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OUTLINE

o Introduction: Heisenberg Uncertainty - Violated?

e Formalising measurement uncertainty — Why did it take so long?
e Quantum Measurement — Concepts

@ Preparation Uncertainty Relations (PUR)

e Compatibility of Qubit Effects

e Approximate joint measurements for sharp qubit observables

@ Measurement Uncertainty Relations for Qubits

e Qubit MUR — Experimental Confirmations

© Conclusion
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Plan:

Review the origins of Measurement Uncertainty Relations (MURs)
Review the controversy over the validity of MURs

Survey qubit measurement uncertainty

Scrutinise a failed attempt, interpret its experimental “confirmations”,
and confront it with a viable alternative
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Heisenberg 1927

Heisenberg microscope:

“Let g1 be the precision with which the value g is known (g is, say, the mean
error of q), therefore here the wavelength of the light. Let p; be the precision
with which the value p is determinable; that is, here, the discontinuous change of

p in the Compton effect. Then, according to the elementary laws of the Compton
effect p; and g; stand in the relation

pigqi ~ h. (1)

@ Makes clear reference to error and disturbance

@ Sketches proof of preparation uncertainty relation (PUR)
for the case of a Gaussian (minimum uncertainty) wave function

@ Makes informal reference to rms error as standard deviation (of
Q-distribution)

Paul Busch (York) Qubit Uncertainty Tutorial 4 /80



Introduction: Heisenberg Uncertainty - Violated?

Heisenberg 1927: three faces of quantum uncertainty

Preparation Uncertainty Relations (PUR), Measurement Uncertainty
Relations MUR

(WIDTH OF @ DISTRIBUTION) - (WIDTH OF P DISTRIBUTION) ~ h
(ERROR OF Q MEASUREMENT) - (ERROR OF P) ~ h

(ERROR OF Q MEASUREMENT) - (DISTURBANCE OF P) ~ h
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Introduction: Heisenberg Uncertainty - Violated?

Quantum uncertainty: immediate reaction

Wolfgang Pauli’s expression of the quantum pioneers’ worries concerning
QP — PQ = ik

“One may view the world with the p-eye
and one may view it with the g-eye
but if one opens both eyes simultaneously
then one gets crazy.”

Wolfgang Pauli in a letter to Werner Heisenberg, 19 Oct. 1926)
And on reading Heisenberg's 1927 paper:

“Day is dawning in quantum mechanics.” )
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PUR — early developments

o Kennard (1927), Weyl (1928) (p; = V2AP, g; = V2AQ)

h

piqi = o

@ Robertson (1929)
1
AAAB > S|([A.B)

@ Schrodinger (1931)

- 2 -
AB+BA ___ AB — BA
(AA?(AB)? > <+— ) +‘
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MUR - early denials

@ Popper 1934: precursor or EPR (rebuttal by von Weizsacker)

e Einstein, Podolsky, Rosen (EPR) 1935: use correlations to infer
simultaneous sharp values of @, P

o Park, Margenau 1967: time-of-flight determination of position and
momentum

@ Aharonov et al, since 1990: definite values of incompatible
observables between pre- and post-selection
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MUR - textbook wisdom

@ PUR and MUR are conflated; no reflection on how to define
measurement error/disturbance

@ PUR # MUR, hence claim no limitation on joint measurements
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MUR - recent challenges

Heisenberg according to Ozawa:

o
>
>
o
™
S
v

([A.Bl),

| (277)
(A B),

2 |
(A, p)n(B,p) > % | (777)

Heisenberg didn't actually state this ... and it is of limited validity

@ Ozawa was the first to propose formal definitions of measures of error
(A, p) and disturbance n(B, p)

@ Ozawa's correction of the above:

(A, p)n(B, p) + (A, p)A,B + ApAN(B, p) > 3[([A, Bl),|

Experimentally confirmed...
@ ... yet, further scrutiny is needed ...
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PUBLISHED ONLINE: 15 JANUARY 2012 | DOI: 10.1038/NPHYS2194.

