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Plan:

Review the origins of Measurement Uncertainty Relations (MURs)
Review the controversy over the validity of MURs
Survey qubit measurement uncertainty
Scrutinise a failed attempt, interpret its experimental “confirmations”,
and confront it with a viable alternative
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Introduction: Heisenberg Uncertainty - Violated?

Heisenberg 1927

Heisenberg microscope:
“Let q1 be the precision with which the value q is known (q1 is, say, the mean
error of q), therefore here the wavelength of the light. Let p1 be the precision
with which the value p is determinable; that is, here, the discontinuous change of
p in the Compton effect. Then, according to the elementary laws of the Compton
effect p1 and q1 stand in the relation

p1 q1 ∼ h. (1)

Makes clear reference to error and disturbance
Sketches proof of preparation uncertainty relation (PUR)
for the case of a Gaussian (minimum uncertainty) wave function
Makes informal reference to rms error as standard deviation (of
Q-distribution)
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Introduction: Heisenberg Uncertainty - Violated?

Heisenberg 1927: three faces of quantum uncertainty

Preparation Uncertainty Relations (PUR), Measurement Uncertainty
Relations MUR

(Width of Q distribution) · (Width of P distribution) ∼ ~
(Error of Q measurement) · (Error of P) ∼ ~

(Error of Q measurement) · (Disturbance of P) ∼ ~
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Introduction: Heisenberg Uncertainty - Violated?

Quantum uncertainty: immediate reaction

Wolfgang Pauli’s expression of the quantum pioneers’ worries concerning
QP − PQ = i~:

“One may view the world with the p-eye
and one may view it with the q-eye

but if one opens both eyes simultaneously
then one gets crazy.”

Wolfgang Pauli in a letter to Werner Heisenberg, 19 Oct. 1926)
And on reading Heisenberg’s 1927 paper:

“Day is dawning in quantum mechanics.”
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Introduction: Heisenberg Uncertainty - Violated?

PUR – early developments

Kennard (1927), Weyl (1928) (pi =
√

2∆P, qi =
√

2∆Q)

pi qi ≥
h

2π

Robertson (1929)
∆A ∆B ≥ 1

2
∣∣〈[A,B]〉

∣∣
Schrödinger (1931)

(∆A)2(∆B)2 ≥
(

AB + BA
2 − AB

)2

+
∣∣∣∣∣AB − BA

2

∣∣∣∣∣
2

.
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Introduction: Heisenberg Uncertainty - Violated?

MUR – early denials

Popper 1934: precursor or EPR (rebuttal by von Weizsäcker)

Einstein, Podolsky, Rosen (EPR) 1935: use correlations to infer
simultaneous sharp values of Q,P

Park, Margenau 1967: time-of-flight determination of position and
momentum

Aharonov et al, since 1990: definite values of incompatible
observables between pre- and post-selection
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Introduction: Heisenberg Uncertainty - Violated?

MUR – textbook wisdom

PUR and MUR are conflated; no reflection on how to define
measurement error/disturbance

PUR 6= MUR, hence claim no limitation on joint measurements
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Introduction: Heisenberg Uncertainty - Violated?

MUR – recent challenges
Heisenberg according to Ozawa:

ε(A, ρ) ε(B, ρ) ≥ 1
2
∣∣〈[A,B]

〉
ρ

∣∣ (
???
)

ε(A, ρ) η(B, ρ) ≥ 1
2
∣∣〈[A,B]

〉
ρ

∣∣ (
???
)

Heisenberg didn’t actually state this ... and it is of limited validity
Ozawa was the first to propose formal definitions of measures of error
ε(A, ρ) and disturbance η(B, ρ)
Ozawa’s correction of the above:

ε(A, ρ)η(B, ρ) + ε(A, ρ)∆ρB + ∆ρAη(B, ρ) ≥ 1
2
∣∣〈[A,B]〉ρ

∣∣
Experimentally confirmed...
... yet, further scrutiny is needed ...
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Introduction: Heisenberg Uncertainty - Violated?
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Introduction: Heisenberg Uncertainty - Violated?

Recent media hype: the end of quantum uncertainty?
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Introduction: Heisenberg Uncertainty - Violated?

MUR – what does the theory (QM) tell us?

(
combined joint measurement errors for A,B

)
≥
(
incompatibility of A,B

)
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MUR – why so long?

Formalising quantum measurement uncertainty:
why did it take so long?

Answer (in a nutshell)
Cauchy-Schwarz seemed to be the “end of it”
(and Heisenberg (1930) endorsed Kennard’s version and proof)
Lack of theory of approximate quantum measurements
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MUR – why so long?

Quantum uncertainty: some history

Textbook wisdom elaborated:

“The uncertainty principle has nothing to do with the errors in joint
measurements because ...

