A categorical framework for the quantum harmonic oscillator

Jamie Vicary Imperial College London jamie.vicary@imperial.ac.uk

Based on arxiv.org/abs/0706.0711

Categories, Logic and the Foundations of Physics Imperial College London 9 January 2008

- ▶ What is categorical quantum mechanics?
- ▶ What is the quantum harmonic oscillator?
- ▶ Constructing the state space categorically
- ▶ Graphical representation
- ▶ Raising and lowering operators
- ▶ Coherent states and exponentials
- ▶ A category of Hilbert spaces?
- ► 'Exotic' Fock spaces
- ▶ Where does the 'quantumness' come from?

- ▶ What is categorical quantum mechanics?
- ▶ What is the quantum harmonic oscillator?
- ▶ Constructing the state space categorically
- ▶ Graphical representation
- ▶ Raising and lowering operators
- ▶ Coherent states and exponentials
- ▶ A category of Hilbert spaces?
- ► 'Exotic' Fock spaces
- ▶ Where does the 'quantumness' come from?

- ▶ What is categorical quantum mechanics?
- ▶ What is the quantum harmonic oscillator?
- ▶ Constructing the state space categorically
- ▶ Graphical representation
- ▶ Raising and lowering operators
- ▶ Coherent states and exponentials
- ▶ A category of Hilbert spaces?
- ► 'Exotic' Fock spaces
- ▶ Where does the 'quantumness' come from?

- ▶ What is categorical quantum mechanics?
- ▶ What is the quantum harmonic oscillator?
- ▶ Constructing the state space categorically
- ▶ Graphical representation
- ▶ Raising and lowering operators
- ▶ Coherent states and exponentials
- ▶ A category of Hilbert spaces?
- ▶ 'Exotic' Fock spaces
- ▶ Where does the 'quantumness' come from?

- ▶ What is categorical quantum mechanics?
- ▶ What is the quantum harmonic oscillator?
- ▶ Constructing the state space categorically
- ▶ Graphical representation
- ▶ Raising and lowering operators
- Coherent states and exponentials
- ▶ A category of Hilbert spaces?
- ▶ 'Exotic' Fock spaces
- ▶ Where does the 'quantumness' come from?

- ▶ What is categorical quantum mechanics?
- ▶ What is the quantum harmonic oscillator?
- ▶ Constructing the state space categorically
- ▶ Graphical representation
- ▶ Raising and lowering operators
- ▶ Coherent states and exponentials
- ► A category of Hilbert spaces?
- ▶ 'Exotic' Fock spaces
- ▶ Where does the 'quantumness' come from?

- ▶ What is categorical quantum mechanics?
- ▶ What is the quantum harmonic oscillator?
- ▶ Constructing the state space categorically
- ▶ Graphical representation
- ▶ Raising and lowering operators
- ▶ Coherent states and exponentials
- ► A category of Hilbert spaces?
- ▶ 'Exotic' Fock spaces
- ▶ Where does the 'quantumness' come from?

- ▶ What is categorical quantum mechanics?
- ▶ What is the quantum harmonic oscillator?
- ▶ Constructing the state space categorically
- ▶ Graphical representation
- ▶ Raising and lowering operators
- ▶ Coherent states and exponentials
- ► A category of Hilbert spaces?
- ▶ 'Exotic' Fock spaces
- ▶ Where does the 'quantumness' come from?

- ▶ What is categorical quantum mechanics?
- ▶ What is the quantum harmonic oscillator?
- ▶ Constructing the state space categorically
- ▶ Graphical representation
- ▶ Raising and lowering operators
- ▶ Coherent states and exponentials
- ► A category of Hilbert spaces?
- ▶ 'Exotic' Fock spaces
- ▶ Where does the 'quantumness' come from?

Traditionally	
---------------	--

Hilbert spaces and linear maps

Inner products

Tensor product

Linearity

States

Amplitudes

Categorically

Objects and morphisms in a category \mathbf{C}

Contravariant functor $\dagger : \mathbf{C} \to \mathbf{C}$, identity on objects, $\dagger^2 = \mathrm{id}_{\mathbf{C}}$ Symmetric monoidal \otimes on \mathbf{C} \dagger -biproducts \oplus in \mathbf{C} Morphisms $\phi : I \to A$

 $\operatorname{Hom}_{\mathbf{C}}(I, I)$, always commutative

Symmetric monoidal *†*-category C with *†*-biproducts

_

Categorically
Objects and morphisms in a category \mathbf{C}
Contravariant functor $\dagger : \mathbf{C} \longrightarrow \mathbf{C}$, identity on objects, $\dagger^2 = \mathrm{id}_{\mathbf{C}}$
Symmetric monoidal \otimes on ${\bf C}$
†-biproducts \oplus in \mathbb{C}
Morphisms $\phi: I \longrightarrow A$
$\operatorname{Hom}_{\mathbf{C}}(I, I)$, always commutative