Experimental demonstration of a universally
valid error-disturbance uncertainty relation

in spin measurements

Jacqueline Erhart', Stephan Sponar', Georg Sulyok’, Gerald Badurek', Masanao Ozawa’®

and Yuji Hasegawa'*

The uncertainty principle generally prohibits simultaneous
measurements of certain pairs of observables and forms the
basis of indeterminacy in quantum mechanics'. Heisenberg's
eriginal formulation, illustrated by the famous y-ray micro-
'scope, sets a lower bound for the product of the measurement
error and the disturbance®. Later, the uncertainty relation
was reformulated in terms of standard deviations®>, where
the focus was exclusively on th determinacy of predic-
tions, whereas the unavoidable recoil in measuring devices has
been ignored®. A correct formulation of the error-disturbance
uncertainty relation, taking recoil into account, is essential
for a deeper understanding of the uncertainty principle, as
Heisenberg's nr{ﬂnal relation is valid only under specific
. A new relation, derived
using the theory M general quantum measurements, has been
claimed to be universally valid™, Here, we report a neutron-
optical experiment that records the error of a spin-component
measurement as well as the disturbance caused on another
spin-component. The results confirm that both error and dis-
turb bey the new relation the old one in a wide
range of an experimental parameter.
The uncertainty relation v.as first proposed by Hexsenberg m
of

as o(A) = (¢|A%|¥) — (¥|A|¥)". Note that a positive definite
covariance term can beadded to the right-hand side of equation (2),
if squared, as discussed by Schrodinger’. For our experimental
setting, this term vanishes. Robertson’s relation {equation (2)) for
standard deviations has been confirmed by many different experi-
ments. In a single-slit diffraction experiment’ the uncertainty rela-
tion, as expressed in equation (2}, has been confirmed. A trade-off
relation appears in squeezing coherent states of radiation fields™,
and many experimental demonstrations have been carried out'”.

Robertson's relation (equation (2)) has a mathematical basis, but
has no immediate implications for limitations on measurements.
This relation is naturally understood as limitations on state
preparation or limitations on prediction from the past. On the
other hand, the proof of the reciprocal relation for the error e(A)
of an A measurement and the disturbance n{B) on observable B
caused by the measurement, in a general form of Heisenberg's
error-disturbance relation

()= JRYIABI) @

is not straightforward, as Heisenberg's proof' used an unjuppurltd
nssumpuon on LhE state just after LhE measurement”, despite

1927 as a limitation of si
conjugate variables owing to the back-action of the measurement:
the measurement of the pos‘uim Q of the electron with the error
€(Q), or ‘the mean error’, induces the disturbance 5(P), or ‘the

i change’, of the P so that they always
satisfy the relation

h
(P~ 5 m

successful for the Heisenberg-type relation for
unbiased joint measurements* ', Recently, rigorous and general
theoretical treatments of quantum measurements have revealed the
failure of Heisenberg’s relation (equation (1)), and derived a new
universally valid relation’ "~ given by

€(A)n(B)+¢{A)o (B)+o (A)n(B) zé\(m[a‘ By o
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Introduction: Heisenb ncertainty - Violated?

Recent media hype:

OEE e sen Nows

Spot  Wastr  Player

NEWS SCIENCE & ENVIRONMENT

2 EEEnUEs

Home World UK Engfand N, ireland

7 Septamber 2012 Lo

Heisenberg uncertainty principle stressed
in new test
By

Ploneering experiments have cast doubt on a founding idea of
the branch of physics called quantum mechanics.

Related Stories

ul Busch (York)

the end of quantum uncertainty?

Quantenphysik

Artikel  Bilder (3)  Lesermeinungen
e von Werner Heisenberg 1927
formulierte Unschirfebezichung

ist trota hrer Tiefgriindigkeit und

Abstraktheit das wohl bekannteste

Gesetz der Quantenphysik. Sie besagt

Vereinfacht, dass man nicht gleichzeitig

die Geschwindigkeit und den Ort etwa

cines Elektrons mit belicbiger

Pricision bestimmen kann. Fi die

Physics

Popularitit dieses Gesetzes hat vor.
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MUR — what does the theory (QM) tell us?

(combined joint measurement errors for A, B) > (incompatibility of A, B)
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MUR - why so long?

Formalising quantum measurement uncertainty:
why did it take so long?

Answer (in a nutshell)

@ Cauchy-Schwarz seemed to be the “end of it”
(and Heisenberg (1930) endorsed Kennard's version and proof)

o Lack of theory of approximate quantum measurements
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MUR - why so long?

Quantum uncertainty: some history

Textbook wisdom elaborated:

“The uncertainty principle has nothing to do with the errors in joint
measurements because ...

“The uncertainty relation is about preparations: spreads of distributions of
separate measurements.”

(and besides:)

“... joint measurements of noncommuting quantities are impossible.” )

(or alternatively:)

“... hence there are no limitations to joint measurements of noncommuting
quantities.”
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MUR - why so long?