“The uncertainty relation is about preparations: spreads of distributions of
separate measurements.”

(and besides:)

“... joint measurements of noncommuting quantities are impossible.”

(or alternatively:)

“... hence there are no limitations to joint measurements of noncommuting
quantities.”
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MUR – why so long?

Quantum uncertainty: some history

... preciseimprecise joint measurements of noncommuting quantities
are impossible. possible.

Needed:
notion of imprecise/approximate measurement
measure of error
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MUR – why so long?

MUR – Why did it take so long: the long answer

Heisenberg (1927): uncertainty relations quantifying and lifting
incompatibility – explaining the positive possibility of approximate
joint measurements and cloud chamber trajectories.
von Neumann (1932): impossibility of joint measurements for
noncommuting quantities
Wigner (1932): quasi-probability distribution on phase space (Wigner
function)
concrete confirmation/illustration of von Neumann’s no-go theorem
Husimi (1940): positive phase space distributions (Q-function)
later identified as a Heisenberg-Weyl covariant POVM on phase space
Naimark (1940) [then still Neumark]: semispectral measures, POVMs
general measurements
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MUR – why so long?

MUR – Why did it take so long: the long answer

1960s: Ludwig, Davies&Lewis – POVMs in physics (quantum
foundations)
noncommuting observables may be jointly measurable – if they are
sufficiently unsharp
Arthurs&Kelly (1965): model of joint measurement of position and
momentum
– intuitive, but no concept of approximation
1980s: bringing together models and concepts of joint measurements;
first realisations in quantum optics
1990s: first attempts at systematic formulations of quantum
measurement error and model-independent, universal measurement
uncertainty relations (mainly Appleby, Ozawa)
since 2004: Ozawa inequality; controversy over the question of the
“correct” quantum version of Gauss root-mean-square (rms) error
since 2012: new measurement uncertainty relations, new experiments
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Quantum Measurement – Concepts

Measurement Statistics – Observables as POVMs

[π] ∼ ρ, [σ] ∼ E = {ωi 7→ Ei} : pσπ(ωi ) = tr[ρEi ] = pE
ρ (ωi )

state : ρ : H → H, O ≤ ρ ≤ I, tr[ρ] = 1
effect : E : H → H, O ≤ E ≤ I
POVM : E = {E1,E2, · · · ,En}, O ≤ Ei ≤ I ,

∑
Ei = I

state changes: instrument ωi , ρ→ Ii (ρ)
measurement processes: measurement scheme M = 〈Ha, φ,U,Za〉
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Quantum Measurement – Concepts

General POVM

measurable space: (Ω,Σ)
observable: E : Σ→ L(H)

O ≤ E(X ) ≤ I, E(∅) = O, E(Ω) = I,
E(∪kXk) =

∑
kE(Xk) for any disjoint sequence (Xk)k∈N

probability: pE
ρ (X ) = tr

[
ρE(X )

]
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Quantum Measurement – Concepts

Instrument

Σ 3 X 7→ I(X ), I(X ) : ρ 7→ I(X )(ρ)

induced/measured observable E:

I  E : X 7→ tr [I(X )(ρ)] ≡ tr [ρE(X )]
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Quantum Measurement – Concepts

Illustration: Heisenberg Effect

Theorem: No disturbance – no information

∀ρ : I(Ω)(ρ) = ρ =⇒ ∀ρ, ρ′ ∀X ∈ Σ : tr [I(X )(ρ)] = tr
[
I(X )(ρ′)

]
Measured observable is trivial:

∀ρ, ρ′,X : tr [ρE(X )] = tr
[
ρ′E(X )

]
⇐⇒ ∀X ∈ Σ : E(X ) = µ(X ) I

Here µ is a fixed probability measure on (Ω,Σ).
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Quantum Measurement – Concepts

Proof: No disturbance – no information
Assume I(Ω)(P[ϕ]) = P[ϕ]. Then

I(X )(P[ϕ]) + I(X c)(P[ϕ]) = P[ϕ], therefore I(X )(P[ϕ]) = Eϕ(X )P[ϕ]

Show next: Eϕ(X ) = Eψ(X ) for any states ϕ,ψ.
First, consider ϕ ⊥ ψ.
Take ξ, η ∈ [ϕ,ψ], ξ 6⊥ ϕ,ψ and η ⊥ ξ
Then P[ϕ] + P[ψ] = P[ξ] + P[η] and so

Eϕ(X )P[ϕ] + Eψ(X )P[ψ] = Eξ(X )P[ξ] + Eη(X )P[η] .

