
Graphical Linear 
Algebra

Pawel Sobocinski
University of Southampton

graphicallinearalgebra.net

(joint work with F. Bonchi and F. Zanasi, ENS Lyon)

QPL ’15 Tutorial

http://graphicallinearalgebra.net


5 stages of addiction denial
• Petri nets, compositionally, with string diagrams: Representations of Petri net interactions, CONCUR `10 

(2010) 

• Denial (2011) 

• these proofs are really cute, but I have more important things to do with my life 

• Anger (2012)

• why can’t I stop drawing them? 

• Grief (2013)

• they are taking over :( 

• Bargaining (2014)

• I will try to keep other research side-interests… but let me just try to understand what’s going on here… 

• Acceptance (2015) 

• blog, QPL tutorial

(Kubler Ross Model)



Plan
• maths of string diagrams 

• theory of natural number matrices (bimonoids) and integer 
matrices (Hopf monoids) 

• theory of linear relations (interacting Hopf monoids) 

• distributive laws 

• linear algebra, diagrammatically 

• an application: generating functions and signal flow 
graphs

Monday

Tuesday



Plan
• maths of string diagrams 

• setup is slightly different to the usual Oxford lore 

• a “formal semantics/computer science” bent  

• theory of natural number matrices (bimonoids) and integer matrices (Hopf 
monoids) 

• theory of linear relations (interacting Hopf monoids) 

• distributive laws 

• linear algebra, diagrammatically 

• an application: generating functions and signal flow graphs



Maths of string diagrams
• PROPs (product and permutation categories) 

• strict symmetric monoidal 

• objects = natural numbers 

• monoidal product on objects = addition 

• e.g. the PROP F where arrows from m to n are the 
functions from [m] = {0,1,…, m-1} to [n] 

• equivalent to FinSet



• generators 
(e.g.) 

• basic tiles 

• algebra 

• equations 
(e.g.)

Symmetric monoidal theories

A B
k l m

A ; B
A

k l

C
m n

A ⊕ C

= = =



Drawing convention
Crack Egg

Crack Egg

Beat

Whisk

Stir

Fold

we want to have our cake (diagrams, useful for proofs)  
and eat it too (direct connection with terms)

2 2; ;⊕⊕ ⊕ ⊕ ⊕ ⊕( ( () ) );⊕⊕( )



Diagrammatic Reasoning
• diagrams can slide along wires  

• wires don’t tangle, i.e. 

• sub-diagrams can be replaced with equal diagrams (compositionality)

A
k l

C
m n

A
k l

C
m n

= =

A
k l

C
m n

functoriality

A
k l

m

m

l

=

A
k l

m

m

k

naturality

i.e. pure wiring obeys the same equations as permutations

= =



• diagrammatic reasoning gives notion of equality on diagrams in an SMT 

• in this way, every SMT is a PROP 

• natural to think of SMTs as syntax 

• other PROPs (like F) are semantic domains

• homomorphisms assign semantics to syntax 

• A homomorphism of PROPs is an identity-on-objects strict symmetric 
monoidal functor 

• the SMT with no generators and no equations is is isomorphic to the initial 
PROP P where arrows n to n are the permutations on [n] 

• the final PROP 1 has exactly one arrow from each m to n

PROPs and SMTs



Example: commutative monoids

• SMT M on this data isomorphic to the PROP F of functions 

• i.e. the “commutative monoids are the theory of functions”

=

=

=

EquationsGenerators



Diagrammatic reasoning example

=

=

=

=

= =



Example: commutative comonoids

• Isomorphic to Fop 

• NB departure from operads at this point: in an SMT generators of 
arbitrary arities and coarities are allowed

EquationsGenerators

=

=

=



Plan
• basic theory of string diagrams  

• setup is slightly different to the usual Oxford lore 

• theory of natural number matrices (bimonoids) and integer matrices (Hopf monoids)

• intuition 

• bimonoids and matrices of natural numbers  

• Hopf monoids and matrices of integers 

• maths with diagrams 

• theory of linear relations (interacting Hopf monoids) 

• distributive laws 

• linear algebra, diagrammatically 

• an application: signal flow graphs



Useful intuition
• “numbers” travel on wires from left to right

The monoid structure 
acts as addition/zero

The comonoid structure 
acts as copying/discarding

x

y
x+y

0

x
x

x

x



Bimonoids
• all the generators we have seen so far 

• monoid and comonoid equations 

• “adding meets copying” - equations compatible with intuition

=

= = =

=

=

=

=

=

=



Mat
• A PROP where arrows m to n are n×m matrices of natural 

numbers  

• e.g. 