Quantum uncertainty: some history

... preciseimprecise joint measurements of noncommuting quantities
are impossible. possible.

Needed:
@ notion of imprecise/approximate measurement

@ measure of error
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MUR — Why did it take so long: the long answer

@ Heisenberg (1927): uncertainty relations quantifying and lifting
incompatibility — explaining the positive possibility of approximate
joint measurements and cloud chamber trajectories.

@ von Neumann (1932): impossibility of joint measurements for
noncommuting quantities

e Wigner (1932): quasi-probability distribution on phase space (Wigner
function)
concrete confirmation /illustration of von Neumann's no-go theorem

@ Husimi (1940): positive phase space distributions (Q-function)
later identified as a Heisenberg-Weyl covariant POVM on phase space

o Naimark (1940) [then still Neumark]: semispectral measures, POVMs
general measurements
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MUR — Why did it take so long: the long answer

1960s: Ludwig, Davies&Lewis — POVMs in physics (quantum
foundations)

noncommuting observables may be jointly measurable — if they are
sufficiently unsharp

Arthurs&Kelly (1965): model of joint measurement of position and
momentum

— intuitive, but no concept of approximation

1980s: bringing together models and concepts of joint measurements;
first realisations in quantum optics

1990s: first attempts at systematic formulations of quantum
measurement error and model-independent, universal measurement
uncertainty relations (mainly Appleby, Ozawa)

since 2004: Ozawa inequality; controversy over the question of the
“correct” quantum version of Gauss root-mean-square (rms) error
since 2012: new measurement uncertainty relations, new experiments
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Quantum Measurement — Concepts

Measurement Statistics — Observables as POVMs

T | —| o | —7 polw)=—

preparation measurement registration  statistics

[r]~p. [o]~E={wi= E}:  pI(wi) = trloE] = p,(wi)
state : pH—-H, O<p<I trlp]=1

effect : E-H—-H, O<ELI

POVM : E={E,E, - ,E}, O<E<I, Y E=I
state changes: instrument wj, p — Zi(p)

measurement processes: measurement scheme M = (H,, ¢, U, Z,)

Paul Busch (York) Qubit Uncertainty Tutorial
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General POVM

measurable space: (Q,X)
observable: E: ¥ — L(H)
O<EX)<I EW®) =0, EQ)=I
E(UkXk) = > (E(Xk) for any disjoint sequence (Xi)ken
probability:  p5(X) = tr[pE(X)]
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Quantum Measurement — Concepts

Instrument

o X I(X), Z(X):pes Z(X)(p)

induced/measured observable E:

Z~~E: Xetr[Z(X)(p)] = tr[pE(X)]
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lllustration: Heisenberg Effect

Theorem: No disturbance — no information

Vo Z(Q)(p) =p = Vp,p' VX €T tr[Z(X)(p)] = tr [Z(X)(p)]
Measured observable is trivial:

Vp,p', X tr[pE(X)] =tr [p'E(X)] <= VX eX:EX)=puX)I

Here p is a fixed probability measure on (2, X).
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Quantum Measurement — Concepts

Proof: No disturbance — no information
Assume Z(Q)(P[¢]) = P[g]. Then
Z(X)(Ple]) + Z(X)(Plp]) = Plp],  therefore Z(X)(P[p]) = E,x(X)Ply]

Show next: E,(X) = Ey(X) for any states ¢, 1.
First, consider ¢ L 1.

Take &,m € [, Y], £ L ¢, and np L &

Then P[y] + P[¢] = P[£] + P[n] and so

Eo(X)Ply] + By (X)P[Y] = Ec(X)PIE] + Ey(X)PIn] -

Uniqueness of spectral decomposition = spectrum degenerate:
E.(X) = Ey(X) = E¢(X) = E;(X).
Thus, given any ¢, for all i) L ¢ Ey(X) = E (X).
This extends to all £ [ .
Hence X — E,(X) = A(X) is a constant probability measure.
Also, Z(X)(P[g]) = AM(X)P[g]. Q.E.D.
Qubit Uncertainty Tutorial 23/ 80



Quantum Measurement — Concepts

Example: constant channel instrument

p = I (X)(p) = tr [pC(X)] po
Resulting disturbance: any observable B turned into a trivial observable
B’
tr [pB(Y)] = tr [pZ5 ()" (B(Y))| = tr[poB(Y)]

for all Y, so that B'(Y) = B,,(Y) .
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Quantum Measurement — Concepts