Uniqueness of spectral decomposition ⇒ spectrum degenerate:
Eϕ(X ) = Eψ(X ) = Eξ(X ) = Eη(X ).
Thus, given any ϕ, for all ψ ⊥ ϕ : Eψ(X ) = Eϕ(X ).
This extends to all ξ 6⊥ ϕ.
Hence X 7→ Eϕ(X ) ≡ λ(X ) is a constant probability measure.
Also, I(X )

(
P[ϕ]

)
= λ(X )P[ϕ]. Q.E .D.

Paul Busch (York) Qubit Uncertainty Tutorial 23 / 80



Quantum Measurement – Concepts

Example: constant channel instrument

ρ → IC
ρ0(X )(ρ) = tr [ρC(X )] ρ0

Resulting disturbance: any observable B turned into a trivial observable
B′:

tr
[
ρB′(Y )

]
= tr

[
ρIC

ρ0(Ω)∗
(
B(Y )

)]
= tr [ρ0B(Y )]

for all Y , so that B′(Y ) = Bρ0(Y ) I.
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Quantum Measurement – Concepts

Measurement Scheme

M = 〈Ha, φ,U,Za〉

tr [(ρ⊗ σ)U∗(B ⊗ Z(X ))U] = tr [I(X )(ρ)B]

tr [(ρ⊗ σ)U∗(I ⊗ Z(X ))U] = tr [ρE(X )]

Hence:
M  I  E

Paul Busch (York) Qubit Uncertainty Tutorial 25 / 80



Quantum Measurement – Concepts

Exampe: SWAP

Ha = H, U = SWAP, Z = E

tr [(ρ⊗ σ)U∗(B ⊗ E(X ))U] = tr [I(X )(ρ)B] = tr [σB] tr [ρE(X )]

i .e., I(X )(ρ) = tr [ρE(X )] σ

tr [(ρ⊗ σ)U∗(I ⊗ E(X ))U] = tr [ρE(X )]
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Quantum Measurement – Concepts

Signature of an observable: its statistics

pC
ρ = pA

ρ for all ρ ⇐⇒ C = A

Minimal indicator for a measurement of C to be a good approximate
measurement of A:

pC
ρ ' pA

ρ for all ρ

Unbiased approximation – absence of systematic error:

C[1] =
∑

jcjCj = A[1] =
∑

i ai Ai = A

... C[1] = A[1] is often taken as sole criterion for a good measurement
... but equality of all moments required for exact measurement: C[k] = A[k]
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Quantum Measurement – Concepts

Joint Measurability/Compatibility

Definition: joint measurability (compatibility)
Observables C = {C1,C2, . . . ,Cm}, D = {D1,D2, . . . ,Dn} are jointly
measurable
if they are margins of an observable G = {Gk`}:

Ck =
∑
`Gk`, D` =

∑
kGk`

C(X ) = G(X × Ω2), D(Y ) = G(Ω1 × Y )
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Quantum Measurement – Concepts

Compatibility

Theorem
If one of C,D is sharp (projection valued), then these observables are
jointly measurable iff they commute:

[Ck ,D`] = 0

and the joint observable G is uniquely determined:

Gk` = CkD`

Joint measurability in general
Pairs of unsharp observables may be jointly measurable

– even when they do not commute!
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Quantum Measurement – Concepts

Example: compatibility by smearing
C,D – discrete observables, Ωj = {1, 2, . . . ,Nj}, Σj = 2Ωj , j = 1, 2

C({k}) ≡ Ck , D({`}) ≡ D`
∑

k Ck = I =
∑
` D`

pk ≥ 0, q` ≥ 0,
∑

k pk = 1 =
∑
` q`

C(λ), D(µ) (λ, µ ∈ [0, 1]):

C (λ)
k = λCk + (1− λ)pk I, D(µ)

` = µD` + (1− µ)q`I

C(λ), D(µ) are jointly measurable if λ+ µ ≤ 1.

Proof: G = {Gk`} is a joint observable, where

Gk` = λCkq` + µD`pk + (1− λ− µ)pkq`
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Quantum Measurement – Concepts

Compatibility - some results

Proposition
If C,D and C′,D′ are compatible pairs of observables, then
C̃ = λC + (1− λ)C′ and D̃ = λD + (1− λ)D′ are compatible for any
λ ∈ [0, 1].

Proof: if G,G′ are joint observables for C,D and C′,D′, respectively, then
G̃ = λG + (1− λ)G′ is a joint observable for C̃, D̃.
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Quantum Measurement – Concepts

Compatibility - some results

Proposition
If C,D are compatible, then C′,D′ are compatible, where
C′(X ) = V C(X )V ∗, D′(X ) = V D(X )V ∗ and V is (anti-)unitary.