Symmetric monoidal *†*-category C with *†*-biproducts

_

Traditionally	Categorically
Hilbert spaces and linear maps	Objects and morphisms in a category ${f C}$
Inner products	Contravariant functor $\dagger : \mathbf{C} \longrightarrow \mathbf{C}$, identity on objects, $\dagger^2 = \mathrm{id}_{\mathbf{C}}$
Tensor product	Symmetric monoidal \otimes on ${\bf C}$
Linearity	†-biproducts \oplus in \mathbb{C}
States	Morphisms $\phi: I \longrightarrow A$
Amplitudes	$\operatorname{Hom}_{\mathbf{C}}(I, I)$, always commutative

Symmetric monoidal *†*-category C with *†*-biproducts

_

Traditionally	Categorically
Hilbert spaces and linear maps	Objects and morphisms in a category ${f C}$
Inner products	Contravariant functor $\dagger : \mathbf{C} \longrightarrow \mathbf{C}$, identity on objects, $\dagger^2 = \mathrm{id}_{\mathbf{C}}$
Tensor product	Symmetric monoidal \otimes on ${\bf C}$
Linearity	†-biproducts \oplus in ${f C}$
States	Morphisms $\phi: I \longrightarrow A$
Amplitudes	$\operatorname{Hom}_{\mathbf{C}}(I, I)$, always commutative

Symmetric monoidal *†*-category C with *†*-biproducts

_

Traditionally	Categorically
Hilbert spaces and linear maps	Objects and morphisms in a category ${f C}$
Inner products	Contravariant functor $\dagger : \mathbf{C} \longrightarrow \mathbf{C}$, identity on objects, $\dagger^2 = \mathrm{id}_{\mathbf{C}}$
Tensor product	Symmetric monoidal \otimes on ${\bf C}$
Linearity	$\dagger\text{-biproducts}\oplus\text{ in }\mathbf{C}$
States	Morphisms $\phi: I \longrightarrow A$
Amplitudes	$\operatorname{Hom}_{\mathbf{C}}(I, I)$, always commutative

Symmetric monoidal *†*-category C with *†*-biproducts

_

Traditionally	Categorically
Hilbert spaces and linear maps	Objects and morphisms in a category ${f C}$
Inner products	Contravariant functor $\dagger : \mathbf{C} \longrightarrow \mathbf{C}$, identity on objects, $\dagger^2 = \mathrm{id}_{\mathbf{C}}$
Tensor product	Symmetric monoidal \otimes on ${\bf C}$
Linearity	\dagger -biproducts \oplus in ${f C}$
States	Morphisms $\phi: I \longrightarrow A$
Amplitudes	$\operatorname{Hom}_{{\bf C}}(I,I),$ always commutative

Symmetric monoidal *†*-category C with *†*-biproducts

_

Traditionally	Categorically
Hilbert spaces and linear maps	Objects and morphisms in a category ${f C}$
Inner products	Contravariant functor $\dagger : \mathbf{C} \longrightarrow \mathbf{C}$, identity on objects, $\dagger^2 = \mathrm{id}_{\mathbf{C}}$
Tensor product	Symmetric monoidal \otimes on ${\bf C}$
Linearity	$\dagger\text{-biproducts}\oplus\text{ in }\mathbf{C}$
States	Morphisms $\phi: I \longrightarrow A$
Amplitudes	$\operatorname{Hom}_{{\bf C}}(I,I),$ always commutative

Symmetric monoidal \dagger -category C with \dagger -biproducts

_

Traditionally	Categorically
Hilbert spaces and linear maps	Objects and morphisms in a category ${f C}$
Inner products	Contravariant functor $\dagger : \mathbf{C} \longrightarrow \mathbf{C}$, identity on objects, $\dagger^2 = \mathrm{id}_{\mathbf{C}}$
Tensor product	Symmetric monoidal \otimes on ${\bf C}$
Linearity	$\dagger\text{-biproducts}\oplus\text{ in }\mathbf{C}$
States	Morphisms $\phi: I \longrightarrow A$
Amplitudes	$\operatorname{Hom}_{{\bf C}}(I,I),$ always commutative

Symmetric monoidal \dagger -category C with \dagger -biproducts

Particle in an n-dimensional quadratic potential

State space is symmetric Fock space:

 $F(A) := \mathbb{C} \oplus A \oplus (A \otimes_s A) \oplus (A \otimes_s A \otimes_s A) \oplus \dots$

Manipulated with raising and lowering operators, for $\phi: I \longrightarrow A$: $a_{\phi}: F(A) \longrightarrow F(A) \qquad a_{\phi}^{\dagger}: F(A) \longrightarrow F(A)$