Measurement Scheme

M = </Ha7 ¢7 U, Za>
trl(p® o) U (B2 Z(X)U] = tr[Z(X)(p)B]
tr((p @)U (1@ Z(X))U] = tr[pE(X)]

Hence:
M ~ 7T ~ E
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Exampe: SWAP

Ha=H, U=SWAP, Z=E
rl(p® ) U (B EG))U] = w[Z(X)()B] = tr[oB]tr [pE(X)]
i.e., Z(X)(p) = tr[pE(X)] o

trl(p® o) U (1 9 EX)U] = tr[pE(X)]
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Quantum Measurement — Concepts

Signature of an observable: its statistics

pgzpﬁ‘ forallp <<= C=A

Minimal indicator for a measurement of C to be a good approximate
measurement of A:

pg ~ pﬁ for all p

Unbiased approximation — absence of systematic error:
Cll =366 =All] =XaA = A

... C[1] = A[1] is often taken as sole criterion for a good measurement
... but equality of all moments required for exact measurement: C[k| = A[k]
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Joint Measurability/ Compatibility

Definition: joint measurability (compatibility)

Observables C = {C, G, ..., Cn}, D ={D1,Dy,...,D,} are jointly
measurable
if they are margins of an observable G = {Ggy}:

Ck = 20Gre, Do =>4 G
C(X) = G(X x ), D(Y) = G(Q1 x Y)
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Compatibility

Theorem

If one of C,D is sharp (projection valued), then these observables are
jointly measurable iff they commute:

[Ck,Dg] =0
and the joint observable G is uniquely determined:

Gre = Ci Dy

Joint measurability in general

Pairs of unsharp observables may be jointly measurable
— even when they do not commute!
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Example: compatibility by smearing

C, D — discrete observables, Q; ={1,2,...,N;}, ¥; = 2% =12
CH{k}) =G, DH) =D X G=1=3,D
Pk =0, q:.>20, >yupk=1=>,q

c™, D (A pelo,1]):

CN = AC+ (1= Npil, DY) = pubDy + (1 — p)qel

C), D™ are jointly measurable if A+ p < 1. J

Proof: G = {Gy} is a joint observable, where

Gre = ANCiqe + Dyprc + (1 — X — 1) Pqe
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Quantum Measurement — Concepts

Compatibility - some results

Proposition

If C,D and C’,D’ are compatible pairs of observables, then
C=AC+(1—X)C and D = AD + (1 — A\)D’ are compatible for any
A€ [0,1].

Proof: if G, G’ are joint observables for C, D a~r1d~C’, D’, respectively, then
G =AG+ (1 — \)G is a joint observable for C, D.
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Quantum Measurement — Concepts

Compatibility - some results

Proposition

If C,D are compatible, then C’, D" are compatible, where
C'(X) = VC(X)V*, D/(X) = VD(X)V* and V is (anti-)unitary.

Proof: If G is a joint observable for C, D, then G’ is a joint observable for
C',D’, where G'(Z) = VG(Z)V*.
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Quantum Measurement — Concepts

Approximate joint measurement: concept

G joint observable

approximator observables
(compatible)

target observable

D~
@ «~—~~0O

Task: find suitable measures of approximation errors
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Quantum Measurement — Concepts

Disturbance

[\ |A(B,D)

Paul Busch (York) Qubit Uncertainty Tutorial 34 / 80



Quantum Measurement — Concepts

Disturbance quantified as approximation error

1A(AC)

j’ \/\ A(BrD)
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Preparation Uncertainty Relations (PUR)

PUR

Preparation Uncertainty Relations
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PUR for Q, P

2
x>0 45(8,Q7% +x(8,P)
(ground state of harmonic oscillator)

>

0
(8,Q)%(8,P? > &

¢

>

2N, Q+ x00,P > 2k
1 1\°
Proof: use §2+€2—<§—§> +2>2 (£>0)

2
AQAP> % & (LAQ - x0AP)" +4hAQAP > 21

1
for “<"use Q — AQ, P — XP
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Preparation Uncertainty Relations (PUR)

PUR in general

Important observation

For bounded observables A, B, the standard PUR
A,AN,B > 3|([A, B]),| is not a strong constraint: the lower bound

vanishes for (near) eigenstates.