• Composition is matrix multiplication 

• Monoidal product is direct sum 

• Symmetries are permutation matrices

�
0 5

�
: 2 ! 1

✓
3
15

◆
: 1 ! 2

✓
1 2
3 4

◆
: 2 ! 2

A1 �A2 =

✓
A1 0
0 A2

◆



• B is isomorphic to the Mat

• ie. bimonoids is the theory of natural number matrices  

• natural numbers can be seen as certain (1,1) diagrams, with 
recursive defn 

• the algebra (rig) of natural numbers follows; the following are easy 
inductions

0 :=

k+1 :=
k

B and Mat

m

n
m+n= m n nm=

m
m

m
=

m

m
m=

+1 is “add one path”



Matrices
• To get the ijth entry in the matrix, count the paths 

from the jth port on the left to the ith port on the right 

• Example:

2

3

4

✓
1 2
3 4

◆



Proof B≅Mat

�
1 1

�
: 2 ! 1

() : 0 ! 1

✓
1
1

◆
: 1 ! 2

() : 1 ! 0

7!
7!
7!
7!

Full - easy!  
Recursively define a syntactic sugar for matrices
Faithful - little bit harder
Use the fact that equations are a presentation of a  
distributive law, obtain factorisation of diagrams as 
comonoid structure followed by monoid structure

Since B is an SMT, suffices to say where generators go 
(and check that equations hold in the codomain)



Putting the n in ring: Hopf monoids
• generators of bimonoids + antipode

• equations of bimonoids + the following

=

= =

= =



The ring of integers
=

=

=

=

=

=

=

=

-1 · -1 = 1

n n=

simple induction

-n := n

in B, the naturals were (1,1) diagrams 
in H, the integers are the (1,1) diagrams

0 :=

k+1 :=
k

m

n
m+n=

m n nm=

Just as for nats, we have

etc.



• Arrows m to n are n×m matrices of integers 

• composition is matrix multiplication 

• monoidal product is direct sum 

• MatZ is equivalent to the category of finite dimensional 
free Z-modules 

• SMT H is isomorphic to the PROP MatZ

MatZ



Path counting in MatZ
• To get the ijth entry in the matrix, count the  

• positive paths from the jth port on the left to the ith port on the right (where 
antipode appears an even number of times) 

• negative paths between these two ports (where antipode appears an odd 
number of times) 

• subtract the negative paths from the positive paths 

• Example:
✓

0 �1
1 0

◆



Proof H≅MatZ

• Fullness easy  

• Faithfulness more challenging: put diagrams in the form

�
1 1

�
: 2 ! 1

() : 0 ! 1

✓
1
1

◆
: 1 ! 2

() : 1 ! 0

7!
7!
7!
7!

copying ; antipode ; adding

7! (�1) : 1 ! 1



Maths with diagrams
• we focussed on (1,1) for historical reasons

nD
m

n

n
mm=

D

D

n

n

D

D

n

m

m

n
= m D

m

m

n

+ := mm
D

E

n
n

D E

associative, commutative with unit
has additive inverse in H

m
E

F
nD m

E

F
n=

D

D

multiplication through composition, 
addition distributes on both sides

33
3

3
=eg



Plan
• basic theory of string diagrams  

• theory of natural number matrices (bimonoids) and integer matrices (Hopf monoids) 

• theory of linear relations (interacting Hopf monoids)

• intuition upgrade 

• the equations of IH 

• linear relations 

• rational numbers, diagrammatically 

• distributive laws 

• linear algebra, diagrammatically 

• an application: signal flow graphs



Intuition upgrade
• We have been saying that numbers go from left to right in diagrams 

• this is a functional, input/output interpretation 

• J.C. Willems - Behavioural approach in control theory  

• Engineers create functional behaviour from non-functional 
components 

• The physical world is NOT functional 

• Functional thinking is fundamentally non-compositional 

• From now on, we will take a relational point of view, a diagram is a 
contract that allows certain numbers to appear on the left and on the right

The input/output framework is totally inappropriate for dealing with all but the 
most special system interconnections. [The input/output representation] often 
needlessly complicates matters, mathematically and conceptually. A good 
theory of systems takes the behavior as the basic notion. 

