Qubit Uncertainty Tutorial

Paul Busch

Department of Mathematics
University ofyork

Quantum Physics and Logic - QPL 2015, Oxford, 13-17 July 2015

Outline

(1) Introduction: Heisenberg Uncertainty - Violated?
(2) Formalising measurement uncertainty - Why did it take so long?
(3) Quantum Measurement - Concepts

4 Preparation Uncertainty Relations (PUR)
(5) Compatibility of Qubit Effects
(6) Approximate joint measurements for sharp qubit observables
(7) Measurement Uncertainty Relations for Qubits
(8) Qubit MUR - Experimental Confirmations
(9) Conclusion

Plan:

- Review the origins of Measurement Uncertainty Relations (MURs)
- Review the controversy over the validity of MURs
- Survey qubit measurement uncertainty
- Scrutinise a failed attempt, interpret its experimental "confirmations", and confront it with a viable alternative

Heisenberg 1927

Heisenberg microscope:

"Let q_{1} be the precision with which the value q is known (q_{1} is, say, the mean error of q), therefore here the wavelength of the light. Let p_{1} be the precision with which the value p is determinable; that is, here, the discontinuous change of p in the Compton effect. Then, according to the elementary laws of the Compton effect p_{1} and q_{1} stand in the relation

$$
\begin{equation*}
p_{1} q_{1} \sim h . \tag{1}
\end{equation*}
$$

- Makes clear reference to error and disturbance
- Sketches proof of preparation uncertainty relation (PUR) for the case of a Gaussian (minimum uncertainty) wave function
- Makes informal reference to rms error as standard deviation (of Q-distribution)

Heisenberg 1927: three faces of quantum uncertainty

Preparation Uncertainty Relations (PUR), Measurement Uncertainty Relations MUR
(Width of Q distribution) • (Width of P distribution) $\sim \hbar$
(Error of Q measurement) $\cdot($ Error of $P) \sim \hbar$
(ERror of Q measurement) • (Disturbance of P) $\sim \hbar$

Quantum uncertainty: immediate reaction

Wolfgang Pauli's expression of the quantum pioneers' worries concerning $Q P-P Q=i \hbar$:
"One may view the world with the p-eye and one may view it with the q-eye but if one opens both eyes simultaneously then one gets crazy."

Wolfgang Pauli in a letter to Werner Heisenberg, 19 Oct. 1926) And on reading Heisenberg's 1927 paper:
"Day is dawning in quantum mechanics."

PUR - early developments

- Kennard (1927), Weyl (1928) $\left(p_{i}=\sqrt{2} \Delta P, q_{i}=\sqrt{2} \Delta Q\right)$

$$
p_{i} q_{i} \geq \frac{h}{2 \pi}
$$

- Robertson (1929)

$$
\Delta A \Delta B \geq \frac{1}{2}|\langle[A, B]\rangle|
$$

- Schrödinger (1931)

$$
(\Delta A)^{2}(\Delta B)^{2} \geq\left(\frac{\overline{A B+B A}}{2}-\overline{A B}\right)^{2}+\left|\frac{\overline{A B-B A}}{2}\right|^{2}
$$

MUR - early denials

- Popper 1934: precursor or EPR (rebuttal by von Weizsäcker)
- Einstein, Podolsky, Rosen (EPR) 1935: use correlations to infer simultaneous sharp values of Q, P
- Park, Margenau 1967: time-of-flight determination of position and momentum
- Aharonov et al, since 1990: definite values of incompatible observables between pre- and post-selection

MUR - textbook wisdom

- PUR and MUR are conflated; no reflection on how to define measurement error/disturbance
- PUR \neq MUR, hence claim no limitation on joint measurements

MUR - recent challenges

Heisenberg according to Ozawa:

$$
\begin{align*}
& \varepsilon(A, \rho) \varepsilon(B, \rho) \geq \frac{1}{2}\left|\langle[A, B]\rangle_{\rho}\right| \tag{???}\\
& \varepsilon(A, \rho) \eta(B, \rho) \geq \frac{1}{2}\left|\langle[A, B]\rangle_{\rho}\right| \tag{???}
\end{align*}
$$

- Heisenberg didn't actually state this ... and it is of limited validity
- Ozawa was the first to propose formal definitions of measures of error $\varepsilon(A, \rho)$ and disturbance $\eta(B, \rho)$
- Ozawa's correction of the above:

$$
\varepsilon(A, \rho) \eta(B, \rho)+\varepsilon(A, \rho) \Delta_{\rho} B+\Delta_{\rho} A \eta(B, \rho) \geq \frac{1}{2}\left|\langle[A, B]\rangle_{\rho}\right|
$$

- Experimentally confirmed...
- ... yet, further scrutiny is needed ...

Experimental demonstration of a universally valid error-disturbance uncertainty relation in spin measurements

Jacqueline Erhart ${ }^{1}$, Stephan Sponar ${ }^{1}$, Georg Sulyok ${ }^{1}$, Gerald Badurek ${ }^{1}$, Masanao Ozawa ${ }^{2}$ and Yuji Hasegawa ${ }^{1 *}$

The uncertainty principle generally prohibits simultaneous measurements of certain pairs of observables and forms the basis of indeterminacy in quantum mechanics'. Heisenberg's original formulation, illustrated by the famous γ-ray microscope, sets a lower bound for the product of the measurement error and the disturbance ${ }^{2}$. Later, the uncertainty relation was reformulated in terms of standard deviations ${ }^{3-5}$, where the focus was exclusively on the indeterminacy of predictions, whereas the unavoidable recoil in measuring devices has been ignored ${ }^{6}$. A correct formulation of the error-disturbance uncertainty relation, taking recoil into account, is essential for a deeper understanding of the uncertainty principle, as Heisenberg's original relation is valid only under specific circumstances ${ }^{7-10}$. A new error-disturbance relation, derived using the theory of general quantum measurements, has been claimed to be universally valid ${ }^{11-14}$. Here, we report a neutronoptical experiment that records the error of a spin-component measurement as well as the disturbance caused on another spin-component. The results confirm that both error and disturbance obey the new relation but violate the old one in a wide range of an experimental parameter.

The uncertainty relation was first proposed by Heisenberg ${ }^{2}$ in 1927 as a limitation of simultaneous measurements of canonically conjugate variables owing to the back-action of the measurement: the measurement of the position Q of the electron with the error $\epsilon(Q)$, or 'the mean error', induces the disturbance $\eta(P)$, or 'the discontinuous change', of the momentum P so that they always satisfy the relation
as $\sigma(A)^{2}=\langle\psi| A^{2}|\psi\rangle-\langle\psi| A|\psi\rangle^{2}$. Note that a positive definite covariance term can be added to the right-hand side of equation (2), if squared, as discussed by Schrödinger ${ }^{5}$. For our experimental setting, this term vanishes. Robertson's relation (equation (2)) for standard deviations has been confirmed by many different experiments. In a single-slit diffraction experiment ${ }^{15}$ the uncertainty relation, as expressed in equation (2), has been confirmed. A trade-off relation appears in squeezing coherent states of radiation fields ${ }^{16}$, and many experimental demonstrations have been carried out ${ }^{17}$.

Robertson's relation (equation (2)) has a mathematical basis, but has no immediate implications for limitations on measurements. This relation is naturally understood as limitations on state preparation or limitations on prediction from the past. On the other hand, the proof of the reciprocal relation for the error $\epsilon(A)$ of an A measurement and the disturbance $\eta(B)$ on observable B caused by the measurement, in a general form of Heisenberg's error-disturbance relation

$$
\begin{equation*}
\epsilon(A) \eta(B) \geq \frac{1}{2}|(\psi|[A, B]| \psi\rangle| \tag{3}
\end{equation*}
$$

is not straightforward, as Heisenberg's proof used an unsupported assumption on the state just after the measurement ${ }^{12}$, despite successful justifications for the Heisenberg-type relation for unbiased joint measurements ${ }^{s-10}$. Recently, rigorous and general theoretical treatments of quantum measurements have revealed the failure of Heisenberg's relation (equation (1)), and derived a new universally valid relation ${ }^{11-14}$ given by

$$
\begin{equation*}
\left.\epsilon(A) \eta(B)+\epsilon(A) \sigma(B)+\sigma(A) \eta(B) \geq \frac{1}{2}|\langle\psi|[A, B]| \psi\right\rangle \mid \tag{4}
\end{equation*}
$$

Recent media hype: the end of quantum uncertainty?