Canonical commutation relations: $a_{\phi} \circ a_{\psi} = a_{\psi} \circ a_{\phi}, \quad a_{\phi}^{\dagger} \circ a_{\psi}^{\dagger} = a_{\psi}^{\dagger} \circ a_{\phi}^{\dagger}, \quad a_{\phi} \circ a_{\psi}^{\dagger} = a_{\psi}^{\dagger} \circ a_{\phi} + (\psi^{\dagger} \circ \phi) \cdot \mathrm{id}_{F(A)}$

Carries a natural commutative monoid structure [Blute, Panangaden and Seely, 1994]

Particle in an n-dimensional quadratic potential

State space is symmetric Fock space:

 $F(A) := \mathbb{C} \oplus A \oplus (A \otimes_s A) \oplus (A \otimes_s A \otimes_s A) \oplus \dots$

Manipulated with raising and lowering operators, for $\phi : I \longrightarrow A$: $a_{\phi} : F(A) \longrightarrow F(A) \qquad a_{\phi}^{\dagger} : F(A) \longrightarrow F(A)$

Canonical commutation relations: $a_{\phi} \circ a_{\psi} = a_{\psi} \circ a_{\phi}, \quad a_{\phi}^{\dagger} \circ a_{\psi}^{\dagger} = a_{\psi}^{\dagger} \circ a_{\phi}^{\dagger}, \quad a_{\phi} \circ a_{\psi}^{\dagger} = a_{\psi}^{\dagger} \circ a_{\phi} + (\psi^{\dagger} \circ \phi) \cdot \mathrm{id}_{F(A)}$

Carries a natural commutative monoid structure [Blute, Panangaden and Seely, 1994]

Particle in an n-dimensional quadratic potential

State space is symmetric Fock space:

$$F(A) := \mathbb{C} \oplus A \oplus (A \otimes_s A) \oplus (A \otimes_s A \otimes_s A) \oplus \dots$$

Manipulated with raising and lowering operators, for $\phi: I \longrightarrow A$:

$$a_{\phi}: F(A) \longrightarrow F(A) \qquad a_{\phi}^{\dagger}: F(A) \longrightarrow F(A)$$

 $\begin{array}{ll} \text{Canonical commutation relations:} \\ a_{\phi} \circ a_{\psi} = a_{\psi} \circ a_{\phi}, \quad a_{\phi}^{\dagger} \circ a_{\psi}^{\dagger} = a_{\psi}^{\dagger} \circ a_{\phi}^{\dagger}, \quad a_{\phi} \circ a_{\psi}^{\dagger} = a_{\psi}^{\dagger} \circ a_{\phi} + (\psi^{\dagger} \circ \phi) \cdot \mathrm{id}_{F(A)} \end{array}$

Carries a natural commutative monoid structure [Blute, Panangaden and Seely, 1994]

Particle in an n-dimensional quadratic potential

State space is symmetric Fock space:

 $F(A) := \mathbb{C} \oplus A \oplus (A \otimes_s A) \oplus (A \otimes_s A \otimes_s A) \oplus \dots$

Manipulated with raising and lowering operators, for $\phi: I \longrightarrow A$:

$$a_{\phi}: F(A) \longrightarrow F(A) \qquad a_{\phi}^{\dagger}: F(A) \longrightarrow F(A)$$

Canonical commutation relations:

 $a_{\phi} \circ a_{\psi} = a_{\psi} \circ a_{\phi}, \quad a_{\phi}^{\dagger} \circ a_{\psi}^{\dagger} = a_{\psi}^{\dagger} \circ a_{\phi}^{\dagger}, \quad a_{\phi} \circ a_{\psi}^{\dagger} = a_{\psi}^{\dagger} \circ a_{\phi} + (\psi^{\dagger} \circ \phi) \cdot \mathrm{id}_{F(A)}$

Carries a natural commutative monoid structure [Blute, Panangaden and Seely, 1994]

Particle in an n-dimensional quadratic potential

State space is symmetric Fock space:

 $F(A) := \mathbb{C} \oplus A \oplus (A \otimes_s A) \oplus (A \otimes_s A \otimes_s A) \oplus \dots$

Manipulated with raising and lowering operators, for $\phi: I \longrightarrow A$:

$$a_{\phi}: F(A) \longrightarrow F(A) \qquad a_{\phi}^{\dagger}: F(A) \longrightarrow F(A)$$

Canonical commutation relations:

 $a_{\phi} \circ a_{\psi} = a_{\psi} \circ a_{\phi}, \quad a_{\phi}^{\dagger} \circ a_{\psi}^{\dagger} = a_{\psi}^{\dagger} \circ a_{\phi}^{\dagger}, \quad a_{\phi} \circ a_{\psi}^{\dagger} = a_{\psi}^{\dagger} \circ a_{\phi} + (\psi^{\dagger} \circ \phi) \cdot \mathrm{id}_{F(A)}$

Carries a natural commutative monoid structure [Blute, Panangaden and Seely, 1994]

Internal commutative monoids

Category of internal commutative monoids \mathbf{C}_+

Internal commutative monoids

Category of internal commutative monoids \mathbf{C}_+

Problem: how to define our quantum system? Solution: algebraically!