38 / 80
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Preparation Uncertainty Relations (PUR)
Qubits

o = (01,02,03) (Pauli matrices acting on C?)
o States: p=3(l+r-o), |r|<1
o Effects: A= %(agl+a-0)€[0,1], 0<i(ap+tlal)<1
e observables: (2 = {+1,—1})

c 1l Ar=1(Ita- o) |aj=1
: 21— By =4(/+b-0o) |b/=1
Dl Ce=3(1x9)/tic-o ||+ <1
: 21 Dy =3(1£6)/+3d-o |5 +]d| <1

O n ™ >

C symmetric (unbiased): v =0
Csharp: v=0, || =1; — unsharpness: U(C)?> =1 — |c|?

Paul Busch (York) Qubit Uncertainty Tutorial 39 /80



PUR for qubit observables

or =1, (oK)= rk, p=35(l+r-o), r=(nrmn)

i ’([01,02]>p‘2 + 1 ({0102 + 0201),, — 2(01)(02),)°

T
(01)5 + (02)2 4 (03)5 = [r> <1 (p > 0)
T
(Ap01)2 + (Apaz) + (Apa3) >2
\
(8y01)% + (Bp02)* 21
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Preparation Uncertainty Relations (PUR)

Preparation uncertainty for qubits — continued

A=a-o, B=b.o, |aj=1|b/=1

(A,A) 4+ (A,B)>>1—]a-b|=1—4/1—]axb]?
=1—/1—||[A B]|?

LHS.>|fxal>+|Fxb|?, P=r/lr] (r#0)
Tight bound, attained at r = (a+b)/|[atb|ifa-b >0 and <0, resp.

v

ApA + DB > |axb] = [|[A B].

LHS>|Fxal+|Fxb|, PF=r/r] (r#0)
Tight bound, attained at r = +a or r = £b.
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Preparation Uncertainty Relations (PUR)

Preparation uncertainty for qubits — which inequality?

Problem: Uncertainty region

Characterise the region of points with coordinates (AA, AB) € RT x R
such that AA= A,A and AB = A,B: the uncertainty region of A, B.

Particularly: find the “lower boundary curve” of the uncertainty region.

Thus, given AA = A,A, find p* such that

ApB=min{AyB :|[AyA=A,A}

Note: A,AA,B > J|([A, B]>p| doesn't help...
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Preparation uncertainty for qubits — uncertainty region
Solution

Ir xat r Irxb

b

0 = a+p

arcsin|a x b| = arcsin|r x a| 4+ arcsin |r x b|

A,A>|Fxal, A,B>|Fxb|

DAL= (8,B)2 +8,B,/1— (8,A2 > |[A,B]|
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Preparation Uncertainty Relations (PUR)

0.7}

04

0.3

0.2

0.1

0.0

la-bl=25:  x+y > 55 (= laxb|)
x24y?2 >1-L (=1-Ja-b|)

xy/1—y2+yVvV1—x2 > % (= laxb])
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Compatibility of Qubit Effects

Compatibility

Compatibility of Qubit Effects

Paul Busch (York) Qubit Uncertainty Tutoria 45 / 80



Compatibility of C,D
Symmetric case (sufficient for optimal compatible approximations):
Ci:%(/ﬂ:C'O'), Di:%(/ﬂ:d'U)

Proposition

C={C.=3(I£c-0)},D={Dsy =3(I+d-0o)} are compatible if and
only if

lc+d|+|c—d| <2

Interpretation: unsharpness U(C)? =1 — |c|?;

c x d| =2|[Cs, D]
lc+d|+|c—d <2 & (1-[c)(1—|dJ?) >|cxd}

C,D compatible < U(C)? x U(D)? > 4|[C, DJF]||2 J

Paul Busch (York)
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Qubit compatibility: example

Take ¢ 1 d:
C,D compatible <= |d>+ |d|* <1 < U(C)?>+ U(D)?>1

Dy=L1(+d -o)=A(I+d o)+ (1—N)1Ll

C,D compatible iff A\ < 1/v/2: degree of incompatibility
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Qubit compatibility: proof

C,D with C; = (ol + ¢+ o), Dy = 3(dol + d - o) are jointly measurable

iff 3 observable: G = {G;, G4—, G_4, G__} such that

Ck = Gy + Gy, Dy= G+ Gy

iff 3G = 1(gl + g 0):

(G4 =)G >0
(G+_ :) C+ -G > 07
(G—+ :) D,-G >0,
(G._=)I-C.—Dy+G >0
Qubit Uncertainty Tutorial
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Compatibility of Qubit Effects

Qubit compatibility: proof continued

Thus:
C, D compatible
iff 3G = 1(go/ + g ) (= G44):