Proof: If G is a joint observable for C,D, then G′ is a joint observable for
C′,D′, where G′(Z ) = V G(Z )V ∗.
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Quantum Measurement – Concepts

Approximate joint measurement: concept

G

�� ��

C

��

D

��

A B

joint observable

approximator observables
(compatible)

target observable

Task: find suitable measures of approximation errors
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Quantum Measurement – Concepts

Disturbance
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Quantum Measurement – Concepts

Disturbance quantified as approximation error
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Preparation Uncertainty Relations (PUR)

PUR

Preparation Uncertainty Relations
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Preparation Uncertainty Relations (PUR)

PUR for Q, P

x0 > 0 : 4~2

x2
0

(∆ρQ)2 + x2
0 (∆ρP)2 ≥ 2~2

(ground state of harmonic oscillator) m

(∆ρQ)2 (∆ρP)2 ≥ ~2

4
m

2~
x0

∆ρQ + x0∆ρP ≥ 2~

Proof: use ξ2 + 1
ξ2 =

(
ξ − 1

ξ

)2
+ 2 ≥ 2 (ξ > 0)

∆Q∆P ≥ ~
2 ⇔

(
2~
x0

∆Q − x0∆P
)2

+ 4~∆Q∆P ≥ 2~2

for “⇐” use Q → λQ, P → 1
λ

P
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Preparation Uncertainty Relations (PUR)

PUR in general

Important observation
For bounded observables A,B, the standard PUR
∆ρA∆ρB ≥ 1

2
∣∣〈[A,B]〉ρ

∣∣ is not a strong constraint: the lower bound
vanishes for (near) eigenstates.
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Preparation Uncertainty Relations (PUR)

Qubits

σ = (σ1, σ2, σ3) (Pauli matrices acting on C2)
States: ρ = 1

2
(
I + r · σ

)
, |r | ≤ 1

Effects: A = 1
2 (a0I + a · σ) ∈ [O, I], 0 ≤ 1

2
(
a0 ± |a|

)
≤ 1

observables: (Ω = {+1,−1})

A : ±1 7→ A± = 1
2 (I ± a · σ) |a| = 1

B : ±1 7→ B± = 1
2 (I ± b · σ) |b| = 1

C : ±1 7→ C± = 1
2 (1± γ) I ± 1

2c · σ |γ|+ |c| ≤ 1
D : ±1 7→ D± = 1

2 (1± δ) I ± 1
2d · σ |δ|+ |d | ≤ 1

C symmetric (unbiased): γ = 0
C sharp: γ = 0, |c| = 1; → unsharpness: U(C)2 = 1− |c|2
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Preparation Uncertainty Relations (PUR)

PUR for qubit observables

σ2
k = I, 〈σk〉ρ = rk , ρ = 1

2 (I + r · σ), r = (r1, r2, r3)

(∆ρσ1)2 (∆ρσ2)2 ≥ 1
4

∣∣∣〈[σ1, σ2]〉ρ
∣∣∣2 + 1

4 (〈σ1σ2 + σ2σ1〉ρ − 2〈σ1〉〈σ2〉ρ)2

m
(1− 〈σ1〉ρ)2 (1− 〈σ2〉ρ)2 ≥ 〈σ3〉2ρ + 〈σ1〉2ρ〈σ2〉2ρ

m
〈σ1〉2ρ + 〈σ2〉2ρ + 〈σ3〉2ρ = |r |2 ≤ 1 (ρ ≥ 0)

m
(∆ρσ1)2 + (∆ρσ2)2 + (∆ρσ3)2 ≥ 2

⇓
(∆ρσ1)2 + (∆ρσ2)2 ≥ 1
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Preparation Uncertainty Relations (PUR)

Preparation uncertainty for qubits – continued

A = a · σ, B = b · σ, |a| = |b| = 1

(∆ρA)2 + (∆ρB)2 ≥ 1− |a · b| = 1−
√

1− |a × b|2

= 1−
√

1− ‖[A,B]‖2

L.H.S.≥ |r̂ × a|2 + |r̂ × b|2, r̂ = r/|r | (r 6= 0)
Tight bound, attained at r = (a ± b)/|a ± b| if a · b ≥ 0 and ≤ 0, resp.

∆ρA + ∆ρB ≥ |a × b| =
∥∥[A,B]

∥∥.
L.H.S.≥ |r̂ × a|+ |r̂ × b|, r̂ = r/|r | (r 6= 0)

Tight bound, attained at r = ±a or r = ±b.
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Preparation Uncertainty Relations (PUR)

Preparation uncertainty for qubits – which inequality?

Problem: Uncertainty region

Characterise the region of points with coordinates (∆A,∆B) ∈ R+ × R+

such that ∆A = ∆ρA and ∆B = ∆ρB: the uncertainty region of A,B.

