
A category theory primer

Ralf Hinze

Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, England

ralf.hinze@comlab.ox.ac.uk

http://www.comlab.ox.ac.uk/ralf.hinze/

1 Categories, functors and natural transformations

Category theory is a game with objects and arrows between objects. We let C,
D etc range over categories.

A category is often identified with its class of objects. For instance, we say
that Set is the category of sets. In the same spirit, we write A ∈ C to express
that A is an object of C. We let A, B etc range over objects.

However, equally, if not more important are the arrows of a category. So, Set
is really the category of sets and total functions. (There is also Rel, the category
of sets and relations.) If the objects have additional structure (monoids, groups
etc.) then the arrows are typically structure-preserving maps. For every pair of
objects A,B ∈ C there is a class of arrows from A to B , denoted C(A,B). If C
is obvious from the context, we abbreviate f ∈ C(A,B) by f : A → B . We will
also loosely speak of A→ B as the type of f . We let f , g etc range over arrows.

For every object A ∈ C there is an arrow idA ∈ C(A,A), called the identity.
Two arrows can be composed if their types match: if f ∈ C(A,B) and g ∈
C(B ,C), then g · f ∈ C(A,C). We require composition to be associative with
identity as its neutral element.

Every structure comes equipped with structure-preserving maps, so do cat-
egories, where these maps are called functors. Since a category consists of two
parts, objects and arrows, a functor F : C → D consists of a mapping on
objects and a mapping on arrows. It is common practise to denote both map-
pings by the same symbol. We will also loosely speak of F ’s arrow part as a
‘map’. The action on arrows has to respect the types: if f ∈ C(A,B), then
F f ∈ D(F A,F B). Furthermore, F has to preserve identity, F idA = idF A,
and composition F (g · f) = F g · F f . The force of functoriality lies in the
action on arrows and in the preservation of composition. There is an identity
functor, IdC : C → C, and functors can be composed: (G ◦ F) A = G (F A) and
(G◦F) f = G (F f). This data turns small categories and functors into a category,
called Cat.1 We let F , G etc range over functors.

Let F ,G : C → D be two parallel functors. A natural transformation � :
F →̇ G is a collection of arrows, so that for each object A ∈ C there is an arrow

1 To avoid paradoxes, we have to require that the objects of Cat are small, where a
category is called small if the class of objects and the class of all arrows are sets.

2 Ralf Hinze

� A ∈ D(F A,G A) such that

G h · � A′ = � A′′ · F h, (1)

for all arrows h ∈ C(A′,A′′). Given � and h, there are essentially two ways
of turning F A′ things into G A′′ things. The coherence condition (1) demands
that they are equivalent. We also write � : ∀A . F A → G A and furthermore
� : ∀A . F A ∼= G A, if � is a natural isomorphism. There is an identity trans-
formation idF : F →̇ F defined idF A = idF A. Natural transformations can
be composed: if � : F →̇ G and � : G →̇ H, then � · � : F →̇ H is defined
(� · �) A = � A · � A. Thus, functors of type C→ D and natural transformations
between them form a category, the functor category DC. (Functor categories are
exponentials in Cat, hence the notation.) We let �, � etc range over natural
transformations.

2 Constructions on categories

New categories from old.
Let C be a category. The opposite category Cop has the same objects as C,

arrows and composition, however, are flipped: f ∈ Cop(A,B) if f ∈ C(B ,A), and
g · f ∈ Cop(A,C) if f · g ∈ C(C ,A). A functor of type Cop → D or C → Dop

is sometimes called a contravariant functor from C to D, the usual kind being
styled covariant. An incestuous example of a contravariant functor is C(−,B) :
Cop → Set, whose action on arrows is given by C(h,B) f = f · h.2 The functor
C(−,B) maps an object A to the set of arrows from A to a fixed B , and it
takes an arrow h ∈ C(A′′,A′) to a function C(h,B) : C(A′,B) → C(A′′,B).
Conversely, C(A,−) : C→ Set is a covariant functor defined C(A, k) f = k · f .

Let C1 and C2 be a categories. An object of the product category C1 ×
C2 is a pair 〈A1,A2〉 of objects A1 ∈ C1 and A2 ∈ C2; an arrow of (C1 ×
C2)(〈A1,A2〉, 〈B1,B2〉) is a pair 〈f1, f2〉 of arrows f1 ∈ C1(A1,B1) and f2 ∈
C2(A2,B2). Identity and composition are defined component-wise:

id = 〈id , id〉 and 〈g1, g2〉 · 〈f1, f2〉 = 〈g1 · f1, g2 · f2〉.

The projection functors Outl : C1×C2 → C1 and Outr : C1×C2 → C2 are given
by Outl 〈A1,A2〉 = A1, Outl 〈f1, f2〉 = f1 and Outr 〈A1,A2〉 = A2, Outr 〈f1, f2〉 =
f2. Product categories avoid the need for functors of several arguments. Functors
from a product category are sometimes called bifunctors. An example is the hom-
functor C(−,=) : Cop × C → Set, which maps a pair of objects to the set of
arrows between them. Its action on arrows is given by C(f , g) h = g · h · f . The
diagonal functor ∆ : C → C × C is an example of a functor into a product
category: it duplicates its argument ∆A = 〈A,A〉 and ∆f = 〈f , f 〉.