GZO, C+—G(: G+_)

Zoa D+_G(: G—-‘r) 207
|- Ci-Dsy+G(=G._) >0

iff 3 g0, &

gl < g, |c—g|< - go,

’d7g|§d0*g07
|C+d—g|§2+g0—C0—do

iff 3 go:

Bgo(o) N BCo—go(c) N BdO*go(d) N B2+g07607d0(c+d) # 0

Paul Busch (York) Qubit Uncertainty Tutorial
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Compatibility of Qubit Effects
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Qubit compatibility: proof continued

Necessary: diagonally opposite balls must intersect
‘C+d’§2+2gg—€o—do, ‘C—d’SCo—i—do—Qgg
and therefore

lc+d|+lc—d] <2 ()

.. which is in fact equivalent to
lc+d <1+c-d<2—|c—d| (%)
(as well as)

lc—d| <1-c-d<2—|c+d| (%)
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Compatibility of Qubit Effects

Qubit compatibility: proof completed

Special case Cy = %(lic-a'), Dy %(Iid o), co=do=1:

Given (), choose go = (1 + ¢ - d), g = 3(c + d), then G = {Gy} is a
joint observable, where

Gre

1(L+ ktc-d) I + (ke + (d) - o]
Positivity: Gy > O <= (%*).

This proves sufficiency of (x) for the special case. Q.£.D.

Paul Busch (York)
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Approximate joint measurements for sharp qubit observables

Approximate Joint Measurements
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Approximate joint measurements for sharp qubit observables

Approximation error for qubits: probabilistic distance

Consider observables A, C on (€, X).

Idea:

C is a good approximation to A if the probability distributions pg, pﬁ are
similar for all states p.

Quantify this with some choice of metric

or any other suitable measure of error.

Take here:

dp(C, A) = supsup|tr[pC(X)] — tr[pA(X)]| = sup||C(X) — A(X)||
P X X

Qubit case: C;. = 3(co/+ ¢ o), AL = 3(al +a- o)

dp(C,A) = ||Cs — A¢| = Yo — ao| + Llc — a| € [0,1].
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Approximate joint measurements for sharp qubit observables

Comparison : Measurement noise (Ozawa et al)

e(CA Q)P =(p®¢|(Z — A’p® ¢)
= (Cl2] - ), + ((Cl1] - A%, = &2

Qubit observables, symmetric case:
e2=1—|c|?+|a—c|? = U(C)* + 4d?

(A; p) double counts contribution from unsharpness.

(More on Measurement Noise (“Ozawa's error") tomorrow ... )
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Measurement Uncertainty Relations for Qubits

Measurement Uncertainty
Relations
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Measurement Uncertainty Relations for Qubits

Optimising approximate joint measurements

{Gke}
)Y, >k
{Ci} {D¢}
dp(cA)é éd;:(D,B)
{A} {Be}

Goal
To make errors da = dp(C, A), dg = d,(D, B) simultaneously as small as

possible
subject to the constraint that C, D are compatible.
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Measurement Uncertainty Relations for Qubits

Admissible error region

i
i
H
H
|
0 2

sinf = |a x b|
(da,ds) = (dp(C,A),dn(D,B)) € [0,3] x[0,2] with C, D compatible

trivial approximations: C. = ~lI, Dy = 41,
then da = max(vy,1—7) > % dg = max(d,1—6) > %
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Measurement Uncertainty Relations for Qubits

Optimisation — Step 1: symmetric approximators

Given: C,D, Ci=3(1+9y)+3c -0, Dy =..
Take T antiunitary: ToxT" = —oy

Ch=TCT"=31Fy)I+3c o D, =..

C, D compatible, with joint observable { Gy}
= (’,D’ compatible, with joint observable {G,, = TG_, _,T*}
— C, D compatible, where

Ce=13(Ce+C)=3(+c-0), Dr=3iDi+D))=3i(I+d o)
dp(C,A) > d,(C,A)  d,(D,B) > d,(D,B)

[ 3]+ 3le—al > 3lc—al]
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Measurement Uncertainty Relations for Qubits

Optimisation — Step 2: planar approximators

dp(C,A) = 3|3(c+¢) —a| <1[dp(C,A) + dp(C,A)] = dp(C,A)
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Measurement Uncertainty Relations for Qubits