Heisenberg uncertainty principle stressed in new test

Quantenphysik

Der große Heisenberg irrte
17.11.2012 - Werner Heisenberg wollte seine beriuhnte Unbestimmtheitsbeziehung auch in den Störungen wiedererkennen, die ein Messung verursacht. Diesen Schluss haben kanadische Forscher widerlegt.
von ruiter socurt
Artikel Bilder (3) Lesermeinumgen (31)
Die von Werner Heisenberg 1927 formulierte Unschäffebeziehung ist trotz ihrer Tiefgründigkeit und Abstraktheit das wohl bekannteste Gesetz der Quantenphysik. Sie besag vereinfacht, dass man nicht gleichzeitig die Geschwindigkeit und den Ort etwa eines Elektrons mit beliebiger Prazision bestimmen kann. Für die Popularität dieses Gesetzes hat vor
 Wemer Helizenberg und seine Unzchast rogar aff eirror Briefmarke werwight

Synopsis: Rescuing Heisenberg

 hisa. Reve Lat 111, 100405 [20
ubishes Octiser 17, 2013

MUR - what does the theory (QM) tell us?

(combined joint measurement errors for $A, B) \geq$ (incompatibility of A, B)

Formalising quantum measurement uncertainty: why did it take so long?

Answer (in a nutshell)

- Cauchy-Schwarz seemed to be the "end of it" (and Heisenberg (1930) endorsed Kennard's version and proof)
- Lack of theory of approximate quantum measurements

Quantum uncertainty: some history

Textbook wisdom elaborated:
"The uncertainty principle has nothing to do with the errors in joint measurements because ...
"The uncertainty relation is about preparations: spreads of distributions of separate measurements."
(and besides:)
"... joint measurements of noncommuting quantities are impossible." (or alternatively:)
"... hence there are no limitations to joint measurements of noncommuting quantities."

Quantum uncertainty: some history

... preciseimprecise joint measurements of noncommuting quantities are impossible. possible.

Needed:

- notion of imprecise/approximate measurement
- measure of error

MUR - Why did it take so long: the long answer

- Heisenberg (1927): uncertainty relations quantifying and lifting incompatibility - explaining the positive possibility of approximate joint measurements and cloud chamber trajectories.
- von Neumann (1932): impossibility of joint measurements for noncommuting quantities
- Wigner (1932): quasi-probability distribution on phase space (Wigner function)
concrete confirmation/illustration of von Neumann's no-go theorem
- Husimi (1940): positive phase space distributions (Q-function) later identified as a Heisenberg-Weyl covariant POVM on phase space
- Naimark (1940) [then still Neumark]: semispectral measures, POVMs general measurements

MUR - Why did it take so long: the long answer

- 1960s: Ludwig, Davies\&Lewis - POVMs in physics (quantum foundations) noncommuting observables may be jointly measurable - if they are sufficiently unsharp
- Arthurs\&Kelly (1965): model of joint measurement of position and momentum
- intuitive, but no concept of approximation
- 1980s: bringing together models and concepts of joint measurements; first realisations in quantum optics
- 1990s: first attempts at systematic formulations of quantum measurement error and model-independent, universal measurement uncertainty relations (mainly Appleby, Ozawa)
- since 2004: Ozawa inequality; controversy over the question of the "correct" quantum version of Gauss root-mean-square (rms) error
- since 2012: new measurement uncertainty relations, new experiments

Measurement Statistics - Observables as POVMs

$[\pi] \sim \rho, \quad[\sigma] \sim \mathrm{E}=\left\{\omega_{i} \mapsto E_{i}\right\}: \quad p_{\pi}^{\sigma}\left(\omega_{i}\right)=\operatorname{tr}\left[\rho E_{i}\right]=p_{\rho}^{\mathrm{E}}\left(\omega_{i}\right)$
state: $\quad \rho: \mathcal{H} \rightarrow \mathcal{H}, \quad O \leq \rho \leq I, \quad \operatorname{tr}[\rho]=1$
effect: $\quad E: \mathcal{H} \rightarrow \mathcal{H}, \quad O \leq E \leq I$
POVM: $\quad \mathrm{E}=\left\{E_{1}, E_{2}, \cdots, E_{n}\right\}, \quad O \leq E_{i} \leq I, \quad \sum E_{i}=I$
state changes: instrument $\omega_{i}, \rho \rightarrow \mathcal{I}_{i}(\rho)$
measurement processes: measurement scheme $\mathcal{M}=\left\langle\mathcal{H}_{a}, \phi, U, Z_{a}\right\rangle$

General POVM

measurable space: (Ω, Σ)
observable: $\quad \mathrm{E}: \Sigma \rightarrow \mathcal{L}(\mathcal{H})$

$$
O \leq \mathrm{E}(X) \leq I, \quad \mathrm{E}(\emptyset)=O, \quad \mathrm{E}(\Omega)=I
$$

$$
\mathrm{E}\left(\cup_{k} X_{k}\right)=\sum_{k} \mathrm{E}\left(X_{k}\right) \text { for any disjoint sequence }\left(X_{k}\right)_{k \in \mathbb{N}}
$$

probability: $\quad p_{\rho}^{\mathrm{E}}(X)=\operatorname{tr}[\rho \mathrm{E}(X)]$

Instrument

$$
\Sigma \ni X \mapsto \mathcal{I}(X), \quad \mathcal{I}(X): \rho \mapsto \mathcal{I}(X)(\rho)
$$

induced/measured observable E :

$$
\mathcal{I} \rightsquigarrow \mathrm{E}: \quad X \mapsto \operatorname{tr}[\mathcal{I}(X)(\rho)] \equiv \operatorname{tr}[\rho \mathrm{E}(X)]
$$

Illustration: Heisenberg Effect

Theorem: No disturbance - no information

$$
\forall \rho: \mathcal{I}(\Omega)(\rho)=\rho \quad \Longrightarrow \forall \rho, \rho^{\prime} \forall X \in \Sigma: \operatorname{tr}[\mathcal{I}(X)(\rho)]=\operatorname{tr}\left[\mathcal{I}(X)\left(\rho^{\prime}\right)\right]
$$

Measured observable is trivial:

$$
\forall \rho, \rho^{\prime}, X: \operatorname{tr}[\rho \mathrm{E}(X)]=\operatorname{tr}\left[\rho^{\prime} \mathrm{E}(X)\right] \quad \Longleftrightarrow \quad \forall X \in \Sigma: \mathrm{E}(X)=\mu(X) I
$$

Here μ is a fixed probability measure on (Ω, Σ).

Proof: No disturbance - no information

Assume $\mathcal{I}(\Omega)(P[\varphi])=P[\varphi]$. Then
$\mathcal{I}(X)(P[\varphi])+\mathcal{I}\left(X^{c}\right)(P[\varphi])=P[\varphi], \quad$ therefore $\mathcal{I}(X)(P[\varphi])=\mathrm{E}_{\varphi}(X) P[\varphi]$
Show next: $\mathrm{E}_{\varphi}(X)=\mathrm{E}_{\psi}(X)$ for any states φ, ψ.
First, consider $\varphi \perp \psi$.
Take $\xi, \eta \in[\varphi, \psi], \xi \not \perp \varphi, \psi$ and $\eta \perp \xi$
Then $P[\varphi]+P[\psi]=P[\xi]+P[\eta]$ and so

$$
\mathrm{E}_{\varphi}(X) P[\varphi]+\mathrm{E}_{\psi}(X) P[\psi]=\mathrm{E}_{\xi}(X) P[\xi]+\mathrm{E}_{\eta}(X) P[\eta]
$$

Uniqueness of spectral decomposition \Rightarrow spectrum degenerate:
$\mathrm{E}_{\varphi}(X)=\mathrm{E}_{\psi}(X)=\mathrm{E}_{\xi}(X)=\mathrm{E}_{\eta}(X)$.
Thus, given any φ, for all $\psi \perp \varphi: \quad \mathrm{E}_{\psi}(X)=\mathrm{E}_{\varphi}(X)$.
This extends to all $\xi \not \perp \varphi$.
Hence $X \mapsto \mathrm{E}_{\varphi}(X) \equiv \lambda(X)$ is a constant probability measure.
Also, $\mathcal{I}(X)(P[\varphi])=\lambda(X) P[\varphi] . \quad$ Q.E.D.

