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Introduction

Topos Quantum Theory (TQT)

(Contravariant) TQT initiated by Isham and Butterfield in late
1990’s. Aims to provide realist reformulation of quantum theory,
replacing quantum logic with intuitionistic logic. Lattice of
physical propositions in TQT forms a Heyting algebra. Uses the
internal logic/language of presheaf toposes.

Quantum Set Theory (QST)

Dates back to Takeuti (1978), who discovered models of set theory
in which the set of all Dedekind reals is isomorphic to a given set
of self adjoint operators. Attempts to represent physical
information about quantum systems using the internal
language/logic of these models.
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Introduction

A Unification
Our basic aim will be to make some first steps towards unifying
QST and TQT. In order to do this, we’ll need to study a new form
of paraconsistent logic that arises quite naturally in TQT and
allows for the replication of important results from QST in the
context of TQT.

Plan

I 1: TQT and a New Paraconsistent Logic

I 2: QST - a Very Quick Overview

I 3: Unification Via Paraconsistent Set Theory

I 4: Sketch of Further Results and Ongoing Work
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TQT and a New Paraconsistent Logic

Spectral Presheaf of an Orthomodular Lattice (Döring and
Cannon)

I Given an orthomodular lattice L, let B(L) represent the poset
of Boolean subalgebras of L, ordered by inclusion.

I Define the spectral presheaf of L, Ω(L), to be the presheaf
over B(L) that takes B ∈ B(L) to its Stone space,
Ω(B) = Ω(L)

B

I and takes an inclusion arrow i : B ⊆ B ′ to the restriction
mapping |B′,B : B ′ → B between Ω(B)′ and Ω(B), i.e.
|B′,B(λ) = λ|B , for any λ ∈ Ω(B ′)

.
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TQT and a New Paraconsistent Logic

Daseinisation and Clopen Subobjects

I Given a ∈ L and B ∈ B(L), we define the daseinisation of a at
B to be δ(a) =

∧
{b ∈ B|b ≥ a}.

I Given a ∈ L, the outer daseinisation presheaf δ(a) over B(L)
takes B ∈ B(L) to {λ ∈ ΩB |λ(δ(a)) = 1}

I Given i : B ⊆ B ′, δ(a)
B′,B

: δ(a)
B
→ δ(a)

B′ is again just a

restrction map (easy to see this is well defined).

I By Stone duality, δ(a)
B

is a clopen subset of Ω(L)
B

, for any

B ∈ B(L). So we say that δ(a)
B

is a ‘clopen subobject’ of

Ω(L).

I It is easily shown that the lattice Subcl(Ω) of clopen
subobjects of the spectral presheaf is a complete Heyting
algebra under context-wise union and intersection (taking
interiors and closures). So we can think of δ as an injection of
L into Subcl(Ω).
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TQT and a New Paraconsistent Logic

The Adjoint of Daseinisation

I Since δ is a join preserving monotone map between two
posets, it has a monotone meet preserving adjoint
ε : Subcl(Ω)→ L

I We can define an equivalence relation on Subcl(Ω) by
S ∼ T ↔ ε(S) = ε(T ). Let E be the quotient class of
Subcl(Ω) under ∼. E can be turned into a complete lattice by
defining

∧
i∈I [S i ] = [

∧
i∈I S i ], [S ] ≤ [T ]↔ [S ] ∧ [T ] = [S ]

and
∨

i∈I [S i ] =
∧
{[T ]|[S i ] ≤ [T ] ∀i ∈ I}

I Cannon and Döring showed that E and L are isomorphic as
complete lattices.
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TQT and a New Paraconsistent Logic

New Paraconsistent Negation

I It’s already well known that Subcl(Ω) is a complete bi-Heyting
algebra (Döring, 2012), and so can be thought of as
modelling both full intuitionistic logic and a particular form of
paraconsistent logic (dual intuitionistic logic).

I However, by using ε, we can define another logical structure
on Subcl(Ω). Specifically, given S ∈ Subcl(Ω), define
S∗ = δ(ε(S)⊥), i.e. S∗ is the daseinisation of the
orthocomplement of ε(S)

I Using this negation, we can extend the isomorphism between
E and L, so that they are now isomorphic as complete
ortholattices.

I We have that S ∧ S∗ = S ∧ δ(ε(S)⊥) ≥ δ(ε(S)) ∧ δ(ε(S)⊥) ≥
δ(ε(S) ∧ ε(S)⊥) = δ(0) = ⊥, i.e. ∗ is a paraconsistent
negation.
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Properties of *