Particularly: find the “lower boundary curve” of the uncertainty region.

Thus, given ∆A = ∆ρA, find ρ∗ such that

∆ρ∗B = min{∆ρ′B : |∆ρ′A = ∆ρA }

Note: ∆ρA ∆ρB ≥ 1
2
∣∣〈[A,B]

〉
ρ

∣∣ doesn’t help...
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Preparation Uncertainty Relations (PUR)

Preparation uncertainty for qubits – uncertainty region

Solution

∆ρA ≥ |r̂ × a|, ∆ρB ≥ |r̂ × b|

∆ρA
√

1− (∆ρB)2 + ∆ρB
√

1− (∆ρA)2 ≥
∥∥[A,B]

∥∥
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Preparation Uncertainty Relations (PUR)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

|a · b| = 1√
2 : x + y ≥ 1√

2 ( = |a × b| )

x2 + y2 ≥ 1− 1√
2 ( = 1− |a · b| )

x
√

1− y2 + y
√

1− x2 ≥ 1√
2 ( = |a × b| )
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Compatibility of Qubit Effects

Compatibility

Compatibility of Qubit Effects
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Compatibility of Qubit Effects

Compatibility of C, D
Symmetric case (sufficient for optimal compatible approximations):
C± = 1

2 (I ± c · σ), D± = 1
2 (I ± d · σ)

Proposition
C = {C± = 1

2 (I ± c · σ)}, D = {D± = 1
2 (I ± d · σ)} are compatible if and

only if
|c + d |+ |c − d | ≤ 2.

Interpretation: unsharpness U(C)2 = 1− |c|2; |c × d | = 2
∥∥[C+,D+]

∥∥
|c + d |+ |c − d | ≤ 2 ⇔

(
1− |c|2

)(
1− |d |2

)
≥ |c × d |2

C,D compatible ⇔ U(C)2 × U(D)2 ≥ 4
∥∥[C+,D+]

∥∥2
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Compatibility of Qubit Effects

Qubit compatibility: example

Take c ⊥ d :

C,D compatible ⇐⇒ |d |2 + |d |2 ≤ 1 ⇐⇒ U(C)2 + U(D)2 ≥ 1

|c| = |d | = λ :
C± = 1

2 (I ± c · σ) = λ1
2 (I ± ĉ · σ) + (1− λ) 1

2 I
D± = 1

2 (I ± d · σ) = λ1
2 (I ± d̂ · σ) + (1− λ) 1

2 I

C,D compatible iff λ ≤ 1/
√

2: degree of incompatibility
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Compatibility of Qubit Effects

Qubit compatibility: proof

C,D with C+ = 1
2 (c0I + c ·σ), D+ = 1

2 (d0I + d ·σ) are jointly measurable
iff ∃ observable: G =

{
G++,G+−,G−+,G−−

}
such that

Ck = Gk+ + Gk−, D` = G+` + G−`

iff ∃G = 1
2 (gI + g · σ):

(G++ =) G ≥ O
(G+− =) C+ − G ≥ O,
(G−+ =) D+ − G ≥ O,
(G−− =) I − C+ − D+ + G ≥ O
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Compatibility of Qubit Effects

Qubit compatibility: proof continued
Thus:
C,D compatible
iff ∃G = 1

2 (g0I + g · σ) (= G++):

G ≥ O, C+ − G (= G+−) ≥ O, D+ − G (= G−+) ≥ O,
I − C+ − D+ + G (= G−−) ≥ O

iff ∃ g0, g :

|g | ≤ g0, |c − g | ≤ c0 − g0, |d − g | ≤ d0 − g0,

|c + d − g | ≤ 2 + g0 − c0 − d0

iff ∃ g0:

Bg0(0) ∩ Bc0−g0(c) ∩ Bd0−g0(d) ∩ B2+g0−c0−d0(c + d) 6= ∅
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Compatibility of Qubit Effects

0

c

d

c+dBg0(c+d)

B1−g0(c)

Bg0(0)

B1−g0(d )

c0=d0=1

Paul Busch (York) Qubit Uncertainty Tutorial 50 / 80



Compatibility of Qubit Effects

Qubit compatibility: proof continued
Necessary: diagonally opposite balls must intersect

|c + d | ≤ 2 + 2g0 − c0 − d0, |c − d | ≤ c0 + d0 − 2g0

and therefore

|c + d | + |c − d | ≤ 2 (?)

... which is in fact equivalent to

|c + d | ≤ 1 + c · d ≤ 2− |c − d | (??)