Example: constant channel instrument

$$
\rho \rightarrow \mathcal{I}_{\rho_{0}}^{\mathrm{C}}(X)(\rho)=\operatorname{tr}[\rho \mathrm{C}(X)] \rho_{0}
$$

Resulting disturbance: any observable B turned into a trivial observable B^{\prime} :

$$
\operatorname{tr}\left[\rho \mathrm{B}^{\prime}(Y)\right]=\operatorname{tr}\left[\rho \mathcal{I}_{\rho_{0}}^{\mathrm{C}}(\Omega)^{*}(\mathrm{~B}(Y))\right]=\operatorname{tr}\left[\rho_{0} \mathrm{~B}(Y)\right]
$$

for all Y, so that $\mathrm{B}^{\prime}(Y)=\mathrm{B}_{\rho_{0}}(Y) I$.

Measurement Scheme

$$
\mathcal{M}=\left\langle\mathcal{H}_{a}, \phi, U, Z_{a}\right\rangle
$$

$$
\begin{aligned}
\operatorname{tr}\left[(\rho \otimes \sigma) U^{*}(B \otimes \mathbf{Z}(X)) U\right] & =\operatorname{tr}[\mathcal{I}(X)(\rho) B] \\
\operatorname{tr}\left[(\rho \otimes \sigma) U^{*}(I \otimes Z(X)) U\right] & =\operatorname{tr}[\rho \mathrm{E}(X)]
\end{aligned}
$$

Hence:

$$
\mathcal{M} \rightsquigarrow \mathcal{I} \rightsquigarrow E
$$

Exampe: SWAP

$$
\begin{aligned}
& \mathcal{H}_{a}=\mathcal{H}, \quad U=\text { SWAP }, \quad Z=\mathrm{E} \\
& \operatorname{tr}\left[(\rho \otimes \sigma) U^{*}(B \otimes \mathrm{E}(X)) U\right]=\operatorname{tr}[\mathcal{I}(X)(\rho) B]=\operatorname{tr}[\sigma B] \operatorname{tr}[\rho \mathrm{E}(X)] \\
& \text { i.e., } \mathcal{I}(X)(\rho)=\operatorname{tr}[\rho \mathrm{E}(X)] \sigma \\
& \operatorname{tr}\left[(\rho \otimes \sigma) U^{*}(I \otimes \mathrm{E}(X)) U\right]=\operatorname{tr}[\rho \mathrm{E}(X)]
\end{aligned}
$$

Signature of an observable: its statistics

$$
p_{\rho}^{\mathrm{C}}=p_{\rho}^{\mathrm{A}} \quad \text { for all } \rho \quad \Longleftrightarrow \mathrm{C}=\mathrm{A}
$$

Minimal indicator for a measurement of C to be a good approximate measurement of A :

$$
p_{\rho}^{\mathrm{C}} \simeq p_{\rho}^{\mathrm{A}} \quad \text { for all } \rho
$$

Unbiased approximation - absence of systematic error:

$$
\mathrm{C}[1]=\sum_{j} c_{j} C_{j}=\mathrm{A}[1]=\sum_{i} a_{i} A_{i}=A
$$

$\ldots \mathrm{C}[1]=\mathrm{A}[1]$ is often taken as sole criterion for a good measurement
... but equality of all moments required for exact measurement: $\mathrm{C}[k]=\mathrm{A}[k]$

Joint Measurability/Compatibility

Definition: joint measurability (compatibility)
Observables $\mathrm{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}, \quad \mathrm{D}=\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$ are jointly measurable
if they are margins of an observable $G=\left\{G_{k \ell}\right\}$:

$$
\begin{aligned}
C_{k}=\sum_{\ell} G_{k \ell}, & D_{\ell}=\sum_{k} G_{k \ell} \\
\mathrm{C}(X)=\mathrm{G}\left(X \times \Omega_{2}\right), & \mathrm{D}(Y)=\mathrm{G}\left(\Omega_{1} \times Y\right)
\end{aligned}
$$

Compatibility

Theorem

If one of C, D is sharp (projection valued), then these observables are jointly measurable iff they commute:

$$
\left[C_{k}, D_{\ell}\right]=0
$$

and the joint observable G is uniquely determined:

$$
G_{k \ell}=C_{k} D_{\ell}
$$

Joint measurability in general

Pairs of unsharp observables may be jointly measurable - even when they do not commute!

Example: compatibility by smearing

C, D - discrete observables, $\Omega_{j}=\left\{1,2, \ldots, N_{j}\right\}, \Sigma_{j}=\mathbf{2}^{\Omega_{j}}, j=1,2$
$\mathrm{C}(\{k\}) \equiv C_{k}, \mathrm{D}(\{\ell\}) \equiv D_{\ell} \quad \sum_{k} C_{k}=I=\sum_{\ell} D_{\ell}$
$p_{k} \geq 0, q_{\ell} \geq 0, \quad \sum_{k} p_{k}=1=\sum_{\ell} q_{\ell}$
$\mathrm{C}^{(\lambda)}, \mathrm{D}^{(\mu)} \quad(\lambda, \mu \in[0,1]):$

$$
C_{k}^{(\lambda)}=\lambda C_{k}+(1-\lambda) p_{k} I, \quad D_{\ell}^{(\mu)}=\mu D_{\ell}+(1-\mu) q_{\ell} I
$$

$\mathrm{C}^{(\lambda)}, \mathrm{D}^{(\mu)}$ are jointly measurable if $\lambda+\mu \leq 1$.
Proof: $G=\left\{G_{k \ell}\right\}$ is a joint observable, where

$$
G_{k \ell}=\lambda C_{k} q_{\ell}+\mu D_{\ell} p_{k}+(1-\lambda-\mu) p_{k} q_{\ell}
$$

Compatibility - some results

Proposition

If C, D and $\mathrm{C}^{\prime}, \mathrm{D}^{\prime}$ are compatible pairs of observables, then $\widetilde{\mathrm{C}}=\lambda \mathrm{C}+(1-\lambda) \mathrm{C}^{\prime}$ and $\widetilde{\mathrm{D}}=\lambda \mathrm{D}+(1-\lambda) \mathrm{D}^{\prime}$ are compatible for any $\lambda \in[0,1]$.

Proof: if G, G^{\prime} are joint observables for C, D and C^{\prime}, D^{\prime}, respectively, then $\widetilde{G}=\lambda G+(1-\lambda) G^{\prime}$ is a joint observable for $\widetilde{C}, \widetilde{D}$.

Compatibility - some results

Proposition

If C, D are compatible, then $\mathrm{C}^{\prime}, \mathrm{D}^{\prime}$ are compatible, where $\mathrm{C}^{\prime}(X)=V \mathrm{C}(X) V^{*}, \mathrm{D}^{\prime}(X)=V \mathrm{D}(X) V^{*}$ and V is (anti-)unitary.

Proof: If G is a joint observable for C, D, then G^{\prime} is a joint observable for $\mathrm{C}^{\prime}, \mathrm{D}^{\prime}$, where $\mathrm{G}^{\prime}(Z)=V \mathrm{G}(Z) V^{*}$.