  
J.C. Willems, Linear systems in discrete time, 2009  



Intuition upgrade

• Intuition so far is this as a function +: D×D→D 

• From now it will be as a relation of type DxD → D 

• Composition is relational composition



Example

x
y ,  x+y () , 0 x , x

x x , ()

x
yx+y , 0 , () x

x , x () , x



 Adding meets adding

p

q

r

p+q

r

p

q+r

x

y

z

x+y

z

x

y+z

x = p+q
z = q+r

p=x+y
r=y+z

Provided addition yields abelian group  
(i.e. there are additive inverses), the two 

are the same relation

y=-q



More adding meets adding

x+y
x

y
x+y

since x and y are free, this is the identity relation

x

empty relation



Copying meets copying
x

x

x

x

x

x

x

x

x

x

clearly both give the same relation

x
x

x
x

identity relation

x

empty relation



Two Frobenius structures

= =

= =

+ special / strongly separable equations

+ “bone” equations
= =



Two self-dual compact closed structures

=

{(
✓

x

y

◆
, ()) | x+ y = 0 }

{(
✓

x

x

◆
, ())}

=

(cf. cups and caps)



Scalars meet scalars

if multiplication on the left by p is injective 
(e.g. if p ≠ 0 in a field)

px pxppx =

if multiplication on the left by p is surjective 
(e.g. if p ≠ 0 in a field)

p px px=py y =



Interacting Hopf Monoids
=

=

=

=

=

=

=

= =

= =

=

= = =

=

=

=

=

=

=

=

=

=

==

==

=

===

=

=

=

=

(Bonchi, S., Zanasi, ’13, ’14)

(cf. ZX-calculus, Coecke and Duncan ’08, Baez and Erbele ‘14)

p p p p (p ≠ 0) = =

= =



The antipode cheat

=

=

The antipodes in H and Hop are formally different  
but we were slightly naughty with notation. 



Two daggers
• 1. “opposite” 

• left goes to right 

• takes matrix (diagram in H or Hop) to its opposite 

• takes a linear relation to its opposite 

• 2. “bizarro”  

• left goes to right and 

• black goes to white 

• takes matrix (diagram in H or Hop) to its transpose 

• On diagrams (n,0) it gives the orthogonal space (but type is (0,n))



• PROP of linear relations over the rationals 

• arrows m to n are subspaces of Qm × Qn 

• composed as relations

• monoidal product is direct sum 

• IH is isomorphic to LinRel

• we will prove this tomorrow

LinRel



Where did the rationals come from?

if q ≠ 0:

p q p q= q q

= q qq p

= q p

q

q
=

q

q
q q

=
q

q

q

q
q

= q

suppose q,s ≠ 0:

⇒

p q r s=

⇔
sp = qr

p s = p q q s

r s q s

r q ss

=

=

r q=

⟸ p q = p qs s

= r q qs

= r qs q

r s=



Rational arithmetic
(q,s ≠ 0)

p q

r s
=

p q

r s

s s

q q

sp sq

qr qs

sp

qr
sq

=

=

= sp+qr sq

p q r s = p r sq

= rp sq



Keep calm and divide by zero
• it’s ok, nothing blows up 

• of course, arithmetic with 1/0 is not quite as nice 
as with proper rationals.  

• two ways of interpreting 0/0 (0 · /0 or /0 · 0)

0 =

0 =

0 0 =

0 0 =



Projective arithmetic++
• Projective arithmetic identifies numbers with one-

dimensional spaces (lines) of Q2 

• one for each rational p : { (x,px) | x ∈ Q } 

• and “infinity” : { (0, x) | x ∈ Q } 

• The extended system includes all the subspaces of 
Q2, in particular: 

• the unique zero dimensional space { (0, 0) } 

• the unique two dimensional space { (x,y) | x,y ∈ Q }

0
(x, 1/2 x)

(x, 2x)



Dividing by zero
Edalat and Potts suggested that two extra ‘numbers’, ∞ = 1/0 and ⊥ = 0/0, be 
adjoined to the set of real numbers (thus obtaining what in domain theory is called 
the ‘lifting’ of the real projective line) in order to make division always possible. In 
a seminar, Martin-Löf proposed that one should try to include these ‘numbers’ 
already in the construction of the rationals from the integers, by allowing not 
only non-zero denominators, but arbitrary denominators, thus ending up not 
with a field, but with a field with two extra elements.  