(as well as)

|c − d | ≤ 1− c · d ≤ 2− |c + d | (??)
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Compatibility of Qubit Effects

Qubit compatibility: proof completed

Special case C± = 1
2 (I ± c · σ), D± = 1

2 (I ± d · σ), c0 = d0 = 1:

Given (?), choose g0 = 1
2 (1 + c · d), g = 1

2 (c + d), then G = {Gk`} is a
joint observable, where

Gk` = 1
4 [(1 + k`c · d) I + (kc + `d) · σ]

Positivity: Gk` ≥ O ⇐⇒ (??).

This proves sufficiency of (?) for the special case. Q.E .D.
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Approximate joint measurements for sharp qubit observables

Approximate Joint Measurements
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Approximate joint measurements for sharp qubit observables

Approximation error for qubits: probabilistic distance

Consider observables A,C on (Ω,Σ).
Idea:
C is a good approximation to A if the probability distributions pC

ρ , pA
ρ are

similar for all states ρ.
Quantify this with some choice of metric
or any other suitable measure of error.
Take here:

dp(C,A) = sup
ρ

sup
X

∣∣tr[ρC(X )]− tr[ρA(X )]
∣∣ = sup

X

∥∥C(X )− A(X )
∥∥

Qubit case: C+ = 1
2
(
c0I + c · σ

)
, A+ = 1

2
(
a0I + a · σ

)
dp(C,A) =

∥∥C+ − A+
∥∥ = 1

2 |c0 − a0|+ 1
2 |c − a| ∈ [0, 1].
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Approximate joint measurements for sharp qubit observables

Comparison : Measurement noise (Ozawa et al)

ε(C,A;ϕ)2 =
〈
ϕ⊗ φ

∣∣ (Zτ − A)2ϕ⊗ φ
〉

=
〈
C[2]− C[1]2

〉
ρ

+
〈
(C[1]− A)2〉

ρ
≡ ε2

a

Qubit observables, symmetric case:

ε2
a = 1− |c|2 + |a − c|2 = U(C)2 + 4d2

a

ε(A; ρ) double counts contribution from unsharpness.

(More on Measurement Noise (“Ozawa’s error”) tomorrow . . . )
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Measurement Uncertainty Relations for Qubits

Measurement Uncertainty
Relations
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Measurement Uncertainty Relations for Qubits

Optimising approximate joint measurements

{Gk`}

∑
`

��

∑
k

��

{Ck}

dp(C,A)
��

{D`}

dp(D,B)
��

{Ak} {B`}

Goal
To make errors dA = dp(C,A), dB = dp(D,B) simultaneously as small as
possible
subject to the constraint that C,D are compatible.
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Measurement Uncertainty Relations for Qubits

Admissible error region

sin θ = |a × b|
(dA, dB) =

(
dp(C,A), dp(D,B)

)
∈ [0, 1

2 ]× [0, 1
2 ] with C,D compatible

trivial approximations: C+ = γI, D+ = δI;
then dA = max(γ, 1− γ) ≥ 1

2 , dB = max(δ, 1− δ) ≥ 1
2
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Measurement Uncertainty Relations for Qubits

Optimisation – Step 1: symmetric approximators
Given: C,D, C± = 1

2 (1± γ)I ± 1
2c · σ, D± = ...

Take T antiunitary: TσkT ∗ = −σk

C ′± = TC∓T ∗ = 1
2 (1∓ γ)I ± 1

2c · σ, D′± = ...

C,D compatible, with joint observable {Gk`}
=⇒ C′,D′ compatible, with joint observable {G ′k` = TG−k,−`T ∗}
=⇒ C̃, D̃ compatible, where

C̃± = 1
2 (C± + C ′±) = 1

2 (I ± c · σ), D̃± = 1
2 (D± + D′±) = 1

2 (I ± d · σ)

dp(C,A) ≥ dp(C̃, Ã) dp(D,B) ≥ dp(D̃, B̃)

[ 1
2 |γ|+

1
2 |c − a| ≥ 1

2 |c − a|
]
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Measurement Uncertainty Relations for Qubits

Optimisation – Step 2: planar approximators

dp(C̃,A) = 1
2

∣∣∣1
2 (c + c ′)− a

∣∣∣ ≤ 1
2
[
dp(C,A) + dp(C′,A)

]
= dp(C,A)
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Measurement Uncertainty Relations for Qubits

Optimisation – Step 3: symmetric constellation

dp(C̃,A) + dp(D̃,B) ≤ 1
2
[
dp(C,A) + dp(C′,A)

]
+ 1

2
[
dp(D,B) + dp(D′,B)

]
= dp(C,A) + dp(D,B)

since dp(C′,A) = dp(D,B) and dp(D′,B) = dp(C,A)
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Measurement Uncertainty Relations for Qubits