Approximate joint measurement: concept

joint observable
approximator observables (compatible)
target observable

Task: find suitable measures of approximation errors

Disturbance

Disturbance quantified as approximation error

PUR

Preparation Uncertainty Relations

PUR for Q, P

$$
x_{0}>0: \quad \frac{4 \hbar^{2}}{x_{0}^{2}}\left(\Delta_{\rho} Q\right)^{2}+x_{0}^{2}\left(\Delta_{\rho} P\right)^{2} \geq 2 \hbar^{2}
$$

(ground state of harmonic oscillator) $\mathbb{\imath}$

$$
\begin{aligned}
\left(\Delta_{\rho} Q\right)^{2}\left(\Delta_{\rho} P\right)^{2} & \geq \frac{\hbar^{2}}{4} \\
& \Uparrow \\
\frac{2 \hbar}{x_{0}} \Delta_{\rho} Q+x_{0} \Delta_{\rho} P & \geq 2 \hbar
\end{aligned}
$$

Proof: use $\quad \xi^{2}+\frac{1}{\xi^{2}}=\left(\xi-\frac{1}{\xi}\right)^{2}+2 \geq 2 \quad(\xi>0)$
$\Delta Q \Delta P \geq \frac{\hbar}{2} \Leftrightarrow\left(\frac{2 \hbar}{x_{0}} \Delta Q-x_{0} \Delta P\right)^{2}+4 \hbar \Delta Q \Delta P \geq 2 \hbar^{2}$
for " \Leftarrow " use $\quad Q \rightarrow \lambda Q, \quad P \rightarrow \frac{1}{\lambda} P$

PUR in general

Important observation
For bounded observables A, B, the standard PUR
$\Delta_{\rho} A \Delta_{\rho} B \geq \frac{1}{2}\left|\langle[A, B]\rangle_{\rho}\right|$ is not a strong constraint: the lower bound vanishes for (near) eigenstates.

Qubits

$\boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ (Pauli matrices acting on $\left.\mathbb{C}^{2}\right)$

- States: $\rho=\frac{1}{2}(I+\boldsymbol{r} \cdot \boldsymbol{\sigma}), \quad|\boldsymbol{r}| \leq 1$
- Effects: $A=\frac{1}{2}\left(a_{0} I+\boldsymbol{a} \cdot \boldsymbol{\sigma}\right) \in[O, I], \quad 0 \leq \frac{1}{2}\left(a_{0} \pm|\boldsymbol{a}|\right) \leq 1$
- observables: $(\Omega=\{+1,-1\})$

$$
\begin{aligned}
& \mathrm{A}: \pm 1 \mapsto A_{ \pm}=\frac{1}{2}(I \pm \boldsymbol{a} \cdot \boldsymbol{\sigma}) \quad|\boldsymbol{a}|=1 \\
& \mathrm{~B}: \pm 1 \mapsto B_{ \pm}=\frac{1}{2}(I \pm \mathbf{b} \cdot \boldsymbol{\sigma}) \quad|\mathbf{b}|=1 \\
& \mathrm{C}: \pm 1 \mapsto C_{ \pm}=\frac{1}{2}(1 \pm \gamma) I \pm \frac{1}{2} \boldsymbol{c} \cdot \boldsymbol{\sigma} \quad|\gamma|+|\boldsymbol{c}| \leq 1 \\
& \mathrm{D}: \pm 1 \mapsto D_{ \pm}=\frac{1}{2}(1 \pm \delta) I \pm \frac{1}{2} \boldsymbol{d} \cdot \boldsymbol{\sigma} \quad|\delta|+|\boldsymbol{d}| \leq 1
\end{aligned}
$$

C symmetric (unbiased): $\gamma=0$
C sharp: $\gamma=0,|\boldsymbol{c}|=1 ; \quad \rightarrow \quad$ unsharpness: $U(C)^{2}=1-|\boldsymbol{c}|^{2}$

PUR for quit observables

$$
\begin{aligned}
& \sigma_{k}^{2}=I, \quad\left\langle\sigma_{k}\right\rangle_{\rho}=r_{k}, \quad \rho=\frac{1}{2}(I+\boldsymbol{r} \cdot \boldsymbol{\sigma}), \quad \boldsymbol{r}=\left(r_{1}, r_{2}, r_{3}\right) \\
&\left(\Delta_{\rho} \sigma_{1}\right)^{2}\left(\Delta_{\rho} \sigma_{2}\right)^{2} \geq \frac{1}{4}\left|\left\langle\left[\sigma_{1}, \sigma_{2}\right]\right\rangle_{\rho}\right|^{2}+\frac{1}{4}\left(\left\langle\sigma_{1} \sigma_{2}+\sigma_{2} \sigma_{1}\right\rangle_{\rho}-2\left\langle\sigma_{1}\right\rangle\left\langle\sigma_{2}\right\rangle_{\rho}\right)^{2} \\
& \Uparrow \\
&\left(1-\left\langle\sigma_{1}\right\rangle_{\rho}\right)^{2}\left(1-\left\langle\sigma_{2}\right\rangle_{\rho}\right)^{2} \geq\left\langle\sigma_{3}\right\rangle_{\rho}^{2}+\left\langle\sigma_{1}\right\rangle_{\rho}^{2}\left\langle\sigma_{2}\right\rangle_{\rho}^{2} \\
& \mathbb{\sharp} \\
&\left\langle\sigma_{1}\right\rangle_{\rho}^{2}+\left\langle\sigma_{2}\right\rangle_{\rho}^{2}+\left\langle\sigma_{3}\right\rangle_{\rho}^{2}=|\boldsymbol{r}|^{2} \leq 1 \quad(\rho \geq 0) \\
& \mathbb{\sharp} \\
&\left(\Delta_{\rho} \sigma_{1}\right)^{2}+\left(\Delta_{\rho} \sigma_{2}\right)^{2}+\left(\Delta_{\rho} \sigma_{3}\right)^{2} \geq 2 \\
& \Downarrow \\
&\left(\Delta_{\rho} \sigma_{1}\right)^{2}+\left(\Delta_{\rho} \sigma_{2}\right)^{2} \geq 1
\end{aligned}
$$

Preparation uncertainty for qubits - continued

$$
A=\boldsymbol{a} \cdot \boldsymbol{\sigma}, \quad B=\mathbf{b} \cdot \boldsymbol{\sigma}, \quad|\mathbf{a}|=|\mathbf{b}|=1
$$

$$
\begin{aligned}
\left(\Delta_{\rho} A\right)^{2}+\left(\Delta_{\rho} B\right)^{2} & \geq 1-|\mathbf{a} \cdot \mathbf{b}|=1-\sqrt{1-|\mathbf{a} \times \mathbf{b}|^{2}} \\
& =1-\sqrt{1-\|[A, B]\|^{2}}
\end{aligned}
$$

$$
\text { L.H.S. } \geq|\hat{\boldsymbol{r}} \times \mathbf{a}|^{2}+|\hat{\boldsymbol{r}} \times \mathbf{b}|^{2}, \quad \hat{\boldsymbol{r}}=\boldsymbol{r} /|\boldsymbol{r}| \quad(\boldsymbol{r} \neq \mathbf{0})
$$

Tight bound, attained at $\boldsymbol{r}=(\boldsymbol{a} \pm \mathbf{b}) /|\boldsymbol{a} \pm \mathbf{b}|$ if $\mathbf{a} \cdot \mathbf{b} \geq 0$ and ≤ 0, resp.

$$
\Delta_{\rho} A+\Delta_{\rho} B \geq|\mathbf{a} \times \mathbf{b}|=\|[A, B]\| .
$$

$$
\text { L.H.S. } \geq|\hat{r} \times \mathbf{a}|+|\hat{r} \times \mathbf{b}|, \quad \hat{r}=\boldsymbol{r} /|\boldsymbol{r}| \quad(\boldsymbol{r} \neq \mathbf{0})
$$

Tight bound, attained at $\boldsymbol{r}= \pm \boldsymbol{a}$ or $\boldsymbol{r}= \pm \mathbf{b}$.

Preparation uncertainty for qubits - which inequality?

Problem: Uncertainty region

Characterise the region of points with coordinates $(\Delta A, \Delta B) \in \mathbb{R}^{+} \times \mathbb{R}^{+}$ such that $\Delta A=\Delta_{\rho} A$ and $\Delta B=\Delta_{\rho} B$: the uncertainty region of A, B.

