Axiomatizing complete positivity

Oscar Cunningham and Chris Heunen

{oscar.cunningham,heunen}@cs.ox.ac.uk

July 16, 2015

Introduction

- Model quantum mechanics by **FdHilb** (Dagger Compact Symmetric Monoidal Category)
- Can model mixed states in two ways
 - CPM[FdHilb]: Same objects, morphisms are completely positive maps.
 - CP*[FdHilb]: Category of C*-algebras and completly positive maps.
- Generalises to functors CPM, CP*: DCSMC → DCSMC.
- Canonical inclusions $\mathbf{C} \hookrightarrow \mathsf{CPM}[\mathbf{C}] \hookrightarrow \mathsf{CP*}[\mathbf{C}]$
- Question: When is D equal to some CPM[C] or CP*[C]?

Categories

Symmetric Monoidal Categories

Monoidal product:

Tensor product $A \otimes A'$

On morphisms:

 $f\otimes g$

Swap:

Canonical map $A \otimes A' \to A' \otimes A$

Compact Monoidal Categories

Can define transpose:

Dagger Categories

Dagger:
$$\begin{array}{c}
B & A \\
\downarrow & \downarrow \\
f & \downarrow
\end{array}$$

$$f^{\dagger}$$
 s.t. $\langle fv, w \rangle = \langle v, f^{\dagger}w \rangle$

Gives a contravariant functor:

$$\begin{array}{c}
C & A \\
\hline
g \\
\hline
f \\
A
\end{array}$$

Hence have all four orientations: Original Transpose Adjoint Conjugate

Density Matrices

In QM, mixed states are given by positive matrices:

These correspond to states of $A^* \otimes A$:

Generalising this, the Choi-Jamiolkowski isomorphism says that the completely positive maps are precisely the ones of the form:

The CPM construction

(P. Selinger Dagger Compact Closed Categories and Completely Positive Maps)

CPM[D] has objects ob(D)

Morphisms $A \rightarrow B$ are

D embeds into $CPM[\mathbf{D}]$ by

Question: Given **C**, when is $\mathbf{C} \sim CPM[\mathbf{D}]$ for some **D**?

Answer: B. Coecke **Axiomatic Description of Mixed States From Selinger's CPM-construction**

Theorem

Suppose C has a subcategory C^{pure} (with the same objects) and for each object a map $\stackrel{*}{\Rightarrow}$ satisfying

$$\frac{\dot{\underline{-}}}{\prod_{A \otimes C}} = \frac{\dot{\underline{-}}}{\prod_{A = C}} \frac{\dot{\underline{-}}}{\prod_{C}} \quad \text{and} \quad \frac{\dot{\underline{-}}}{\prod_{C}} = \qquad \text{and} \quad \frac{\dot{\underline{-}}}{\prod_{A}} = \prod_{A = C} \frac{\dot{\underline{-}}}{\prod_{C}} \quad (1)$$

For all
$$f \in \mathbf{C}$$
 we have $g \in \mathbf{C}^{pure}$ such that $f = g$ (3)

Then $\mathbf{C} \sim CPM[\mathbf{C}^{pure}]$

Proof Sketch

Consider functors between **C** and CPM[**C**^{pure}] given by

("Folding in half")

The axioms are precisely what is needed to prove that these are well defined DCSM-functors. They are clearly inverse to each other.

C*-algebras

A special dagger Frobenius structure is an object A equipped with morphisms $\diamondsuit: A \otimes A \to A$ and $b: I \to A$ satisfying:

The special dagger Frobenius structures in **FdHilb** correspond precisely to the finite dimensional C*-algebras. (B. Coecke et al. **Categories of Quantum and Classical Channels**)

Completely positive maps

A state is positive when it is of the form:

Generalising this, a morphism is completely positive when it is of the form:

The CP* construction

CP*[**D**] has as objects the special dagger Frobenius algebras $(A, \diamondsuit, \diamondsuit)$ in **D**

Morphisms $(A, \diamondsuit, \diamond) \rightarrow (B, \diamondsuit, \diamond)$ are

D embeds into CP*[D] by

$$A \longmapsto (A \otimes A^*, \swarrow, \swarrow)$$

$$\begin{array}{cccc}
B & B & B \\
\downarrow & \downarrow & \downarrow \\
\hline
f & \downarrow & f \\
A & A & A
\end{array}$$

Answer:

Theorem

Suppose C has a subcategory C^{pure} and

- for each object $A \in \mathbf{C}^{pure}$ we have specified a morphism $\doteqdot : A \to I$,
- for each special dagger Frobenius algebra $\mathcal{A}=(A, \diamondsuit, b)$ in \mathbf{C}^{pure} we have specified an object $F_{\mathcal{A}} \in \mathbf{C}$ and a map \d : $A \to F_{\mathcal{A}}$.

If the following axioms are satisfied then $\mathbf{C} \sim \mathsf{CP}^*[\mathbf{C}^{pure}]$

$$\frac{\dot{\underline{-}}}{\prod_{A \otimes C}} = \frac{\dot{\underline{-}}}{\prod_{A = C}} \frac{\dot{\underline{-}}}{\prod_{C}} \text{ and } \frac{\dot{\underline{-}}}{\prod_{C}} = \text{ and } \frac{\dot{\underline{-}}}{\prod_{C}} = (1)$$

$$\underbrace{f}_{f} \underbrace{f}_{f} = \underbrace{g}_{g} \underbrace{g}_{g} \quad \text{iff} \quad \underbrace{f}_{f} = \underbrace{g}_{g} \quad \text{for } f, g \in \mathbf{C}^{\text{pure}} \quad (2)$$

For all
$$f \in \mathbf{C}$$
 we have $g \in \mathbf{C}^{\mathsf{pure}}$ such that $\boxed{\mathsf{f}} = \boxed{\mathsf{g}}$ (5)

Proof Sketch

The isomorphism is