Optimisation – Step 4: optimal constellation

Constraint: compatibility 1
2 |c + d |+ 1

2 |c − d | = 1

dp(C,A) + dp(D,B) = 1
2 |c − a|+ 1

2 |d − b|

=
√

2
[

1
2 |a + b| − 1

2 |c + d |
]

=
√

2
[

1
2 |a − b| − 1

2 |c − d |
]

= 1
2
√

2 [ |a + b|+ |a − b| − 2 ]
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Measurement Uncertainty Relations for Qubits

Main Result 1: A Simple Qubit MUR

sin θ = |a × b|

|c + d |+ |c − d | ≤ 2
U(C)2 × U(D)2 ≥ 4‖[C+,D+]‖2

dp(C,A) + dp(D,B) ≥ 1
2
√

2 [ |a + b|+ |a − b| − 2 ]

|a + b|+ |a − b| = 2
√

1 + |a × b| = 2
√

1 + 2
∥∥[A+,B+]

∥∥
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Measurement Uncertainty Relations for Qubits

Qubit Measurement Uncertainty: Tight Boundary Curve

 c d 

∆ ∆
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Measurement Uncertainty Relations for Qubits

Qubit Measurement Uncertainty: Boundary Curve
PB & T Heinosaari (2008), S Yu and CH Oh (2014)

Optimiser, case a ⊥ b:

c = |c|a, d = |d |b,
2da = |a − c| = 1− |c|,
2db = |b− d | = 1− |d |,
Compatibility constraint:
|c|2 + |d |2 = 1, i.e., U(C)2 + U(D)2 = 1
(1− 2da)2 + (1− 2db)2 = |c|2 + |d |2 = 1

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

a⋅b = 0

da

db

(d  - 1)   + (d  - 1)   = 1 2 2
a b

2

2

+ (2(2
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Measurement Uncertainty Relations for Qubits

Optimal Qubit Measurement Uncertainty: Proof

Task: minimise |b− d |
subject to |a − c| fixed and |c + d |+ |c − d | = 2

∇cF = 0, ∇d F = 0
where F = |b− d |+ λ|a − c|+ µ (|c + d |+ |c − d |)

a − c ∼ c + d
|c + d | + c − d

|c − d |

b− d ∼ c + d
|c + d | −

c − d
|c − d |

=⇒ (a − c) · (b− d) = 0
(Case a ⊥ b :) =⇒ c = |c|a ⊥ d = |d |b
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Measurement Uncertainty Relations for Qubits

Optimal Qubit Measurement Uncertainty: Proof completed
Hence, optimising joint measurement is given by

c = |c|a ⊥ d = |d |b

and the compatibility constraint becomes: |c|2 + |d |2 = 1.
Considering that

2da = |a − c| = 1− |c|, 2db = |b− d | = 1− |d |

this translates into the following equation for the optimal boundary curve
of the admissible joint measurement error region:

(2da − 1)2 + (2db − 1)2 = 1

and the region itself is given by

(2da − 1)2 + (2db − 1)2 ≤ 1 or da ≥ 1
2 or db ≥ 1

2
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Measurement Uncertainty Relations for Qubits

Result: Qubit Measurement Uncertainty – Admissible
Region
PB & T Heinosaari (2008), S Yu and CH Oh (2014)

Optimiser, case a ⊥ b:

c = |c|a, d = |d |b,
2da = |a − c| = 1− |c|,
2db = |b− d | = 1− |d |,
Compatibility constraint:
|c|2 + |d |2 = 1, i.e., U(C)2 + U(D)2 = 1
(1− 2da)2 + (1− 2db)2 = |c|2 + |d |2 = 1

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

a⋅b = 0

da

db

(d  - 1)   + (d  - 1)   = 1 2 2
a b

2

2

+ (2(2
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Measurement Uncertainty Relations for Qubits

A lucky (?) accident

The same optimiser configuration for c,d also realises the tight
boundary of an inequality due to C Branciard (2013), which is a
refinement of Ozawa’s inequality.
Branciard’s inequality has been confirmed experimentally.
Hence these tests also confirm our qubit joint measurement error
region.