Particularly: find the "lower boundary curve" of the uncertainty region.
Thus, given $\Delta A=\Delta_{\rho} A$, find ρ^{*} such that

$$
\Delta_{\rho^{*}} B=\min \left\{\Delta_{\rho^{\prime}} B: \mid \Delta_{\rho^{\prime}} A=\Delta_{\rho} A\right\}
$$

Note: $\Delta_{\rho} A \Delta_{\rho} B \geq \frac{1}{2}\left|\langle[A, B]\rangle_{\rho}\right|$ doesn't help...

Preparation uncertainty for qubits - uncertainty region

Solution

$$
\begin{gathered}
\theta=\alpha+\beta \\
\arcsin |\mathbf{a} \times \mathbf{b}|=\arcsin |\mathbf{r} \times \mathbf{a}|+\arcsin |\mathbf{r} \times \mathbf{b}| \\
\Delta_{\rho} A \geq|\hat{\boldsymbol{r}} \times \mathbf{a}|, \quad \Delta_{\rho} B \geq|\hat{\boldsymbol{r}} \times \mathbf{b}| \\
\Delta_{\rho} A \sqrt{1-\left(\Delta_{\rho} B\right)^{2}}+\Delta_{\rho} B \sqrt{1-\left(\Delta_{\rho} A\right)^{2}} \geq\|[A, B]\|
\end{gathered}
$$

$$
\begin{aligned}
|\mathbf{a} \cdot \mathbf{b}|=\frac{1}{\sqrt{2}}: \quad x+y & \geq \frac{1}{\sqrt{2}}(=|\mathbf{a} \times \mathbf{b}|) \\
x^{2}+y^{2} & \geq 1-\frac{1}{\sqrt{2}}(=1-|\mathbf{a} \cdot \mathbf{b}|) \\
x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}} & \geq \frac{1}{\sqrt{2}}(=|\mathbf{a} \times \mathbf{b}|)
\end{aligned}
$$

Compatibility

Compatibility of Qubit Effects

Compatibility of C, D

Symmetric case (sufficient for optimal compatible approximations): $C_{ \pm}=\frac{1}{2}(I \pm \boldsymbol{c} \cdot \boldsymbol{\sigma}), D_{ \pm}=\frac{1}{2}(I \pm \boldsymbol{d} \cdot \boldsymbol{\sigma})$

Proposition

$\mathrm{C}=\left\{C_{ \pm}=\frac{1}{2}(I \pm \boldsymbol{c} \cdot \boldsymbol{\sigma})\right\}, \mathrm{D}=\left\{D_{ \pm}=\frac{1}{2}(I \pm \boldsymbol{d} \cdot \boldsymbol{\sigma})\right\}$ are compatible if and only if

$$
|\boldsymbol{c}+\boldsymbol{d}|+|\boldsymbol{c}-\boldsymbol{d}| \leq 2
$$

Interpretation: unsharpness $U(C)^{2}=1-|\boldsymbol{c}|^{2} ;|\boldsymbol{c} \times \boldsymbol{d}|=2\left\|\left[C_{+}, D_{+}\right]\right\|$

$$
|\boldsymbol{c}+\boldsymbol{d}|+|\boldsymbol{c}-\boldsymbol{d}| \leq 2 \Leftrightarrow\left(1-|\boldsymbol{c}|^{2}\right)\left(1-|\boldsymbol{d}|^{2}\right) \geq|\boldsymbol{c} \times \boldsymbol{d}|^{2}
$$

C, D compatible $\Leftrightarrow U(C)^{2} \times U(D)^{2} \geq 4\left\|\left[C_{+}, D_{+}\right]\right\|^{2}$

Qubit compatibility: example

Take $\boldsymbol{c} \perp \boldsymbol{d}$:
C, D compatible $\Longleftrightarrow|\boldsymbol{d}|^{2}+|\boldsymbol{d}|^{2} \leq 1 \Longleftrightarrow U(C)^{2}+U(D)^{2} \geq 1$
$|\boldsymbol{c}|=|\boldsymbol{d}|=\lambda:$
$C_{ \pm}=\frac{1}{2}(I \pm \boldsymbol{c} \cdot \boldsymbol{\sigma})=\lambda \frac{1}{2}(I \pm \hat{\boldsymbol{c}} \cdot \boldsymbol{\sigma})+(1-\lambda) \frac{1}{2} I$
$D_{ \pm}=\frac{1}{2}(I \pm \boldsymbol{d} \cdot \boldsymbol{\sigma})=\lambda \frac{1}{2}(I \pm \hat{\boldsymbol{d}} \cdot \boldsymbol{\sigma})+(1-\lambda) \frac{1}{2} I$
C, D compatible iff $\lambda \leq 1 / \sqrt{2}$: degree of incompatibility

Qubit compatibility: proof

C, D with $C_{+}=\frac{1}{2}\left(c_{0} I+\boldsymbol{c} \cdot \sigma\right), D_{+}=\frac{1}{2}\left(d_{0} I+\boldsymbol{d} \cdot \boldsymbol{\sigma}\right)$ are jointly measurable iff \exists observable: $G=\left\{G_{++}, G_{+-}, G_{-+}, G_{--}\right\}$such that

$$
C_{k}=G_{k+}+G_{k-}, \quad D_{\ell}=G_{+\ell}+G_{-\ell}
$$

$$
\begin{aligned}
& \text { iff } \exists G=\frac{1}{2}(g l+\mathbf{g} \cdot \boldsymbol{\sigma}) \text { : } \\
& \qquad \begin{array}{l}
\left(G_{++}=\right) G \geq 0 \\
\left(G_{+-}=\right) C_{+}-G \geq 0, \\
\\
\left(G_{-+}=\right) D_{+}-G \geq 0, \\
\\
\left(G_{--}=\right) I-C_{+}-D_{+}+G \geq 0
\end{array}
\end{aligned}
$$

Qubit compatibility: proof continued

Thus:
C, D compatible iff $\exists G=\frac{1}{2}\left(g_{0} I+\boldsymbol{g} \cdot \boldsymbol{\sigma}\right)\left(=G_{++}\right)$:

$$
\begin{aligned}
& G \geq O, \quad C_{+}-G\left(=G_{+-}\right) \geq 0, \quad D_{+}-G\left(=G_{-+}\right) \geq 0, \\
& I-C_{+}-D_{+}+G\left(=G_{--}\right) \geq 0
\end{aligned}
$$

iff $\exists g_{0}, \boldsymbol{g}$:

$$
\begin{aligned}
& |\boldsymbol{g}| \leq g_{0}, \quad|\boldsymbol{c}-\boldsymbol{g}| \leq c_{0}-g_{0}, \quad|\boldsymbol{d}-\boldsymbol{g}| \leq d_{0}-g_{0} \\
& |\boldsymbol{c}+\boldsymbol{d}-\boldsymbol{g}| \leq 2+g_{0}-c_{0}-d_{0}
\end{aligned}
$$

iff $\exists g_{0}$:

$$
B_{g_{0}}(\mathbf{0}) \cap B_{c_{0}-g_{0}}(\boldsymbol{c}) \cap B_{d_{0}-g_{0}}(\boldsymbol{d}) \cap B_{2+g_{0}-c_{0}-d_{0}}(\boldsymbol{c}+\boldsymbol{d}) \neq \emptyset
$$

Qubit compatibility: proof continued

Necessary: diagonally opposite balls must intersect

$$
|\boldsymbol{c}+\boldsymbol{d}| \leq 2+2 g_{0}-c_{0}-d_{0}, \quad|\boldsymbol{c}-\boldsymbol{d}| \leq c_{0}+d_{0}-2 g_{0}
$$

and therefore

$$
|\boldsymbol{c}+\boldsymbol{d}|+|\boldsymbol{c}-\boldsymbol{d}| \leq 2
$$

... which is in fact equivalent to

$$
|\boldsymbol{c}+\boldsymbol{d}| \leq 1+\boldsymbol{c} \cdot \boldsymbol{d} \leq 2-|\boldsymbol{c}-\boldsymbol{d}|
$$

(as well as)

$$
|\boldsymbol{c}-\boldsymbol{d}| \leq 1-\boldsymbol{c} \cdot \boldsymbol{d} \leq 2-|\boldsymbol{c}+\boldsymbol{d}|
$$

Qubit compatibility: proof completed

Special case $C_{ \pm}=\frac{1}{2}(I \pm \boldsymbol{c} \cdot \boldsymbol{\sigma}), D_{ \pm}=\frac{1}{2}(I \pm \boldsymbol{d} \cdot \boldsymbol{\sigma}), c_{0}=d_{0}=1$:
Given (\star), choose $g_{0}=\frac{1}{2}(1+\boldsymbol{c} \cdot \boldsymbol{d}), \boldsymbol{g}=\frac{1}{2}(\boldsymbol{c}+\boldsymbol{d})$, then $G=\left\{G_{k \ell}\right\}$ is a joint observable, where

$$
G_{k \ell}=\frac{1}{4}[(1+k \ell \boldsymbol{c} \cdot \boldsymbol{d}) I+(k \boldsymbol{c}+\ell \boldsymbol{d}) \cdot \boldsymbol{\sigma}]
$$

Positivity: $G_{k \ell} \geq O \Longleftrightarrow(\star \star)$.
This proves sufficiency of (\star) for the special case. Q.E.D.