Here we have three extra elements!

Jesper Carlström, Wheels, On Division by Zero, 2001

⊤ :=

⊥ :=

∞ :=



Plan
• basic theory of string diagrams  

• theory of natural number matrices (bimonoids) and 
integer matrices (Hopf monoids) 

• theory of linear relations (interacting Hopf monoids) 

• distributive laws

• linear algebra, diagrammatically 

• an application: signal flow graphs



Interacting Hopf Monoids
=

=

=

=

=

=

=

= =

= =

=

= = =

=

=

=

=

=

=

=

=

=

==

==

=

===

=

=

=

=

(Bonchi, S., Zanasi, ’13, ’14)

(cf. ZX-calculus, Coecke and Duncan ’08, Baez and Erbele ‘14)

p p p p (p ≠ 0) = =

= =



Distributive laws of PROPs
• Proof IH ≅ LinRel relies on the notion of distributive law of PROPs 

(Lack, Composing PROPs, 2004) 

• a variant of distributive laws of monads 

• monads can be considered in any 2-category (R. Street, Formal 
Theory of Monads, 1972) 

• categories = monads in Span(Set) 

• strict monoidal categories = monads in Span(Mon) 

• small technical complications for PROPs because of symmetries



Categories = Monads??
• What is a monad in Span(Set)? 

• endo 1-cell 

• multiplication 

• unit 

• satisfying associativity & unit laws

O
�0 � A

�1�! O

A⇥O A

✏✏

// A

�1

✏✏
A

�0

// O

A⇥O A
µ�! A

O
⌘�! A

let’s call it “composition”

let’s call it “identity”



Distributive laws of PROPs
P Green PROP P Q Purple PROP Q

When can we understand P;Q as a PROP?

Q P P Q
λ

P Q P Q
PλQ

P P Q Q



Distributive law of Monads
• Given monads T, U, a 

distributive law is a 2-cell  

• that is compatible with 
multiplication and units in T 
and U in the obvious way 
(see diags) 

• gives a monad structure 
on TU 

� : UT ) TU

UUT
µUT //

U�

✏✏

UT

�

✏✏
UTU

�U
// TUU

TµU

// TU

UTT
UµT //

�T

✏✏

UT

�

✏✏
TUT

T�
// TTU

µTU
// TU

T
⌘UT

}}||
||

||
|| T⌘U

!!B
BB

BB
BB

B

UT
�

// TU

U
U⌘T

}}{{
{{

{{
{{ ⌘TU

!!CC
CC

CC
CC

UT
�

// TU



SMT of Spans
• The bicategory Span(Set) has spans of functions as 1-cells and span morphisms as 2-cells 

• composition is by pullback

• we obtain the category of spans by identifying isomorphic spans

• We already have the SMT of functions (commutative monoids) and “backwards 
functions” (commutative comonoids) 

• Pullback defines a distributive law of PROPs - implied by the universal property

=

=

=

=

=

=

=

=

=

=

=

=

Pullback!



• the theory of bimonoids is a presentation of this distributive law 

• so B ≅ Mat ≅ Span(F) 

• for details see Steve Lack’s paper 

2⇥ 2
⇡1

}}zzzzzzzz

!!DDDDDDDD
⇡2

!!DDDDDDDD

2

""DD
DD

DD
DD

D 2

||zz
zz

zz
zz

z

1

(0,0) 

(0,1) 
(1,0) 
(1,1) 

0

1

0

1

=



SMT of Cospans
• The bicategory Cospan(Set) has cospans of functions as 1-cells 

and cospan morphisms as 2-cells 

• composition is by pushout

• pushout defines a distributive law 

• obtain theory strongly separable Frobenius monoids — the theory 
of cospans!