 $\mathbf{C} \xrightarrow[]{T}{} \mathbf{C}_{\times} \xrightarrow[]{T}{} \mathbf{C}_{\times} \xrightarrow[]{K}{} \mathbf{C}_{\times} \xrightarrow[]{K$

 $\epsilon_A : F(A) \longrightarrow A$ projects on to single-particle space $e_A : F(A) \longrightarrow I$ projects onto zero-particle space

What to do with $\dagger : \mathbf{C} \longrightarrow \mathbf{C}$?

Introduce compatibility conditions:

 $\blacktriangleright F \circ \dagger = \dagger \circ F;$

• $\epsilon \circ \epsilon^{\dagger} = \mathrm{id}_{\mathrm{id}_{\mathbf{C}}} \dots$ that is, $\epsilon_A \circ \epsilon_A^{\dagger} = \mathrm{id}_A$ for all $A \in \mathrm{Ob}(\mathbf{C})$;

▶ Products preserved unitarily.

Problem: how to define our quantum system? Solution: algebraically!

 $\epsilon_A: F(A) \longrightarrow A$ projects on to *single-particle* space $e_A: F(A) \longrightarrow I$ projects onto *zero-particle* space

What to do with $\dagger : \mathbf{C} \longrightarrow \mathbf{C}$?

- $\blacktriangleright F \circ \dagger = \dagger \circ F;$
- $\epsilon \circ \epsilon^{\dagger} = \mathrm{id}_{\mathrm{id}_{\mathbf{C}}} \dots$ that is, $\epsilon_A \circ \epsilon_A^{\dagger} = \mathrm{id}_A$ for all $A \in \mathrm{Ob}(\mathbf{C})$;
- ▶ Products preserved unitarily.

Problem: how to define our quantum system? Solution: algebraically!

 $\epsilon_A : F(A) \longrightarrow A$ projects on to single-particle space $e_A : F(A) \longrightarrow I$ projects onto zero-particle space

What to do with $\dagger : \mathbf{C} \longrightarrow \mathbf{C}$?

- $\blacktriangleright F \circ \dagger = \dagger \circ F;$
- $\epsilon \circ \epsilon^{\dagger} = \mathrm{id}_{\mathrm{id}_{\mathbf{C}}} \dots$ that is, $\epsilon_A \circ \epsilon_A^{\dagger} = \mathrm{id}_A$ for all $A \in \mathrm{Ob}(\mathbf{C})$;
- ▶ Products preserved unitarily.

Problem: how to define our quantum system? Solution: algebraically!

 $\mathbf{C} \xrightarrow[\overline{R}]{\text{forgetful}} \mathbf{C}_{\times} \qquad \begin{array}{c} F := RQ \text{ is Fock space comonad} \\ \epsilon : RQ \xrightarrow{} \operatorname{id}_{\mathbf{C}}, \eta : \operatorname{id}_{\mathbf{C}_{\times}} \xrightarrow{} QR \\ (F(A), d_A, e_A)_{\times} := Q(A) \end{array}$

 $\epsilon_A : F(A) \longrightarrow A$ projects on to single-particle space $e_A : F(A) \longrightarrow I$ projects onto zero-particle space

What to do with $\dagger : \mathbf{C} \longrightarrow \mathbf{C}$?

Introduce compatibility conditions:

 $\blacktriangleright F \circ \dagger = \dagger \circ F;$

• $\epsilon \circ \epsilon^{\dagger} = \mathrm{id}_{\mathrm{id}_{\mathbf{C}}} \dots$ that is, $\epsilon_A \circ \epsilon_A^{\dagger} = \mathrm{id}_A$ for all $A \in \mathrm{Ob}(\mathbf{C})$;

▶ Products preserved unitarily.

Problem: how to define our quantum system? Solution: algebraically!

 $\mathbf{C} \xrightarrow[\overline{R}]{\text{forgetful}} \mathbf{C}_{\times} \qquad \begin{array}{c} F := RQ \text{ is Fock space comonad} \\ \epsilon : RQ \xrightarrow{} \operatorname{id}_{\mathbf{C}}, \eta : \operatorname{id}_{\mathbf{C}_{\times}} \xrightarrow{} QR \\ (F(A), d_A, e_A)_{\times} := Q(A) \end{array}$

 $\epsilon_A : F(A) \longrightarrow A$ projects on to single-particle space $e_A : F(A) \longrightarrow I$ projects onto zero-particle space

What to do with $\dagger : \mathbf{C} \longrightarrow \mathbf{C}$?