Approximate Joint Measurements

Approximation error for qubits: probabilistic distance

Consider observables A, C on (Ω, Σ). Idea:
C is a good approximation to A if the probability distributions $p_{\rho}^{\mathrm{C}}, p_{\rho}^{\mathrm{A}}$ are similar for all states ρ.
Quantify this with some choice of metric or any other suitable measure of error.
Take here:

$$
d_{p}(\mathrm{C}, \mathrm{~A})=\sup _{\rho} \sup _{X}|\operatorname{tr}[\rho \mathrm{C}(X)]-\operatorname{tr}[\rho \mathrm{A}(X)]|=\sup _{X}\|\mathrm{C}(X)-\mathrm{A}(X)\|
$$

Qubit case: $C_{+}=\frac{1}{2}\left(c_{0} I+\boldsymbol{c} \cdot \boldsymbol{\sigma}\right), A_{+}=\frac{1}{2}\left(a_{0} I+\boldsymbol{a} \cdot \boldsymbol{\sigma}\right)$

$$
d_{p}(\mathrm{C}, \mathrm{~A})=\left\|C_{+}-A_{+}\right\|=\frac{1}{2}\left|c_{0}-a_{0}\right|+\frac{1}{2}|\boldsymbol{c}-\boldsymbol{a}| \in[0,1] .
$$

Comparison : Measurement noise (Ozawa et al)

$$
\begin{aligned}
\varepsilon(\mathrm{C}, \mathrm{~A} ; \varphi)^{2} & =\left\langle\varphi \otimes \phi \mid\left(Z_{\tau}-A\right)^{2} \varphi \otimes \phi\right\rangle \\
& =\left\langle\mathrm{C}[2]-\mathrm{C}[1]^{2}\right\rangle_{\rho}+\left\langle(\mathrm{C}[1]-A)^{2}\right\rangle_{\rho} \equiv \varepsilon_{a}^{2}
\end{aligned}
$$

Qubit observables, symmetric case:

$$
\varepsilon_{a}^{2}=1-|\boldsymbol{c}|^{2}+|\boldsymbol{a}-\boldsymbol{c}|^{2}=U(\mathrm{C})^{2}+4 d_{a}^{2}
$$

$\varepsilon(\mathrm{A} ; \rho)$ double counts contribution from unsharpness.
(More on Measurement Noise ("Ozawa's error") tomorrow ...)

Measurement Uncertainty Relations

Optimising approximate joint measurements

Goal

To make errors $d_{\mathrm{A}}=d_{p}(\mathrm{C}, \mathrm{A}), d_{\mathrm{B}}=d_{p}(\mathrm{D}, \mathrm{B})$ simultaneously as small as possible subject to the constraint that C, D are compatible.

Admissible error region

$$
\sin \theta=|\boldsymbol{a} \times \mathbf{b}|
$$

$\left(d_{\mathrm{A}}, d_{\mathrm{B}}\right)=\left(d_{p}(\mathrm{C}, \mathrm{A}), d_{p}(\mathrm{D}, \mathrm{B})\right) \in\left[0, \frac{1}{2}\right] \times\left[0, \frac{1}{2}\right]$ with C, D compatible
trivial approximations: $C_{+}=\gamma I, D_{+}=\delta /$;
then $d_{\mathrm{A}}=\max (\gamma, 1-\gamma) \geq \frac{1}{2}, d_{\mathrm{B}}=\max (\delta, 1-\delta) \geq \frac{1}{2}$

Optimisation - Step 1: symmetric approximators

Given: C, D, $\quad C_{ \pm}=\frac{1}{2}(1 \pm \gamma) / \pm \frac{1}{2} \boldsymbol{c} \cdot \boldsymbol{\sigma}, D_{ \pm}=\ldots$
Take T antiunitary: $T \sigma_{k} T^{*}=-\sigma_{k}$

$$
C_{ \pm}^{\prime}=T C_{\mp} T^{*}=\frac{1}{2}(1 \mp \gamma) I \pm \frac{1}{2} \boldsymbol{c} \cdot \boldsymbol{\sigma}, D_{ \pm}^{\prime}=\ldots
$$

C, D compatible, with joint observable $\left\{G_{k \ell}\right\}$
$\Longrightarrow \mathrm{C}^{\prime}, \mathrm{D}^{\prime}$ compatible, with joint observable $\left\{G_{k \ell}^{\prime}=T G_{-k,-\ell} T^{*}\right\}$
$\Longrightarrow \tilde{\mathrm{C}}, \tilde{\mathrm{D}}$ compatible, where

$$
\begin{gathered}
\tilde{C}_{ \pm}=\frac{1}{2}\left(C_{ \pm}+C_{ \pm}^{\prime}\right)=\frac{1}{2}(I \pm \boldsymbol{c} \cdot \boldsymbol{\sigma}), \quad \widetilde{D}_{ \pm}=\frac{1}{2}\left(D_{ \pm}+D_{ \pm}^{\prime}\right)=\frac{1}{2}(I \pm \boldsymbol{d} \cdot \boldsymbol{\sigma}) \\
d_{p}(\mathrm{C}, \mathrm{~A}) \geq d_{\rho}(\widetilde{\mathrm{C}}, \widetilde{\mathrm{~A}}) \quad d_{\rho}(\mathrm{D}, \mathrm{~B}) \geq d_{p}(\widetilde{\mathrm{D}}, \widetilde{\mathrm{~B}}) \\
{\left[\frac{1}{2}|\gamma|+\frac{1}{2}|\boldsymbol{c}-\boldsymbol{a}| \geq \frac{1}{2}|\boldsymbol{c}-\boldsymbol{a}|\right]}
\end{gathered}
$$

Optimisation - Step 2: planar approximators

$$
d_{p}(\widetilde{\mathrm{C}}, \mathrm{~A})=\frac{1}{2}\left|\frac{1}{2}\left(\boldsymbol{c}+\boldsymbol{c}^{\prime}\right)-\boldsymbol{a}\right| \leq \frac{1}{2}\left[d_{p}(\mathrm{C}, \mathrm{~A})+d_{p}\left(\mathrm{C}^{\prime}, \mathrm{A}\right)\right]=d_{p}(\mathrm{C}, \mathrm{~A})
$$

Optimisation - Step 3: symmetric constellation

$$
\begin{aligned}
d_{p}(\widetilde{\mathrm{C}}, \mathrm{~A})+d_{p}(\widetilde{\mathrm{D}}, \mathrm{~B}) & \leq \frac{1}{2}\left[d_{p}(\mathrm{C}, \mathrm{~A})+d_{p}\left(\mathrm{C}^{\prime}, \mathrm{A}\right)\right]+\frac{1}{2}\left[d_{p}(\mathrm{D}, \mathrm{~B})+d_{p}\left(\mathrm{D}^{\prime}, \mathrm{B}\right)\right] \\
& =d_{p}(\mathrm{C}, \mathrm{~A})+d_{p}(\mathrm{D}, \mathrm{~B})
\end{aligned}
$$

since $d_{p}\left(\mathrm{C}^{\prime}, \mathrm{A}\right)=d_{p}(\mathrm{D}, \mathrm{B})$ and $d_{p}\left(\mathrm{D}^{\prime}, \mathrm{B}\right)=d_{p}(\mathrm{C}, \mathrm{A})$