Optimisation — Step 3: symmetric constellation

/a . Vs

J” Cy ¢ \ \\\
\ /
\ /

~—_

dp(C,A) + dp(D,B) < 3 [dp(C,A) + dp(C',A)] + 3 [dp(D, B) + dp(D', B)]
= d,(C,A) + dp(D, B)

since d,(C', A) = d,(D, B) and d,(D’, B) = d,(C, A)
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Measurement Uncertainty Relations for Qubits

Optimisation — Step 4: optimal constellation

a_ b

5

Constraint: compatibility 3|c +d|+ |c —d| =1

dp(C,A) + dp(D, B) = [c—a|+3ld —b]
= V2[3la+b|-Yc+d|] = V2[ila—b|—Llc—d||
= ﬁ[\a—&—b\—i—\a—b\—ﬂ
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Main Result 1: A Simple Qubit MUR

a_— T - p
// cd \
sinf = |a x b|
lc+d|+|c—d| < 2
U(C)* x U(D)* > 4I|[Cs, D42
dp(C,A) + dp(D,B) > 5L=[|a+b|+[a—b| 2]

|a+b] +|a—b| =2,/1+|ax b] = 2,/1+2||[A;, B/]]|
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Qubit Measurement Uncertainty: Tight Boundary Curve

Yu, Oh, arXiv:1402.3785
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Measurement Uncertainty Relations for Qubits

Qubit Measurement Uncertainty: Boundary Curve

PB & T Heinosaari (2008), S Yu and CH Oh (2014)

Optimiser, case a L b:

c=|cla, d=|d|b,
2d,=]la—c|=1—|c|,

2dy = b—d|=1-d|,

Compatibility constraint:

lc?+|d* =1, ie, UC)*+ U(D)?=1
(1-2d.)2+ (1 —2dp)? = ||+ |d* =1

02F

2d,

a-b=0

(2d,- 1)% (2dy- 1)2 =1

2d,
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Measurement Uncertainty Relations for Qubits

Optimal Qubit Measurement Uncertainty: Proof

Task: minimise |b — d|
subject to |a — c| fixed and [c+d|+ |c —d| =2

VeF =0, VgF=0

where F =|b—d|+ Xa—c|+pu(lc+d|+|c—d|)

c+d c—d
a—c

~ +
lc+d| |c—d|

b_d c+d c—d

" lc+d |c—d|
—
(Casea Ll b:)) =

Paul Busch (York) Qubit Uncertainty Tutorial
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Measurement Uncertainty Relations for Qubits

Optimal Qubit Measurement Uncertainty: Proof completed

Hence, optimising joint measurement is given by
c=|cla L d=|d|b
and the compatibility constraint becomes: |c|? + |d|?> = 1.
Considering that
2d,=]la—c|=1—|c|, 2dp=|b—d|=1-|d|

this translates into the following equation for the optimal boundary curve
of the admissible joint measurement error region:

(2d, —1)> + (2dp — 1)> =1

and the region itself is given by

(2d, — 1) +(2dp — 1) <1 ord, >3 ordy,>

N|=

67 / 80
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Measurement Uncertainty Relations for Qubits

Result: Qubit Measurement Uncertainty — Admissible
Region

PB & T Heinosaari (2008), S Yu and CH Oh (2014)

Optimiser, case a L b:
ab=0

c=|cla, d=|d|b,
2d,=|la—c|=1—]|c|,
2dp = [b—d| =1—[d],
Compatibility constraint: 0al
lc>+|d?=1, ie, UCP+UMD)*=1
(1—2d,)? + (1 —2dp)? = |c?+|d)* =1

(2d, - 1%+ (2d,- 1)% =1

0.2+

2d,
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A lucky (7) accident

@ The same optimiser configuration for ¢, d also realises the tight

boundary of an inequality due to C Branciard (2013), which is a
refinement of Ozawa's inequality.

@ Branciard's inequality has been confirmed experimentally.

@ Hence these tests also confirm our qubit joint measurement error
region.

More on this in tomorrow's lecture ...