Introduce compatibility conditions:

 $\blacktriangleright F \circ \dagger = \dagger \circ F;$

• $\epsilon \circ \epsilon^{\dagger} = \mathrm{id}_{\mathrm{id}_{\mathbf{C}}} \dots$ that is, $\epsilon_A \circ \epsilon_A^{\dagger} = \mathrm{id}_A$ for all $A \in \mathrm{Ob}(\mathbf{C})$;

Products preserved unitarily.

Problem: how to define our quantum system? Solution: algebraically!

 $\mathbf{C} \xrightarrow[\overline{\mathbf{C}}]{\mathsf{T}} \mathbf{C}_{\times} \qquad \begin{array}{c} F := RQ \text{ is Fock space comonad} \\ \epsilon : RQ \xrightarrow{} \operatorname{id}_{\mathbf{C}}, \eta : \operatorname{id}_{\mathbf{C}_{\times}} \xrightarrow{} QR \\ (F(A), d_A, e_A)_{\times} := Q(A) \end{array}$

 $\epsilon_A : F(A) \longrightarrow A$ projects on to single-particle space $e_A : F(A) \longrightarrow I$ projects onto zero-particle space

What to do with $\dagger : \mathbf{C} \longrightarrow \mathbf{C}$?

Introduce compatibility conditions:

$$\blacktriangleright F \circ \dagger = \dagger \circ F;$$

ϵ ◦ *ϵ*[†] = id_{id_C} that is, *ϵ_A* ◦ *ϵ[†]_A* = id_A for all *A* ∈ Ob(C);

 Products preserved unitarily.

Problem: how to define our quantum system? Solution: algebraically!

 $\mathbf{C} \xrightarrow[\overline{R}]{\text{forgetful}} \mathbf{C}_{\times} \qquad \begin{array}{c} F := RQ \text{ is Fock space comonad} \\ \epsilon : RQ \xrightarrow{} \operatorname{id}_{\mathbf{C}}, \eta : \operatorname{id}_{\mathbf{C}_{\times}} \xrightarrow{} QR \\ (F(A), d_A, e_A)_{\times} := Q(A) \end{array}$

 $\epsilon_A : F(A) \longrightarrow A$ projects on to single-particle space $e_A : F(A) \longrightarrow I$ projects onto zero-particle space

What to do with $\dagger : \mathbf{C} \longrightarrow \mathbf{C}$?

Problem: how to define our quantum system? Solution: algebraically!

 $\mathbf{C} \xrightarrow[\overline{R}]{\text{forgetful}} \mathbf{C}_{\times} \qquad \begin{array}{c} F := RQ \text{ is Fock space comonad} \\ \epsilon : RQ \xrightarrow{} \operatorname{id}_{\mathbf{C}}, \eta : \operatorname{id}_{\mathbf{C}_{\times}} \xrightarrow{} QR \\ (F(A), d_A, e_A)_{\times} := Q(A) \end{array}$

 $\epsilon_A : F(A) \longrightarrow A$ projects on to single-particle space $e_A : F(A) \longrightarrow I$ projects onto zero-particle space

What to do with $\dagger : \mathbf{C} \longrightarrow \mathbf{C}$?

Problem: how to define our quantum system? Solution: algebraically!

 $\mathbf{C} \xrightarrow[\overline{R}]{\text{forgetful}} \mathbf{C}_{\times} \qquad \begin{array}{c} F := RQ \text{ is Fock space comonad} \\ \epsilon : RQ \xrightarrow{} \operatorname{id}_{\mathbf{C}}, \eta : \operatorname{id}_{\mathbf{C}_{\times}} \xrightarrow{} QR \\ (F(A), d_A, e_A)_{\times} := Q(A) \end{array}$

 $\epsilon_A : F(A) \longrightarrow A$ projects on to single-particle space $e_A : F(A) \longrightarrow I$ projects onto zero-particle space

What to do with $\dagger : \mathbf{C} \longrightarrow \mathbf{C}$?

►
$$F \circ \dagger = \dagger \circ F;$$

► $\epsilon \circ \epsilon^{\dagger} = \mathrm{id}_{\mathrm{id}_{\mathbf{C}}} \ldots$ that is, $\epsilon_A \circ \epsilon_A^{\dagger} = \mathrm{id}_A$ for all $A \in \mathrm{Ob}(\mathbf{C});$
► Products preserved unitarily.

Problem: how to define our quantum system? Solution: algebraically!

 $\mathbf{C} \xrightarrow[\overline{R}]{\text{forgetful}} \mathbf{C}_{\times} \qquad \begin{array}{c} F := RQ \text{ is Fock space comonad} \\ \epsilon : RQ \xrightarrow{} \operatorname{id}_{\mathbf{C}}, \eta : \operatorname{id}_{\mathbf{C}_{\times}} \xrightarrow{} QR \\ (F(A), d_A, e_A)_{\times} := Q(A) \end{array}$

 $\epsilon_A : F(A) \longrightarrow A$ projects on to single-particle space $e_A : F(A) \longrightarrow I$ projects onto zero-particle space

What to do with $\dagger : \mathbf{C} \longrightarrow \mathbf{C}$?