Optimisation - Step 4: optimal constellation

Constraint: compatibility $\frac{1}{2}|\boldsymbol{c}+\boldsymbol{d}|+\frac{1}{2}|\boldsymbol{c}-\boldsymbol{d}|=1$

$$
\begin{aligned}
d_{p}(\mathrm{C}, \mathrm{~A}) & +d_{p}(\mathrm{D}, \mathrm{~B})=\frac{1}{2}|\boldsymbol{c}-\boldsymbol{a}|+\frac{1}{2}|\boldsymbol{d}-\mathbf{b}| \\
& =\sqrt{2}\left[\frac{1}{2}|\boldsymbol{a}+\mathbf{b}|-\frac{1}{2}|\boldsymbol{c}+\boldsymbol{d}|\right]=\sqrt{2}\left[\frac{1}{2}|\boldsymbol{a}-\mathbf{b}|-\frac{1}{2}|\boldsymbol{c}-\boldsymbol{d}|\right] \\
& =\frac{1}{2 \sqrt{2}}[|\mathbf{a}+\mathbf{b}|+|\boldsymbol{a}-\mathbf{b}|-2]
\end{aligned}
$$

Main Result 1: A Simple Qubit MUR

$$
\sin \theta=|\mathbf{a} \times \mathbf{b}|
$$

$$
\begin{aligned}
&|\boldsymbol{c}+\boldsymbol{d}|+|\boldsymbol{c}-\boldsymbol{d}| \leq 2 \\
& U(\mathrm{C})^{2} \times U(\mathrm{D})^{2} \geq 4\left\|\left[C_{+}, D_{+}\right]\right\|^{2} \\
& d_{p}(\mathrm{C}, \mathrm{~A})+d_{p}(\mathrm{D}, \mathrm{~B}) \geq \frac{1}{2 \sqrt{2}}[|\boldsymbol{a}+\mathbf{b}|+|\mathbf{a}-\mathbf{b}|-2] \\
&|\mathbf{a}+\mathbf{b}|+|\mathbf{a}-\mathbf{b}|=2 \sqrt{1+|\mathbf{a} \times \mathbf{b}|}=2 \sqrt{1+2\left\|\left[A_{+}, B_{+}\right]\right\|}
\end{aligned}
$$

Qubit Measurement Uncertainty: Tight Boundary Curve

Qubit Measurement Uncertainty: Boundary Curve

 PB \& T Heinosaari (2008), S Yu and CH Oh (2014)Optimiser, case $\boldsymbol{a} \perp \mathbf{b}$:

$$
\begin{aligned}
& \boldsymbol{c}=|\boldsymbol{c}| \boldsymbol{a}, \quad \boldsymbol{d}=|\boldsymbol{d}| \mathbf{b}, \\
& 2 d_{a}=|\boldsymbol{a}-\boldsymbol{c}|=1-|\boldsymbol{c}|, \\
& 2 d_{b}=|\mathbf{b}-\boldsymbol{d}|=1-|\boldsymbol{d}|,
\end{aligned}
$$

Compatibility constraint:
$|\boldsymbol{c}|^{2}+|\boldsymbol{d}|^{2}=1$, i.e., $U(C)^{2}+U(D)^{2}=1$
$\left(1-2 d_{a}\right)^{2}+\left(1-2 d_{b}\right)^{2}=|\boldsymbol{c}|^{2}+|\boldsymbol{d}|^{2}=1$

Optimal Qubit Measurement Uncertainty: Proof

Task: minimise $|\mathbf{b}-\boldsymbol{d}|$ subject to $|\boldsymbol{a}-\boldsymbol{c}|$ fixed and $|\boldsymbol{c}+\boldsymbol{d}|+|\boldsymbol{c}-\boldsymbol{d}|=2$

$$
\nabla_{\boldsymbol{c}} F=0, \quad \nabla_{\boldsymbol{d}} F=0
$$

where $F=|\mathbf{b}-\boldsymbol{d}|+\lambda|\boldsymbol{a}-\boldsymbol{c}|+\mu(|\boldsymbol{c}+\boldsymbol{d}|+|\boldsymbol{c}-\boldsymbol{d}|)$

$$
\left.\begin{array}{rl}
\boldsymbol{a} & -\boldsymbol{c}
\end{array}\right) \frac{\boldsymbol{c}+\boldsymbol{d}}{|\boldsymbol{c}+\boldsymbol{d}|}+\frac{\boldsymbol{c}-\boldsymbol{d}}{|\boldsymbol{c}-\boldsymbol{d}|},
$$

Optimal Qubit Measurement Uncertainty: Proof completed

Hence, optimising joint measurement is given by

$$
\boldsymbol{c}=|\boldsymbol{c}| \mathbf{a} \perp \boldsymbol{d}=|\boldsymbol{d}| \mathbf{b}
$$

and the compatibility constraint becomes: $|\boldsymbol{c}|^{2}+|\boldsymbol{d}|^{2}=1$.
Considering that

$$
2 d_{a}=|\boldsymbol{a}-\boldsymbol{c}|=1-|\boldsymbol{c}|, \quad 2 d_{b}=|\mathbf{b}-\boldsymbol{d}|=1-|\boldsymbol{d}|
$$

this translates into the following equation for the optimal boundary curve of the admissible joint measurement error region:

$$
\left(2 d_{a}-1\right)^{2}+\left(2 d_{b}-1\right)^{2}=1
$$

and the region itself is given by

$$
\left(2 d_{a}-1\right)^{2}+\left(2 d_{b}-1\right)^{2} \leq 1 \quad \text { or } d_{a} \geq \frac{1}{2} \quad \text { or } d_{b} \geq \frac{1}{2}
$$

Result: Qubit Measurement Uncertainty - Admissible Region

PB \& T Heinosaari (2008), S Yu and CH Oh (2014)

Optimiser, case $\mathbf{a} \perp \mathbf{b}$:
$\boldsymbol{c}=|\boldsymbol{c}| \mathbf{a}, \quad \boldsymbol{d}=|\boldsymbol{d}| \mathbf{b}$,
$2 d_{a}=|\boldsymbol{a}-\boldsymbol{c}|=1-|\boldsymbol{c}|$,
$2 d_{b}=|\mathbf{b}-\boldsymbol{d}|=1-|\boldsymbol{d}|$,
Compatibility constraint:

$$
\begin{aligned}
& |\boldsymbol{c}|^{2}+|\boldsymbol{d}|^{2}=1, \quad \text { i.e., } U(\mathrm{C})^{2}+U(\mathrm{D})^{2}=1 \\
& \left(1-2 d_{a}\right)^{2}+\left(1-2 d_{b}\right)^{2}=|\boldsymbol{c}|^{2}+|\boldsymbol{d}|^{2}=1
\end{aligned}
$$

A lucky (?) accident

- The same optimiser configuration for $\boldsymbol{c}, \boldsymbol{d}$ also realises the tight boundary of an inequality due to C Branciard (2013), which is a refinement of Ozawa's inequality.
- Branciard's inequality has been confirmed experimentally.
- Hence these tests also confirm our qubit joint measurement error region.

More on this in tomorrow's lecture ...