More on this in tomorrow’s lecture . . .
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Measurement Uncertainty Relations for Qubits

Connection between MUR and PUR (for Qubits)

analogy with position-momentum case

Case a ⊥ b, optimal approximators c = |c|a, d = |d |b, |c|2 + |d |2 = 1:

Heisenberg-Weyl covariant joint observable

Gk,` = 1
4
[
I + (kc + `d) · σ

]
G++ = I G++I∗,
G+− = (a · σ) G++ (a · σ)∗,
G−+ = (b · σ) G++ (b · σ)∗,
G−− = (a × b · σ) G++ (a × b · σ)∗

G++ = 1
4
[
I + (c + d) · σ

]
= 1

2ρ0 = 1
4 (I + r0 · σ)

Ug Gk,`U∗g = G(k,`)g (covariance)
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Measurement Uncertainty Relations for Qubits

Connection between MUR and PUR (for Qubits)

Margins of covariant G

Gk,` = 1
4
[
I + (kc + `d) · σ

]
Ck = Gk,+ + Gk,− = 1

2 (I + kc · σ)
D` = G+,` + G−,` = 1

2 (I + `d · σ)

These realise the optimal error bound since

2da = |a − c| = 1− |c|, 2db = |b− d | = 1− |d |

and therefore

(2da − 1)2 + (2db − 1)2 = |c|2 + |d |2 = 1
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Measurement Uncertainty Relations for Qubits

Connection between MUR and PUR

(2da − 1)2 + (2db − 1)2 = 1 minimal errors
m

|c|2 + |d |2 = 1 compatibility bound
m(

1− |c|2
)

+
(
1− |d |2

)
= 1 minimal unsharpness
m G++ = 1

2ρ0, r0 = c + d(
∆ρ0A

)2 +
(
∆ρ0B

)2 = 1 minimal uncertainty
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Measurement Uncertainty Relations for Qubits

Summary so far

Main Result 2: Qubit MUR according to QM

(
joint measurement errors for A,B

)
≥
(
incompatibility of A,B

)(
unsharpness of compatible C,D

)
≥
(
noncommutativity of C,D

)
Preparation uncertainty enforces measurement uncertainty!

Shown here for qubit observables.
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Qubit MUR – Experimental Confirmations

MUR – Experiments
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Qubit MUR – Experimental Confirmations

Measurement Noise and Weak Valued Probabilities

Lund & Wiseman (NJP 2010)

ε(C,A; ρ)2 =
〈
(Zτ − A)2〉

ρ⊗σ

=
〈
C[2]− C[1]2

〉
ρ

+
〈
(C[1]− A)2〉

ρ

=
∫∫

(x − y)2Re tr [ρA(dx)C(dy)]

=com,disc
∑
k,`

(ak − a`)2tr [ρAkC`]

bona fide probability if A,C commute
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Qubit MUR – Experimental Confirmations

Lund-Wiseman weak measurement scheme
A = Z = σ3, C =a smeared version of A = Z ,
B = X = σ1, B′ = D =a smeared version of B = X

Determination of η(X ).
Top wire: probe; bottom wire: measuring system;
middle wire: observed qubit.
The value of η(X ) can be extracted from the joint distribution of the initial
and final X measurements, obtained by reading the outputs Zp and Xf .

First realised by Toronto group (Rozema et al, PRL 2012).
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Qubit MUR – Experimental Confirmations

Weak measurement scheme (continued)
Marginal observables:

Zp : P± = 1
2
[

I ± (2γ2 − 1)X
]

γ → 1√
2 : weak measurement limit

γ = 1 : P± = B± = 1
2 (I ± X )

Xf : D± = 1
2
[
I± sin(2θ)X

]
Zm : C± = 1

2
[
I± 2γγ′ cos(2θ)Z

]
Use operational probabilities Pk,` = P(Zp = k,Xf = `) to determine

“weak-valued probabilities” a la Lund, Wiseman:

2PWV (δX = ±2) = P1,±1 + P−1,±1 ∓
P1,±1 − P−1,±1

2γ2 − 1

η(X )2 =
∑
δx (δx)2PWV (δx) = 2− 2 sin(2θ)
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Qubit MUR – Experimental Confirmations

Weak measurement vs strong measurement

But: No need to use weak valued probabilities as B,D commute!∑
k,`(xk − x`)2Pk,` = 4P(Zp = +1,Xf = −1) + 4P(Zp = −1,Xf = +1)

= 2− 2 sin(2θ)(2γ2 − 1)

γ = 1 (strong measurement):

η(X )2 = 4P(Zp = +1,Xf = −1) + 4P(Zp = −1,Xf = +1) = 2−2 sin(2θ)

value comparison error
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Conclusion

Conclusion

Summary

MURs can be rigorously formalised and proven

Care has to be taken with the definition of error measure to ensure reliable
identification of optimal joint measurements

In qubit case, measurement noise (εa, εb) and probabilistic distances (da, db)
give almost consistent descriptions of optimal joint measurements

Experimental tests of MURs for (εa, εb) also confirm MURs for (da, db)

Outlook

Much remains to be investigated, e.g., alternative measures of error

Largely outstanding: generic MURs (obtained by T Miyadera (PRA 2011)
for finite-dimensional systems, finite observables)

Possible applications of MURs: e.g., quantum metrology
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Conclusion
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