(i) S ∨ S∗ = >
(ii) S∗∗ ≤ S
(iii) S∗∗∗ = S∗

(iv) S ∧ S∗ ≥ ⊥
(v) (S ∧ T )∗ = S∗ ∨ T ∗

(vi) (S ∨ T )∗ ≤ S∗ ∧ T ∗

(vii) ε(S) ∨ ε(S∗) = 1
(viii) ε(S) ∧ ε(S∗) = 0
(ix) S ≤ T implies S∗ ≥ T ∗



TQT and a New Paraconsistent Logic

Properties of *

(i) S ∨ S∗ = >
(ii) S∗∗ ≤ S
(iii) S∗∗∗ = S∗

(iv) S ∧ S∗ ≥ ⊥
(v) (S ∧ T )∗ = S∗ ∨ T ∗

(vi) (S ∨ T )∗ ≤ S∗ ∧ T ∗

(vii) ε(S) ∨ ε(S∗) = 1
(viii) ε(S) ∧ ε(S∗) = 0
(ix) S ≤ T implies S∗ ≥ T ∗



TQT and a New Paraconsistent Logic

Properties of *

(i) S ∨ S∗ = >
(ii) S∗∗ ≤ S
(iii) S∗∗∗ = S∗

(iv) S ∧ S∗ ≥ ⊥
(v) (S ∧ T )∗ = S∗ ∨ T ∗

(vi) (S ∨ T )∗ ≤ S∗ ∧ T ∗

(vii) ε(S) ∨ ε(S∗) = 1
(viii) ε(S) ∧ ε(S∗) = 0
(ix) S ≤ T implies S∗ ≥ T ∗



TQT and a New Paraconsistent Logic

I These properties ensure that, equipped with the ∗ negation
and an implication defined by S ⇒ T = S∗ ⇒ T , Subcl(Ω) is
a model of ‘dialectical logic with quantifiers’ (DKQ), a well
known form of paraconsistent relevance logic.



TQT and a New Paraconsistent Logic

I These properties ensure that, equipped with the ∗ negation
and an implication defined by S ⇒ T = S∗ ⇒ T , Subcl(Ω) is
a model of ‘dialectical logic with quantifiers’ (DKQ), a well
known form of paraconsistent relevance logic.



QST - a Very Quick Overview

The Model

I Fix a Hilbert space H and let P(H) be the orthomodular
lattice of projection operators on H. Then, for any Boolean
subalgebra B of P(H), we can make the following recursive
definition,
V

(B)
α = {x : func(x)∧ran(x) ⊆ B∧∃ξ < α(dom(x) ⊆ V
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V (B) = {x : ∃α(x ∈ V
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I V (B) is what is known as a Boolean valued model of ZFC.
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QST - a Very Quick Overview

Real numbers in V (B)

I Takeuti proved that the set, R(B) of all Dedekind reals in
V (B) is isomorphic to the set of all self adjoint operators on H
whose spectral projections all lie in B.

I Subsequently, Ozawa and others have studied the structure
V (P(H)) (defined analogously to V (B), but with the whole of
P(H) playing the role of the truth value algebra, rather than
just some Boolean subalgebra). This is not a model of full
ZFC (due to the non-distributivity of P(H)), but it does
model various fragments on the theory in quite a sophisticated
way. This allows us to extend Takeuti’s isomorphism so that
the set R(P(H)) of all Dedekind reals in V (P(H) is in bijection
with the full set SA(H) of self adjoint operators on H.

I Ozawa has shown how, by using this full correspondence
between real numbers in V (P(H)) and SA(H), we can
represent a lot of physical information about the quantum
system whose state space is given by H inside of V (P(H)).



QST - a Very Quick Overview

Real numbers in V (B)

I Takeuti proved that the set, R(B) of all Dedekind reals in
V (B) is isomorphic to the set of all self adjoint operators on H
whose spectral projections all lie in B.

I Subsequently, Ozawa and others have studied the structure
V (P(H)) (defined analogously to V (B), but with the whole of
P(H) playing the role of the truth value algebra, rather than
just some Boolean subalgebra). This is not a model of full
ZFC (due to the non-distributivity of P(H)), but it does
model various fragments on the theory in quite a sophisticated
way. This allows us to extend Takeuti’s isomorphism so that
the set R(P(H)) of all Dedekind reals in V (P(H) is in bijection
with the full set SA(H) of self adjoint operators on H.

I Ozawa has shown how, by using this full correspondence
between real numbers in V (P(H)) and SA(H), we can
represent a lot of physical information about the quantum
system whose state space is given by H inside of V (P(H)).



QST - a Very Quick Overview

Real numbers in V (B)

I Takeuti proved that the set, R(B) of all Dedekind reals in
V (B) is isomorphic to the set of all self adjoint operators on H
whose spectral projections all lie in B.

I Subsequently, Ozawa and others have studied the structure
V (P(H)) (defined analogously to V (B), but with the whole of
P(H) playing the role of the truth value algebra, rather than
just some Boolean subalgebra). This is not a model of full
ZFC (due to the non-distributivity of P(H)), but it does
model various fragments on the theory in quite a sophisticated
way. This allows us to extend Takeuti’s isomorphism so that
the set R(P(H)) of all Dedekind reals in V (P(H) is in bijection
with the full set SA(H) of self adjoint operators on H.

I Ozawa has shown how, by using this full correspondence
between real numbers in V (P(H)) and SA(H), we can
represent a lot of physical information about the quantum
system whose state space is given by H inside of V (P(H)).