Connection between MUR and PUR (for Qubits)

analogy with position-momentum case

Case $\boldsymbol{a} \perp \mathbf{b}$, optimal approximators $\boldsymbol{c}=|\boldsymbol{c}| \mathbf{a}, \boldsymbol{d}=|\boldsymbol{d}| \mathbf{b},|\boldsymbol{c}|^{2}+|\boldsymbol{d}|^{2}=1$:
Heisenberg-Weyl covariant joint observable

$$
\begin{aligned}
G_{k, \ell} & =\frac{1}{4}[I+(k \boldsymbol{c}+\ell \boldsymbol{d}) \cdot \boldsymbol{\sigma}] \\
G_{++} & =I G_{++} I^{*}, \\
G_{+-} & =(\boldsymbol{a} \cdot \boldsymbol{\sigma}) G_{++}(\boldsymbol{a} \cdot \boldsymbol{\sigma})^{*}, \\
G_{-+} & =(\mathbf{b} \cdot \boldsymbol{\sigma}) G_{++}(\mathbf{b} \cdot \boldsymbol{\sigma})^{*}, \\
G_{--} & =(\boldsymbol{a} \times \mathbf{b} \cdot \boldsymbol{\sigma}) G_{++}(\boldsymbol{a} \times \mathbf{b} \cdot \boldsymbol{\sigma})^{*} \\
G_{++} & =\frac{1}{4}[I+(\boldsymbol{c}+\boldsymbol{d}) \cdot \boldsymbol{\sigma}]=\frac{1}{2} \rho_{0}=\frac{1}{4}\left(I+\boldsymbol{r}_{0} \cdot \boldsymbol{\sigma}\right) \\
U_{g} G_{k, \ell} U_{g}^{*} & =G_{(k, \ell) g} \quad(\text { covariance })
\end{aligned}
$$

Connection between MUR and PUR (for Qubits)

Margins of covariant G

$$
\begin{gathered}
G_{k, \ell}=\frac{1}{4}[I+(k \boldsymbol{c}+\ell \boldsymbol{d}) \cdot \boldsymbol{\sigma}] \\
C_{k}=G_{k,+}+G_{k,-}=\frac{1}{2}(I+k \boldsymbol{c} \cdot \boldsymbol{\sigma}) \\
D_{\ell}=G_{+, \ell}+G_{-, \ell}=\frac{1}{2}(I+\ell \boldsymbol{d} \cdot \boldsymbol{\sigma})
\end{gathered}
$$

These realise the optimal error bound since

$$
2 d_{a}=|\boldsymbol{a}-\boldsymbol{c}|=1-|\boldsymbol{c}|, \quad 2 d_{b}=|\mathbf{b}-\boldsymbol{d}|=1-|\boldsymbol{d}|
$$

and therefore

$$
\left(2 d_{a}-1\right)^{2}+\left(2 d_{b}-1\right)^{2}=|\boldsymbol{c}|^{2}+|\boldsymbol{d}|^{2}=1
$$

Connection between MUR and PUR

\[

\]

Summary so far

Main Result 2: Qubit MUR according to QM

(joint measurement errors for $\mathrm{A}, \mathrm{B}) \geq$ (incompatibility of A, B) (unsharpness of compatible $\mathrm{C}, \mathrm{D}) \geq$ (noncommutativity of C, D)

Preparation uncertainty enforces measurement uncertainty!
Shown here for qubit observables.

MUR - Experiments

Measurement Noise and Weak Valued Probabilities

Lund \& Wiseman (NJP 2010)

$$
\begin{aligned}
\varepsilon(\mathrm{C}, \mathrm{~A} ; \rho)^{2} & =\left\langle\left(Z_{\tau}-A\right)^{2}\right\rangle_{\rho \otimes \sigma} \\
& =\left\langle\mathrm{C}[2]-\mathrm{C}[1]^{2}\right\rangle_{\rho}+\left\langle(\mathrm{C}[1]-A)^{2}\right\rangle_{\rho} \\
& =\iint(x-y)^{2} \operatorname{Re} \operatorname{tr}[\rho \mathrm{~A}(d x) \mathrm{C}(d y)] \\
& ={ }_{\text {com }, \text { disc }} \sum_{k, \ell}\left(a_{k}-a_{\ell}\right)^{2} \operatorname{tr}\left[\rho A_{k} C_{\ell}\right]
\end{aligned}
$$

bona fide probability if A, C commute

Lund-Wiseman weak measurement scheme

$A=Z=\sigma_{3}, \mathrm{C}=$ a smeared version of $A=Z$,
$B=X=\sigma_{1}, \mathrm{~B}^{\prime}=\mathrm{D}=$ a smeared version of $B=X$

Determination of $\eta(X)$.
Top wire: probe; bottom wire: measuring system;
middle wire: observed qubit.
The value of $\eta(X)$ can be extracted from the joint distribution of the initial and final X measurements, obtained by reading the outputs Z_{p} and X_{f}.

First realised by Toronto group (Rozema et al, PRL 2012).

Weak measurement scheme (continued)

Marginal observables:

$$
\begin{array}{cc}
Z_{p}: \quad P_{ \pm}=\frac{1}{2}\left[I \pm\left(2 \gamma^{2}-1\right) X\right] \\
\gamma \rightarrow \frac{1}{\sqrt{2}}: \text { weak measurement limit } \\
\gamma=1: \quad P_{ \pm}=B_{ \pm}=\frac{1}{2}(I \pm X) \\
X_{f}: & D_{ \pm}=\frac{1}{2}[\mathbb{I} \pm \sin (2 \theta) X] \\
Z_{m}: & C_{ \pm}=\frac{1}{2}\left[\mathbb{I} \pm 2 \gamma \gamma^{\prime} \cos (2 \theta) Z\right]
\end{array}
$$

Use operational probabilities $P_{k, \ell}=P\left(Z_{p}=k, X_{f}=\ell\right)$ to determine "weak-valued probabilities" a la Lund, Wiseman:

$$
\begin{gathered}
2 P_{W V}(\delta X= \pm 2)=P_{1, \pm 1}+P_{-1, \pm 1} \mp \frac{P_{1, \pm 1}-P_{-1, \pm 1}}{2 \gamma^{2}-1} \\
\eta(X)^{2}=\sum_{\delta x}(\delta x)^{2} P_{W V}(\delta x)=2-2 \sin (2 \theta)
\end{gathered}
$$

Weak measurement vs strong measurement

But: No need to use weak valued probabilities as B, D commute!

$$
\begin{aligned}
\sum_{k, \ell}\left(x_{k}-x_{\ell}\right)^{2} P_{k, \ell} & =4 P\left(Z_{p}=+1, X_{f}=-1\right)+4 P\left(Z_{p}=-1, X_{f}=+1\right) \\
& =2-2 \sin (2 \theta)\left(2 \gamma^{2}-1\right)
\end{aligned}
$$

$\gamma=1$ (strong measurement):
$\eta(X)^{2}=4 P\left(Z_{p}=+1, X_{f}=-1\right)+4 P\left(Z_{p}=-1, X_{f}=+1\right)=2-2 \sin (2 \theta)$
value comparison error

Conclusion

Summary

- MURs can be rigorously formalised and proven
- Care has to be taken with the definition of error measure to ensure reliable identification of optimal joint measurements
- In qubit case, measurement noise $\left(\varepsilon_{a}, \varepsilon_{b}\right)$ and probabilistic distances $\left(d_{a}, d_{b}\right)$ give almost consistent descriptions of optimal joint measurements
- Experimental tests of MURs for $\left(\varepsilon_{a}, \varepsilon_{b}\right)$ also confirm MURs for $\left(d_{a}, d_{b}\right)$

Outlook

- Much remains to be investigated, e.g., alternative measures of error
- Largely outstanding: generic MURs (obtained by T Miyadera (PRA 2011) for finite-dimensional systems, finite observables)
- Possible applications of MURs: e.g., quantum metrology

References/Acknowledgements

- PB (1986): Phys. Rev. D 33, 2253
- PB, T. Heinosaari (2008): Quantum Inf. \& Comput. 8, 797, arXiv:0706. 1415
- C. Branciard, PNAS 110 (2013) 6742, arXiv:1304. 2071
- PB, P. Lahti, R. Werner (2014): Phys. Rev. A 89, 012129, arXiv:1311.0837; Rev. Mod. Phys. 86, 1261, arXiv:1312.4393v2
- PB, N Stevens (2015): Phys. Rev. Lett. 114, 070402, arXiv:1407.7752v2
- S. Yu, C.H. Oh (2014): arXiv:1402.3785
- T. Bullock, PB (2015): in preparation
http://demonstrations.wolfram.com/HeisenbergTypeUncertaintyRelationForQubits/

