space: ω 7→ P1ω + P2ω + · · ·+ Pnρ, Pi
filters.

Open question: the operator projecting out higher-order interference
is a projector. Is it positive? If so, higher-order decoherence possible.
Could make HOI more plausible as potential trans-quantum physics.

Filters might be useful in information-processing protocols like
computation, data compression (“project onto typical subspace”),
coding.
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Characterization of quantum systems

HB, Markus Müller, Cozmin Ududec

1 Weak Spectrality: every state is in convex hull of a set of
perfectly distinguishable pure (i.e. extremal) states

2 Strong Symmetry: Every set of perfectly distinguishable pure
states transforms to any other such set of the same size
reversibly.

3 No irreducibly three-slit (or more) interference.
4 Energy observability: Systems have nontrivial continuously

parametrized reversible dynamics. Generators of one-parameter
continuous subgroups (“Hamiltonians”) are associated with
nontrivial conserved observables.

•1−4 =⇒ standard quantum system (over C)

•1−3 =⇒ irreducible Jordan algebraic systems, and classical.

•1−2 =⇒ “projective” (filters onto faces), self-dual systems
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Reference

H. Barnum, M. Müller, C. Ududec, “Higher order interference and
single system postulates characterizing quantum theory,” New J. Phys
16 123029 (2014). Open access. Also arxiv:1403.4147.
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Jordan Algebraic Systems

Pascual Jordan, (Z. Phys, 1932 or 1933):
Jordan algebra: abstracts properties of Hermitian operators.
Symmetric product • abstracts A•B = 1

2 (AB + BA).
Jordan identity: a• (b •a2) = (a•b)•a2.
Formally real JA: a2 + b2 = 0 =⇒ a = b = 0. Makes the cone of
squares a candidate for unnormalized state space.

Jordan, von Neumann, Wigner (Ann. Math., 35, 29-34 (1934)):
irreducible f.d. formally real Jordan algebras are:

quantum systems (self-adjoint matrices) over R,C, and H;
systems whose state space is a ball (aka “spin factors”);
3×3 Hermitian octonionic matrices (“exceptional” JA).

f.d. homogeneous self-dual cones are precisely the cones of
squares in f.d. formally real Jordan algebras. (Koecher 1958,
Vinberg 1960)
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Consequences of Postulates 1 and 2

Postulates 1 and 2 together have many important consequences
including:

Saturation: effect cone is full dual cone.
Self-duality. (Mueller and Ududec, PRL: saturation plus special
case of postulate 2, reversible transitivity on pairs of pure states
=⇒ self-duality.)
Perfection: every face is self-dual in its span according to the
restriction of the same inner product
Every face of Ω is generated by a frame. If F ≤G, a frame for F
extends to one for G. All frames for F have same size.
The orthogonal (in self-dualizing inner product) projection onto the
span of a face F is positive, in fact it’s a filter (defined soon).
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Multi-slit interference I

To adapt Rafael Sorkin’s k -th order interference to our framework,
need k -slit experiments.

k-slit mask: Set of filters P1, ...,Pk onto distinguishable faces. Define
PJ :=

∨
i∈J Pi . (Notation: Pij ...n = Pi ∨Pj ∨·· ·∨Pn.)

In QM: maps ρ 7→QiρQi , where Qi are projectors onto orthogonal
subspaces Si of H .

• 2nd-order interference if for some 2-slit mask,

P1 + P2 6= P12. (1)

• 3rd-order interference if for some 3-slit mask,

P12 + P13 + P23−P1−P2−P3 6= P123. (2)

(Zero in quantum theory; easy to check at Hilbert space/pure-state
level.)
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Multi-slit interference II

k-th order interference if for some mask M = {P1, ..,Pk},

k−1

∑
r=1

(−1)r−1
∑

|J|=k−r
PJ 6= PM . (3)

• Equivalently FM = lin∪|J|=k−1 FJ (no “k -th order coherence”).
(Ududec, Barnum, Emerson, Found. Phys. 46: 396-405 (2011).
(arxiv: 0909.4787) for k = 3, in prep. arbitrary k ( & CU thesis).)

Components of a state in FM \ lin∪|J|=k−1 FJ are k -th order
“coherences”. In QM: off-block-diagonal density matrix elements.

• No k -th order =⇒ no k + 1-st order.
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Characterizing Jordan algebraic systems

Theorem (Adaptation of Alfsen & Shultz, Thm 9.3.3)
Let a finite-dimensional system satisfy
(a) Projectivity: there is a filter onto each face
(b) Symmetry of Transition Probabilities, and
(c) Filters Preserve Purity: if ω is a pure state, then Pω is a

nonnegative multiple of a pure state.
Then Ω is the state space of a formally real Jordan algebra.

Theorem (Barnum, Müller, Ududec)
(Weak Spectrality & Strong Symmetry) =⇒ Projectivity & STP;
WS & SS & No Higher Interference =⇒ Filters Preserve Purity.
Jordan algebraic system thus obtained must be either irreducible or
classical. (All such satisfy WS, SS, No HOI.)
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