Introduce compatibility conditions:

$$\blacktriangleright F \circ \dagger = \dagger \circ F;$$

►
$$\epsilon \circ \epsilon^{\dagger} = \mathrm{id}_{\mathrm{id}_{\mathbf{C}}} \ldots$$
 that is, $\epsilon_A \circ \epsilon_A^{\dagger} = \mathrm{id}_A$ for all $A \in \mathrm{Ob}(\mathbf{C})$;

▶ Products preserved unitarily.

Preserving products unitarily

Unique natural isomorphisms induced in $\mathbf{C}_{\times}:$

$$k_{A,B}: Q(A \oplus B) \longrightarrow Q(A) \times Q(B)$$
$$k_0: Q(0) \longrightarrow I_{\times}$$

Require $Rk_{A,B}$, Rk_0 unitary in **C**:

$$(Rk_{A,B})^{\dagger} = Rk_{A,B}^{-1}$$
 $(Rk_0)^{\dagger} = Rk_0^{-1}$
Preserving products unitarily

Unique natural isomorphisms induced in \mathbf{C}_{\times} :

$$k_{A,B}: Q(A \oplus B) \longrightarrow Q(A) \times Q(B)$$
$$k_0: Q(0) \longrightarrow I_{\times}$$

Require $Rk_{A,B}$, Rk_0 unitary in **C**:

$$(Rk_{A,B})^{\dagger} = Rk_{A,B}^{-1}$$
 $(Rk_0)^{\dagger} = Rk_0^{-1}$

Graphical representations for F, e, d

Graphical representation for ϵ , η

Some emergent properties...

(cheated)

Raising and lowering operators

Raising morphism $a^{\dagger}_{\phi}: F(A) \longrightarrow F(A)$

Lowering morphism $a_{\phi}: F(A) \longrightarrow F(A)$

$\begin{array}{c} \textbf{Canonical commutator} \\ a^{\dagger}_{\phi} \circ a^{\dagger}_{\psi} = a^{\dagger}_{\psi} \circ a^{\dagger}_{\phi} \end{array}$

Canonical commutator $a_{\phi} \circ a_{\psi}^{\dagger} = a_{\psi}^{\dagger} \circ a_{\phi} + (\phi^{\dagger} \circ \psi) \cdot \mathrm{id}_{F(A)}$

Correspond to *points* Hom_{C_{\times}} $(I_{\times}, Q(A))$

Have classical properties:

 Can be copied: *d_A* ◦ Coh(φ) = Coh(φ) ⊗ Coh(φ)

 Can be deleted: *e_A* ◦ Coh(φ) = id_I

 Unchanged by lowering operator:

multi-particle state

$$\operatorname{Coh}(\phi): I \longrightarrow F(A)$$

Employ $R\eta_{I_{\times}}: I \longrightarrow F(I)$ here

Correspond to *points* $\operatorname{Hom}_{\mathbf{C}_{\times}}(I_{\times}, Q(A))$

Have classical properties:
Can be copied: d_A ∘ Coh(φ) = Coh(φ) ⊗ Coh(φ)
Can be deleted: e_A ∘ Coh(φ) = id_I
Unchanged by lowering operator: a_ψ ∘ Coh(φ) = (ψ[†] ∘ φ) · Coh(φ)

multi-particle state

$$\operatorname{Coh}(\phi): I \longrightarrow F(A)$$

Employ $R\eta_{I_{\times}}: I \longrightarrow F(I)$ here

Correspond to points $\operatorname{Hom}_{\mathbf{C}_{\times}}(I_{\times}, Q(A))$

Have classical properties:

 Can be copied: d_A ∘ Coh(φ) = Coh(φ) ⊗ Coh(φ)

 Can be deleted: e_A ∘ Coh(φ) = id_I

 Unchanged by lowering operator: a_ψ ∘ Coh(φ) = (ψ[†] ∘ φ) · Coh(φ)

multi-particle state

$$\operatorname{Coh}(\phi): I \longrightarrow F(A)$$

Employ $R\eta_{I_{\times}}: I \longrightarrow F(I)$ here

Correspond to *points* Hom_{\mathbf{C}_{\times}} $(I_{\times}, Q(A))$

Have classical properties:

• Can be copied:

$$d_A \circ \operatorname{Coh}(\phi) = \operatorname{Coh}(\phi) \otimes \operatorname{Coh}(\phi)$$

• Can be deleted:

 $e_A \circ \operatorname{Coh}(\phi) = \operatorname{id}_I$

► Unchanged by lowering operator:
$$a_{\psi} \circ \operatorname{Coh}(\phi) = (\psi^{\dagger} \circ \phi) \cdot \operatorname{Coh}(\phi)$$

$$\phi \quad \text{single-particle state} \\ \phi : I \longrightarrow A \quad \text{becomes}$$

multi-particle state

$$\operatorname{Coh}(\phi): I \longrightarrow F(A)$$

Employ
$$R\eta_{I_{\times}}: I \longrightarrow F(I)$$
 here

Correspond to *points* $\operatorname{Hom}_{\mathbf{C}_{\times}}(I_{\times}, Q(A))$