2 Partial applications of mappings and operators are written using ‘categorical dum-
mies’, where − marks the first and = the optional second argument.

A category theory primer 3

3 Products and coproducts

Constructions in category theory are typically given using so-called universal
properties. The paradigmatic example of this approach is the definition of prod-
ucts — in fact, this is also historically the first example. The product of two
objects B1 and B2 consists of an object written B1 × B2 and a pair of arrows
outl : B1×B2 → B1 and outr : B1×B2 → B2. These three things have to satisfy
the following universal property : for each object A and for each pair of arrows
f1 : A → B1 and f2 : A → B2, there exists an arrow f1 M f2 : A → B1 × B2

(pronounced “split”) such that

f1 = outl · g ∧ f2 = outr · g ⇐⇒ f1 M f2 = g , (2)

for all g : A → B1 × B2. The property states the existence of the arrow f1 M f2
and furthermore that it is the unique arrow satisfying the property on the left.
(It is also called the mediating arrow). The following diagram summarises the
type information.

A

B1 ≺ outl
≺

f 1

B1 × B2

f1 M f2......g

.......

outr
� B2

f2

�

This is an example of a commuting diagram: all paths from the same source
to the same target lead to the same result by composition. The dotted arrow
indicates that f1 M f2 is the unique arrow from A to B1 × B2 that makes the
diagram commute.

A universal property such as (2) has two immediate consequences that are
worth singling out. If we substitute the right-hand side into the left-hand side,
we obtain the computation laws (also known as β-rules):

f1 = outl · (f1 M f2); (3)
f2 = outr · (f1 M f2). (4)

They can be seen as defining equations for the arrow f M g .
Instantiating g in (2) to the identity idA×B and substituting into the right-

hand side, we obtain the reflection law (also known as the simple η-rule):

outl M outr = idA×B . (5)

The universal property enjoys two further consequences, which we shall later
identify as naturality properties. The first consequence is the fusion law that
allows us to fuse a split with an arrow to form another split:

(f1 M f2) · h = f1 · h M f2 · h, (6)

4 Ralf Hinze

for all h : A′ → A′′. The law states that M is natural in A. For the proof we
reason

f1 · h M f2 · h = (f1 M f2) · h
⇐⇒ { universal property (2) }

f1 · h = outl · (f1 M f2) · h ∧ f2 · h = outr · (f1 M f2) · h
⇐⇒ { computation (3) and (4) }

f1 · h = f1 · h ∧ f2 · h = f2 · h

The definition of products is also parametric in B1 and B2 — note that both
objects are totally passive in the description above. We capture this property by
turning × into a functor of type C × C → C (to define products in C we need
products in Cat, to define products in Cat we need products in . . .). The action
of × on arrows is defined

f1 × f2 = f1 · outl M f2 · outr . (7)

We postpone the proof that × preserves identity and composition.
The functor fusion law states that we can fuse a map after a split to form

another split:

(k1 × k2) · (f1 M f2) = k1 · f1 M k2 · f2, (8)

for all k1 : B ′1 → B ′′1 and k2 : B ′2 → B ′′2 . It formalises that M is natural in B1

and B2. The proof of (8) builds on fusion and computation.

(k1 × k2) · (f1 M f2)
= { definition of × (7) }

(k1 · outl M k2 · outr) · (f1 M f2)
= { fusion (6) }

k1 · outl · (f1 M f2) M k2 · outr · (f1 M f2)
= { computation (3) and (4) }

k1 · f1 M k2 · f2

Given these prerequisites, it is straightforward to show that × preserves identity

idA × idB

= { definition of × (7) }
idA · outl M idB · outr

= { identity and reflection (5) }
idA×B

and composition

(g1 × g2) · (f1 × f2)

A category theory primer 5

= { definition of × (7) }
(g1 × g2) · (f1 · outl M f2 · outr)

= { functor fusion (8) }
g1 · f1 · outl M g2 · f2 · outr

= { definition of × (7) }
g1 · f1 × g2 · f2.

The projection arrows, outl and outr are natural transformations, as well.

k1 · outl = outl · (k1 × k2); (9)
k2 · outr = outr · (k1 × k2). (10)

This is a direct consequence of the computation laws.

outl · (k1 × k2)
= { definition of × (7) }

outl · (k1 · outl M k2 · outr)
= { computation (3) }

k1 · outl

The naturality of M can be captured precisely using product categories and
hom-functors.

(M) : ∀A B . (C× C)(∆A,B)→ C(A,×B)

Split takes a pair of arrows as an argument and delivers an arrow to a product
(B is an object in a product category). The fusion law captures naturality in A,

C(h,×B) · (M) = (M) · (C× C)(∆h,B),

and the functor fusion law naturality in B ,

C(A,×k) · (M) = (M) · (C× C)(∆A, k).

(A transformation between bifunctors is natural if and only if it is natural in
both arguments separately.)