QST - a Very Quick Overview

Real numbers in V (B)

I Takeuti proved that the set, R(B) of all Dedekind reals in
V (B) is isomorphic to the set of all self adjoint operators on H
whose spectral projections all lie in B.

I Subsequently, Ozawa and others have studied the structure
V (P(H)) (defined analogously to V (B), but with the whole of
P(H) playing the role of the truth value algebra, rather than
just some Boolean subalgebra). This is not a model of full
ZFC (due to the non-distributivity of P(H)), but it does
model various fragments on the theory in quite a sophisticated
way. This allows us to extend Takeuti’s isomorphism so that
the set R(P(H)) of all Dedekind reals in V (P(H) is in bijection
with the full set SA(H) of self adjoint operators on H.

I Ozawa has shown how, by using this full correspondence
between real numbers in V (P(H)) and SA(H), we can
represent a lot of physical information about the quantum
system whose state space is given by H inside of V (P(H)).



QST - a Very Quick Overview

Real numbers in V (B)

I Takeuti proved that the set, R(B) of all Dedekind reals in
V (B) is isomorphic to the set of all self adjoint operators on H
whose spectral projections all lie in B.

I Subsequently, Ozawa and others have studied the structure
V (P(H)) (defined analogously to V (B), but with the whole of
P(H) playing the role of the truth value algebra, rather than
just some Boolean subalgebra). This is not a model of full
ZFC (due to the non-distributivity of P(H)), but it does
model various fragments on the theory in quite a sophisticated
way. This allows us to extend Takeuti’s isomorphism so that
the set R(P(H)) of all Dedekind reals in V (P(H) is in bijection
with the full set SA(H) of self adjoint operators on H.

I Ozawa has shown how, by using this full correspondence
between real numbers in V (P(H)) and SA(H), we can
represent a lot of physical information about the quantum
system whose state space is given by H inside of V (P(H)).



Unification Via Paraconsistent Set Theory

V (Subcl (Ω))

I In TQT, Subcl(Ω) plays the role of P(H). So, it is natural to
construct the structure V (Subcl (Ω)), in the usual way.

I Since Subcl(Ω) is a complete Heyting algebra, we can think of
V (Subcl (Ω)) as a Heyting valued model of intuitionistic set
theory, and attempt to reconstruct Takeuti/Ozawa’s bijection
between Dedekind reals in this model and SA(H).

I One advantage of this approach is that the distributivity of
Subcl(Ω) appears to solve a number of technical problems in
QST. However, I have not been able to reconstruct anything
like Takeuti/Ozawa’s results using the Heyting or co-Heyting
algebraic structure of Subcl(Ω).

I But if we consider Subcl(Ω) as being equipped with ∗ and the
corresponding implication connective, it is possible to
reconstruct an approximation of these results (indeed, I only
thought of defining ∗ for the purpose of solving this problem).
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Unification Via Paraconsistent Set Theory

Paraconsistent Set Theory

I In recent years, the project of building a meaningful set theory
over paraconsistent logics has attracted a lot of interest. We
will be interested in one particular project, first developed by
Weber (2012). Specifically, Weber showed that it is possible
to develop a very rich and interesting set theory (PST) over
the logic DKW. There are strong non-triviality proofs for the
resulting theory and a great number of classical set theoretic
ideas have been developed in PST (for example, ordinal and
cardinal arithmtic, large fragments of real analysis etc).

I We know that, when equipped with ∗, Subcl(Ω) is a model of
DKQ. So it is natural to think of V (Subcl (Ω)) as a model of
PST. However, the model theory of this kind of theory is still
being worked out (Lowe and Tarafder (2015) contains
significant first steps in this repsect).
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R(Subcl (Ω)) ∼ SA(H)?

I Theorem: For any a, b ∈ R, [a, b](Subcl (Ω)) ∼ BSA(H)[a,b]

I This is a kind of ‘bounded version’ of Takeuti/Ozawa’s
results, and it allows us to build most of the usual machinery
of QST inside of V (Subcl (Ω)).
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Sketch of Further Results and Ongoing Work (Joint Work
with Ozawa and Döring)

I Provides a way of representing operator inequalities in TQT.
Given X ,Y ∈ SA(H), we can find canonical representations
X̃ , Ỹ ∈ V (Subcl (Ω)) and we can show that ‖X̃ ≤ Ỹ ‖ = > holds
if and only if X is spectrally smaller than Y .

I We can extend this to cover ‘state dependent truth’, so that
the following are equivalent,
(i) |ψ〉 ∈ ε(‖X̃ ≤ Ỹ ‖)
(ii)δ(|ψ〉 〈ψ|) ≤ ‖X̃ ≤ Ỹ ‖
(iii)PX ,Y

ψ (x , y) = 0 whenever x > y

Where PX ,Y
ψ (x , y) represents the joint probability of obtaining

the outcomes Y = y , X = x from the successive projective
measurements of X and Y (X measured after Y ) when the
system is prepared in the state |ψ〉
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X̃ , Ỹ ∈ V (Subcl (Ω)) and we can show that ‖X̃ ≤ Ỹ ‖ = > holds
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