Have classical properties:

► Can be copied:
$$d_A \circ \operatorname{Coh}(\phi) = \operatorname{Coh}(\phi) \otimes \operatorname{Coh}(\phi)$$

► Can be deleted:

 $e_A \circ \operatorname{Coh}(\phi) = \operatorname{id}_I$

► Unchanged by lowering operator: $a_{\psi} \circ \operatorname{Coh}(\phi) = (\psi^{\dagger} \circ \phi) \cdot \operatorname{Coh}(\phi)$

Coherent state is eigenstate of a_{ψ} $a_{\psi} \circ \operatorname{Coh}(\phi) = (\psi^{\dagger} \circ \phi) \cdot \operatorname{Coh}(\phi)$

Construct an exponential

Has the following familiar properties:

- Additivity: $g \circ (\exp(\phi) \otimes \exp(\psi)) = \exp(\phi + \psi)$
- Unit: $\exp_{(A,g,u)_+}(0_{I,A}) = u$

Construct an exponential

 $\exp_{(A,g,u)_{+}}(\phi)$ from a state $\phi: I \longrightarrow A$ and a commutative monoid $(A, g, u)_{+}$ Intuition: $\exp_{(A,g,u)_{+}}(\phi) = \frac{1}{0!} \cdot u + \frac{1}{1!} \cdot \phi + \frac{1}{2!} \cdot g \circ (\phi \otimes \phi) + \cdots$ $(R\eta_{(A,g^{\dagger},u^{\dagger})_{\times}})^{\dagger}: F(A) \longrightarrow A$ $R\eta_{I_{\times}}: I \longrightarrow F(I)$

Has the following familiar properties:

► Additivity: $g \circ (\exp(\phi) \otimes \exp(\psi)) = \exp(\phi + \psi)$ ► Unit: $\exp_{(A,g,u)_+}(0_{I,A}) = u$

Construct an exponential

Has the following familiar properties:

► Additivity: $g \circ (\exp(\phi) \otimes \exp(\psi)) = \exp(\phi + \psi)$

• Unit: $\exp_{(A,g,u)_+}(0_{I,A}) = u$

Construct an exponential

Has the following familiar properties:

- Additivity: $g \circ (\exp(\phi) \otimes \exp(\psi)) = \exp(\phi + \psi)$
- ▶ Unit: $\exp_{(A,g,u)_+}(0_{I,A}) = u$

Proof of additivity

Need unbounded operators (e.g. stages of η, d)

Problem:

Unbounded operators don't always compose!

Suggested solution:

Use inner-product spaces, not Hilbert spaces

Allows a well-behaved set of unbounded operators

Duals? Needed for operator exponentials.InnerLacks dualsRelLacks interesting scalarsFdHilbLacks free commutative monoid functor

Need unbounded operators (e.g. stages of $\eta,d)$

Problem:

Unbounded operators don't always compose!

Suggested solution: Use inner-product spaces, not Hilbert spaces Allows a well-behaved set of unbounded operators

Duals? Needed for operator exponentials.InnerLacks dualsRelLacks interesting scalarsFdHilbLacks free commutative monoid functor

Need unbounded operators (e.g. stages of η, d)

Problem:

Unbounded operators don't always compose!

Suggested solution: Use inner-product spaces, not Hilbert spaces Allows a well-behaved set of unbounded operators

Duals? Needed for operator exponentials.InnerLacks dualsRelLacks interesting scalarsFdHilbLacks free commutative monoid functor

Need unbounded operators (e.g. stages of η, d)

Problem:

Unbounded operators don't always compose!

Suggested solution: Use inner-product spaces, not Hilbert spaces Allows a well-behaved set of unbounded operators

Duals? Needed for operator exponentials.

Inner	Lacks	duals	
Rel	Lacks	interesting scalars	
FdHilb	Lacks	free commutative monoid	functor

Need unbounded operators (e.g. stages of η, d)

Problem:

Unbounded operators don't always compose!

Suggested solution:

Use inner-product spaces, not Hilbert spaces Allows a well-behaved set of unbounded operators

Duals? Needed for operator exponentials.InnerLacks dualsRelLacks interesting scalarsFdHilbLacks free commutative monoid functor

Need unbounded operators (e.g. stages of η, d)

Problem:

Unbounded operators don't always compose!

Suggested solution:

Use inner-product spaces, not Hilbert spaces Allows a well-behaved set of unbounded operators

Duals? Needed for operator exponentials.		
Inner	Lacks duals	
\mathbf{Rel}	Lacks interesting scalars	
\mathbf{FdHilb}	Lacks free commutative monoid functor	

What about antisymmetric Fock space?