=

=



Proof of IH≅LinRel (outline)
• Two distributive laws  

• slight generalisation of Lack’s notion 

• MatZ has both pullbacks and pushouts  

• it is equivalent to the category of free f.d. Z-modules 

• since Z is a PID, this category has pullbacks 

• because of transpose, MatZ also has pushouts 

• We thus obtain two distributive laws:  

• one from pullbacks, giving spans of matrices 

• one from pushouts, giving cospans of matrices



Spans of matrices
p p =

IRSpan ≅ Span(MatZ)

= =

= =

= =

(p ≠ 0) 

p

p
= p (p ≠ 0) 

p

p
= p (p ≠ 0) 

IRSpan



Cospans of matrices

IRCospan ≅ Cospan(MatZ)

IRCospan

(p ≠ 0) p p =

= =

= =

= =

p

p
= p (p ≠ 0) 

p

p
= p (p ≠ 0) 



The cube - back faces

MatZ + MatZ
op

H + Hop

Span(MatZ)

IHSpan

IHCospan

Cospan(MatZ)



The cube

MatZ + MatZ
op

H + Hop

Span(MatZ)

IHSpan

IHCospan

Cospan(MatZ) LinRel

IH



Corollary
• The proof gives us some useful facts 

• every diagram in IH can be factorised in two ways 

• as a span  

• as a cospan 

• every mono in MatZ satisfies  

• every epi in MatZ satisfies 

A Bm nk

C Dm nl

A Am mn = m

A An nm = n



Plan
• basic theory of string diagrams  

• theory of natural number matrices (bimonoids) and 
integer matrices (Hopf monoids) 

• theory of linear relations (interacting Hopf monoids) 

• distributive laws 

• linear algebra, diagrammatically

• an application: signal flow graphs



Factorisations
• Every diagram can be factorised as a span or a cospan of matrices  

• This gives us the two different ways one can think of spaces

solutions of a list of  
homogeneous equations

linear combinations  
of basis vectors

x+y=0

x

y

z

2y-z=0

2

x

y

z

x+y=0
2y-z=0

2

x

y

z

Cospans

a[1, -1, 0]

a

b[0, 1, 2]

2 b

a[1, -1, 0]+b[0,1,2]

2

a

b

Spans



Image and kernel
• Definition  

• The kernel of A is  

• The cokernel of A is 

• The image of A is  

• The coimage of A is

A

A

AT

AT



Injectivity
Injective matrices are the monos in MatZ 

Theorem. A is injective iff 
A A =

⇒ ⇐
AF AG=

⇒ AF AG= AA

⇒ F = G

����
��

�
��?

??
??

A ��?
??

??

A����
��

�

is pullback in MatZ

AF AG= ⇒ F = G



Surjectivity
• Surjective matrices are the epis in MatZ, i.e.  

• Theorem. A is surjective iff
A A =

A AF G= ⇒ F = G

Proof: Bizarro of last slide



Injectivity and kernel

• Theorem. A is injective iff ker A = 0 

⇒ ⇐ A A =
A

A

=
A

A

= A

=

=

A = A A

=



Surjectivity and image

• Theorem. A is surjective iff im(A)=codomain

A A =

⇔
A =

Proof: bizarro of last slide



Invertible matrices
• Theorem: A is invertible with inverse B iff 

A B=

⇒ ⇐

so A is injective

A B A A= =

bizarro argument yields other half

A A B

B=

=A
A B= =



Summary
• We have done a bit of linear algebra without mentioning 

• vectors, vector spaces and bases 

• linear dependence/independence, spans of a vector list 

• dimensions 

• Similar stories can be told for other parts of linear algebra: 
decompositions, eigenvalues/eigenspaces, determinants  

• much of this is work in progress: check out the blog! :)



Plan
• basic theory of string diagrams  

• theory of natural number matrices (bimonoids) and 
integer matrices (Hopf monoids) 

• theory of linear relations (interacting Hopf monoids) 

• distributive laws 

• linear algebra, diagrammatically 

• an application: signal flow graphs



Generalising (slightly)
• It is straightforward to generalise from Z to arbitrary 

PID R 

• We can build the theory HR by adding enough scalars 
to the graphical syntax together with equations 

• The additional equations of IHR are the same as before 

r1

r2
r1+r2=

r1 r2 = r2r1

1 =

0 =



Application: infinite series
• Diagrammatic calculus for spaces over the field of fractions of Q[x] 

(polynomials with one variable, a PID) is especially interesting 

• polynomial fractions = nice syntax for many infinite series 
(generatingfunctionology!) 

• formally: there is an embedding of fields from poly fractions (syntax) to 
Laurent series (semantics) 

• Moreover: diagrams are very closely related to signal flow graphs

• invented by Shannon in the 40s, reinvented by Mason in the 50s, 
foundational structure in control and signal processing 

• useful circuit-like syntax for linear time-invariant dynamical systems



The cube (with extra level!)