Paul Busch (York) Qubit Uncertainty Tutorial 69 / 80



Connection between MUR and PUR (for Qubits)

analogy with position-momentum case
Case a L b, optimal approximators ¢ = |c|a, d = |d|b, |c|? + |d|?> = 1:

Heisenberg-Weyl covariant joint observable

ijg = %[/—i— (kC—i—fd)-O'}

Giy = 1G4 15,

G- = (a-0)Gii(a o),

G+ = (b-o)Giy(b-0o),

G._ = (axb-o)Gii(axb o)

Gt = gll+(c+d)-ol=3p=3(/+r- o)
UgGreUg = Gip)g  (covariance)
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Connection between MUR and PUR (for Qubits)

Margins of covariant G
Gk/ = %[/+ (kC+€d) . 0']
Ck = Gy + Gy = (I +kc- o)
Dy = Giy+G_y = 3(I+4d-0o)
These realise the optimal error bound since
2d,=]la—c|=1—|c|, 2dp=|b—d|=1-|d|
and therefore

(2d, —1)2+ (2dp, —1)2 = [c]?* +|d* =1

Paul Busch (York) Qubit Uncertainty Tutorial
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Connection between MUR and PUR

(2d, — 1) + (2dp — 1)> = 1 minimal errors
lc|>+|d|> = 1 compatibility bound
(1—1c/*) + (1—|d[*) = 1 minimal unsharpness

T Gii=3p0, n=c+d
(ApOA)2 + (ApOB)2 = 1 minimal uncertainty
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Measurement Uncertainty Relations for Qubits

Summary so far

Main Result 2: Qubit MUR according to QM

(joint measurement errors for A, B) > (incompatibility of A, B)

>
>

(unsharpness of compatible C, D) (noncommutativity of C, D)

Preparation uncertainty enforces measurement uncertainty!

Shown here for qubit observables.
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Qubit MUR — Experimental Confirmations

MUR — Experiments
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Qubit MUR — Experimental Confirmations

Measurement Noise and Weak Valued Probabilities

Lund & Wiseman (NJP 2010)

e(C,A; P)2 =((Z - A)2>p®0'
(C[2) - Cl1?), + ((C1] - AP),
_ / / (x — y)2Re tr [pA(dx)C(dy)]

=com,disc Z(ak - a@)ztr [PAk CZ]
k0

bona fide probability if A,C commute

Paul Busch (York) Qubit Uncertainty Tutorial 75 / 80



Qubit MUR — Experimental Confirmations

Lund-Wiseman weak measurement scheme

A = Z = g3, C =a smeared version of A = Z,
B = X = 01, B’ = D =a smeared version of B = X

N>

0) ++'[1) q

| %)
al0) + 811) ———— {7} —+—{H] ED
Zm )

>

cos 0|0) + sin @|1) 4

Determination of 7(X).
Top wire: probe; bottom wire: measuring system;

middle wire: observed qubit.
The value of 7(X) can be extracted from the joint distribution of the initial
and final X measurements, obtained by reading the outputs Z, and X¢.

First realised by Toronto group (Rozema et al, PRL 2012).
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Qubit MUR — Experimental Confirmations

Weak measurement scheme (continued)

Marginal observables:
Z,: Py o= L1+ (2y*-1)X]
v = % : weak measurement limit
v=1: Py=Bi=3(1£X)
Xr: Dy = L[I+sin(20)X]
Zm: Cp = 3[I+277 cos(20)Z]

Use operational probabilities Py, = P(Z, = k, X¢ = () to determine
“weak-valued probabilities” a la Lund, Wiseman:

Pty — P
2Pwy(0X = +2) = PLa1+ P11 F %
N(X)? = Lsx(0x)2Pwy(dx) = 2 2sin(20)

Paul Busch (York) Qubit Uncertainty Tutorial 77 / 80



Qubit MUR — Experimental Confirmations

Weak measurement vs strong measurement

But: No need to use weak valued probabilities as B, D commute!

Zk7£(xk — Xg)zpkj = 4P(Zp = —I—l,Xf = —1) + 4P(Zp = —1,Xf = —|—1)
= 2 —2sin(26)(2y* — 1)

~v =1 (strong measurement):
n(X)? =4P(Z, = +1,Xr = 1) +4P(Z, = —1,X¢ = +1) = 2—2sin(26)

value comparison error
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Conclusion

Conclusion

Summary
@ MURs can be rigorously formalised and proven

@ Care has to be taken with the definition of error measure to ensure reliable
identification of optimal joint measurements

@ In qubit case, measurement noise (£,,¢5) and probabilistic distances (d,, dp)
give almost consistent descriptions of optimal joint measurements

@ Experimental tests of MURs for (£,,¢5) also confirm MURs for (ds, dp)
Outlook

@ Much remains to be investigated, e.g., alternative measures of error

@ Largely outstanding: generic MURs (obtained by T Miyadera (PRA 2011)
for finite-dimensional systems, finite observables)

@ Possible applications of MURs: e.g., quantum metrology
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Conclusion
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