Need to work in the correct category:

The category encodes the statistics!

What about antisymmetric Fock space?

Need to work in the correct category:

The category encodes the statistics!

Exotic Fock spaces

Assume all objects built from 'building blocks' A, B, \ldots, C (semisimple category, other conditions)

Typical example: supergroupoid representation category (almost)

Then $K := A \oplus B \oplus \cdots \oplus C$ is the generating object Canonical commutative comonoid structure K_{\times} on K!

Vectors in an object X correspond to $\operatorname{Hom}_{\mathbf{C}}(K, X)$

Using adjunction,

 $\operatorname{Hom}_{\mathbf{C}}(K, X) \simeq \operatorname{Hom}_{\mathbf{C}_{\times}}(K_{\times}, F(X))$ i.e., states of $X \simeq$ coherent states of F(X)

Where does the 'quantumness' come from?

Philosophy: Make everything †-compatible

Nontrivial fact: the

bialgebra structure of the biproduct

gives rise to the

nontrivial commutation relation!

Where does the 'quantumness' come from?

Philosophy:

Make everything †-compatible

Nontrivial fact: the

bialgebra structure of the biproduct

gives rise to the

nontrivial commutation relation!

- ▶ What is categorical quantum mechanics?
- ▶ What is the quantum harmonic oscillator?
- ▶ Constructing the state space categorically
- ▶ Graphical representation
- ▶ Raising and lowering operators
- ▶ Coherent states and exponentials
- ► A category of Hilbert spaces?
- ► 'Exotic' Fock spaces
- ▶ Where does the 'quantumness' come from?

- ▶ What is categorical quantum mechanics?
- ▶ What is the quantum harmonic oscillator?
- ▶ Constructing the state space categorically
- ▶ Graphical representation
- ▶ Raising and lowering operators
- ▶ Coherent states and exponentials
- ► A category of Hilbert spaces?
- ► 'Exotic' Fock spaces
- ▶ Where does the 'quantumness' come from?

- ▶ What is categorical quantum mechanics?
- ▶ What is the quantum harmonic oscillator?
- ▶ Constructing the state space categorically
- ▶ Graphical representation
- ▶ Raising and lowering operators
- ▶ Coherent states and exponentials
- ► A category of Hilbert spaces?
- ► 'Exotic' Fock spaces
- ▶ Where does the 'quantumness' come from?

- ▶ What is categorical quantum mechanics?
- ▶ What is the quantum harmonic oscillator?
- ▶ Constructing the state space categorically
- ▶ Graphical representation
- ▶ Raising and lowering operators
- ▶ Coherent states and exponentials
- ► A category of Hilbert spaces?
- ► 'Exotic' Fock spaces
- ▶ Where does the 'quantumness' come from?

- ▶ What is categorical quantum mechanics?
- ▶ What is the quantum harmonic oscillator?
- ▶ Constructing the state space categorically
- ▶ Graphical representation
- ▶ Raising and lowering operators
- ▶ Coherent states and exponentials
- ► A category of Hilbert spaces?
- ► 'Exotic' Fock spaces
- ▶ Where does the 'quantumness' come from?

- ▶ What is categorical quantum mechanics?
- ▶ What is the quantum harmonic oscillator?
- ▶ Constructing the state space categorically
- ▶ Graphical representation
- ▶ Raising and lowering operators
- ▶ Coherent states and exponentials
- ► A category of Hilbert spaces?
- ► 'Exotic' Fock spaces
- ▶ Where does the 'quantumness' come from?

- ▶ What is categorical quantum mechanics?
- ▶ What is the quantum harmonic oscillator?
- ▶ Constructing the state space categorically
- ▶ Graphical representation
- ▶ Raising and lowering operators
- ▶ Coherent states and exponentials
- ► A category of Hilbert spaces?
- ► 'Exotic' Fock spaces
- ▶ Where does the 'quantumness' come from?
Summary

- ▶ What is categorical quantum mechanics?
- ▶ What is the quantum harmonic oscillator?
- ▶ Constructing the state space categorically
- ▶ Graphical representation
- ▶ Raising and lowering operators
- ▶ Coherent states and exponentials
- ► A category of Hilbert spaces?
- ▶ 'Exotic' Fock spaces
- ▶ Where does the 'quantumness' come from?

(Online at arxiv.org/abs/0706.0711)

Summary

- ▶ What is categorical quantum mechanics?
- ▶ What is the quantum harmonic oscillator?
- ▶ Constructing the state space categorically
- ▶ Graphical representation
- ▶ Raising and lowering operators
- ▶ Coherent states and exponentials
- ► A category of Hilbert spaces?
- ▶ 'Exotic' Fock spaces
- ▶ Where does the 'quantumness' come from?

(Online at arxiv.org/abs/0706.0711)