MatQ[x] + MatQ[x]
op

HQ[x]   + HQ[x]
op  

Span(MatQ[x])

IHQ[x]
Span

IHQ[x]
Cospan

Cospan(MatQ[x]) LinRelQ(x)

IHQ(x)

MatQ[[x]] + MatQ[[x]]
op

Cospan(MatQ[[x]])

Span(MatQ[[x]])

LinRelQ((x))

isomorphisms

faithful homomorphisms

In particular, IHQ[x] is 
sound and complete  

as a theory for LinRelQ((x))



Example
1-x-x2x

As linear relation over Q(x) is the space generated by

As linear relation over Q((x)) is the space generated by

(1    ,   x/(1-x-x2))

(1,0,0,…    ,    0,1,1,2,3,5,8,…)



Operational semantics
: (1, 2) : (1, 0) k : (1, 1) x : (1, 1) : (2, 1) : (0, 1)

: (2, 1) : (0, 1) k : (1, 1)

x

: (1, 1) : (1, 2) : (1, 0)

: (0, 0) : (1, 1) : (2, 2)

c : (n, z) d : (z,m)

c ; d : (n,m)

c : (n,m) d : (r, z)

c�d : (n+r,m+z)

Figure 1. Sort inference rules.

k

��!

k k

k

�! k
l

��!

kl

k x l

k

�!

l

x k

k l

��!

k+l

�!

0

k k

��!

k

�!

k

k
kl

��!

l

k

x l

l

�!

k

x k

k+l

���!

k l

0
�!

k

�!

k

k l

��!

l k

s
u

�!

v

s0 t
v

�!

w

t0

s ; t u

�!

w

s0 ; t0

s
u1
��!

v1
s0 t

u2
��!

v2
t0

s� t
u1 u2
����!

v1 v2
s0 � t0

Figure 2. Structural rules for operational semantics, with k, l ranging over k and u, v, w vectors of elements of k of the appropriate size.

boundary to the right: thus is a copier, duplicating the signal

arriving on the left; accepts any signal on the left and discards

it, producing nothing on the right; is an adder that takes

two signals on the left and emits their sum on the right, and

constantly emits the signal 0 on the right; k is an amplifier,

multiplying the signal on the left by the scalar k 2 k. Finally, x
is a delay, a synchronous one place buffer initialised with 0.

The terms of row (5) are those of row (4) “reflected about the
y-axis”. Their behaviour is symmetric—indeed, here it is helpful to
think of signals flowing from right to left.

In row (6), is a twist, swapping two signals, is the
empty circuit and is the identity wire: the signals on the left
and on the right ports are equal. Terms can be combined by two
binary operators: sequential ; and parallel � composition.

In the syntax specification we purposefully used a graphical
rendering of the components. Indeed, we will seldom write terms
in the traditional way and instead represent them as 2-dimensional
diagrams. We adopt the following common convention:

c ; c0 is drawn c c�...
...

... c� c0 is drawn
c

c� ...

...
...

...

.

A computation of a circuit c, is a (possibly infinite) path
s0

v0
��!

w0
s1

v1
��!

w1
. . . in the transition system of c, starting from

its initial state s0. When c has sort (n, m), each v
i

and w
i

consist
of strings over k, say k

i1 . . . kin and l
i1 . . . lim, respectively. The

trace of a computation s0
v0
��!

w0
s1

v1
��!

w1
. . . is then a pair of vec-

tors

 

↵1

.

.

.
↵

n

!

,

 

�1

.

.

.
�

m

!

where ↵
j

= k0jk1j . . . and �
j

= l0j l1j . . . .

Occasionally we will use the notation (�!↵ ,
�!

� ) for such a pair and,
to make the notation lighter, we will write ↵

j

= k0k1 . . . and
�
j

= l0l1 . . . . Moreover, with ↵
j

(i) and �
j

(i) we will denote the
i-th elements of ↵

j

and �
j

.
Note that in a computation of length z, all ↵

j

,�
j

have length
z, while for an infinite computation all ↵

j

,�
j

are infinite. In the
former case, we say that a trace is finite, in the latter that it is

infinite. We use ft(c) to denote the set of all finite traces of c and
it(c) for the set of all infinite ones.

Example 1. Consider the two circuits below.

-1 x
x

The first is a graphical representation of the term

c1 = ( ; (( -1 ; x)� )) ;

the second of the term

c2 = (( ; )� ) ; ( � ( ; ))

; ((( � x )� ) ; (( ; )� ))

Note that, according to our intuition, in the leftmost circuit the
signal flows from right to left, while the rightmost, the signal flows
from left to right – indeed, the terms ; and ;
serve as “bent identity wires” which allow us to form a feedback
loop. Let c1[k] and c2[k] represent the states of c1 and c2, with
k denoting the value at the register. The rules of Fig. 2 yield the
computation

c
i

[0] 1
�!

1
c
i

[1] 0
�!

1
c
i

[1] 0
�!

1
c
i

[1] · · ·

for i 2 0, 1, which yields the trace (1000 . . . ), (1111 . . . ). In
fact, as we shall show via a sound and complete axiomatisation,
despite of the signal intuitively flowing in different directions, the
two circuits have the same observable behaviour.

A slightly more involved example is given below.

x
2

x -1

We leave the reader to write down a term that is represented by
the diagram above: call it c3 and let c3[k1, k2] represent the state
where the two registers, reading from from left to right, have values
k1 and k2. Then, the operational semantics allows us to derive the

Bonchi, S., Zanasi, Full abstraction for signal flow graphs, POPL ‘15



Example
:= :=

x x
0 0

1 1

1 1
x x

1

0 2

1 1 2

x x
2

0 3

1 1 3

…



Operational Semantics vs 
Denotational Semantics

Operational semantics closely related to denotational semantics 
[linear relations over Q((x))]  
with some “implementation issues” in diagrams where signal flow is 
inconsistent e.g.

x x
00 0
0

x x
k k

x x
0 0 1

2
x x
1 2



Realisability and Full 
Abstraction

• Realisability Every diagram can be put in a form 
where the direction of signal flow is consistent 

• Full abstraction Operational equality (in terms of 
behaviour, given by operational semantics) coincides 
with denotational equality (the denoted linear relation) 
on diagrams with consistent signal flow



Implementing Fibonacci
1-x-x2x = x

x

x x

x
x

x x

=

x

x

=

x
=

x
=

x

x
x

x
x

x
=

x
x



Running Fibonacci
x

x
x

0

0
0

01 0

0
0

x

x
x

1

0
0

10 1

11

x

x
x

0

1
1

10 1

12

x

x
x

0

2
1

20 2

23

x

x
x

0

3
2

30 3

3
5

…



Signal flow graphs

Adding a signal flow direction is often a figment of one’s 
imagination, and when something is not real, it will turn out to 
be cumbersome sooner or later.  
  

J.C. Willems, Linear systems in discrete time, 2009  

Signal flow graphs differ from electrical network graphs in 
that their branches are directed. In accounting for branch 
directions it is necessary to take an entirely different line of 
approach from that adopted in electrical network topology.”  

S.J. Mason, Feedback Theory: I. Some Properties of Signal Flow Graphs, 1953  



“Summing up 1,2,3,4,…”

1,2,3,4,…

Generating function Diagram Signal flow graph

1

(1� x)2 x x
(1-x)2

https://www.youtube.com/watch?v=w-I6XTVZXww

0,-4,0,-8,.. �4x

(1� x

2)2

1,-2,3,-4,… 1

(1 + x)2

s� 4s =
1

4
s = � 1

12

x xx x

-4 x
(1-x2)2-4x

(1+x)2

x x

https://www.youtube.com/watch?v=w-I6XTVZXww


Bibliography
• Bonchi, S., Zanasi - Interacting Bialgebras are Frobenius, FoSSaCS ’14 

• Bonchi, S., Zanasi - Interacting Hopf Algebras, arXiv, ’14 

• Bonchi, S., Zanasi - A categorical semantics of signal flow graphs, 
CONCUR ’14 

• Bonchi, S., Zanasi - Full abstraction for signal flow graphs, PoPL ’15

graphicallinearalgebra.net

http://graphicallinearalgebra.net


Future work
• Control - with Paolo Rapisarda, Brendan Fong, … 

• Continuous semantics of flow - inspiration from “Calculus in 
Coinductive Form” by Dusko Pavlovic & Martín Escardo (LiCS `99) 

• Graph theory - string diagrams as compositional language of 
graphs (Apiwat Chantawibul and S., MFPS `15) 

• Operational semantics, distributive laws - Fabio Zanasi and 
Filippo Bonchi 

• Petri nets, model checking - Julian Rathke and Owen Stephens  

• Concurrent programming - in the works, with Kostadin Stoilov