The naturality of outl and outr can be captured using the projection functors
Outl and Outr .

outl : ∀B . C(×B ,Outl B);
outr : ∀B . C(×B ,Outr B).

The naturality conditions are

Outl k · outl = outl · ×k ,
Outr k · outr = outr · ×k .

The import of all this is that × is right adjoint to the diagonal functor ∆, see
Sec. 6.

6 Ralf Hinze

The construction of products nicely dualises to coproducts, which are prod-
ucts in the opposite category. The coproduct of two objects A1 and A2 consists
of an object written A1 + A2 and a pair of arrows inl : A1 → A1 + A2 and
inr : A2 → A1 + A2. These three things have to satisfy the following univer-
sal property : for each object B and for each pair of arrows g1 : A1 → B and
g2 : A2 → B , there exists an arrow g1 O g2 : A1 + A2 → B (pronounced “join”)
such that

f = g1 O g2 ⇐⇒ f · inl = g1 ∧ f · inr = g2, (11)

for all f : A1 + A2 → B .

A1
inl
� A1 + A2 ≺

inr
A2

B

g1 O g2......g

......

≺
g 2

g
1

�

Like for products, the universal property implies computation, reflection, fusion
and functor fusion laws. Computation law :

(g1 O g2) · inl = g1; (12)
(g1 O g2) · inr = g2. (13)

Reflection law :

idA+B = inl O inr . (14)

Fusion law :

k · (g1 O g2) = k · g1 O k · g2. (15)

The arrow part of the coproduct functor is defined

g1 + g2 = inl · g1 O inr · g2. (16)

Functor fusion law :

(g1 O g2) · (h1 + h2) = g1 · h1 O g2 · h2. (17)

The two fusion laws identify O as a natural transformation:

(O) : ∀A B . C(+A,B)→ (C× C)(A, ∆B).

Finally, the injection arrows are natural transformations, as well.

(h1 + h2) · inl = inl · h1 (18)
(h1 + h2) · inr = inr · h2 (19)

The import of all this is that + is left adjoint to the diagonal functor ∆.

A category theory primer 7

4 Initial and final objects

An object is called initial if for each object B ∈ C there is exactly one arrow
from the initial object to B . Any two initial objects are isomorphic, which is
why we usually speak of the initial object. It is denoted 0, and the unique arrow
from 0 to B is written ¡B (pronounce “gnab”).

0
¡B � B

The uniqueness can also be expressed as a universal property :

f = ¡B ⇐⇒ true,

for all f : 0 → B . Instantiating f to the identity id0, we obtain the reflection
law : id0 = ¡0. An arrow after a gnab can be fused into a single gnab.

k · ¡B ′ = ¡B ′′ ,

for all k : B ′ → B ′′. The fusion law expresses that ¡B is natural in B .
Dually, 1 is a final object if for each object A ∈ C there is a unique arrow

from A to 1, denoted !A (pronounce “bang”).

A
!A � 1

5 Initial algebras and final coalgebras

Let F : C → C be an endofunctor. An F -algebra is a pair 〈A, a〉 consisting of
an object A ∈ C and an arrow a ∈ C(F A,A). An F -homomorphism between
algebras 〈A, a〉 and 〈B , b〉 is an arrow h ∈ C(A,B) such that h · a = b · F h.

F A

A

a
g

F A
F h
� F B

A

a

g

h
� B

b

g

F B

B

b
g

Identity is an F -homomorphism and F -homomorphisms compose. Consequently,
the data defines a category, called Alg(F). The initial object in this category —
if it exists — is the so-called initial F -algebra 〈µF , in〉. The import of initiality
is that there is a unique arrow from 〈µF , in〉 to any other F -algebra 〈B , b〉. This
unique arrow is written Lb M and is called fold or catamorphism. Expressed in
terms of the base category, it satisfies the following universal property.

f = Lb M ⇐⇒ f · in = b · F f (20)

8 Ralf Hinze

Like for products, the universal property has two immediate consequences. Sub-
stituting the left-hand side into the right-hand side gives the computation law :

Lb M · in = b · F Lb M. (21)

Setting f := id and b := in, we obtain the reflection law :

id = Lin M. (22)

Since the initial algebra is an initial object, we also have a fusion law for
fusing an arrow with a fold to form another fold.

k · Lb′M = Lb′′M ⇐= k · b′ = b′′ · F k (23)

The proof is trivial if phrased in terms of the category Alg(F). However, we can
also execute the proof in the underlying category C.

k · Lb′M = Lb′′M
⇐⇒ { universal property (20) }

k · Lb′M · in = b′′ · F (k · Lb′M)
⇐⇒ { computation (21) }

k · b′ · F Lb′M = b′′ · F (k · Lb′M)
⇐⇒ { F functor }

k · b′ · F Lb′M = b′′ · F k · F Lb′M
⇐= { cancel − · F Lb′M on both sides }

k · b′ = b′′ · F k .

The fusion law states that L−M is natural in 〈B , b〉, that is, as an arrow in Alg(F).
This does not imply naturality in the underlying category C (as an arrow in C
it is a strong dinatural transformation).

Using these laws we can show that µF is indeed a fixed point of the functor:
F (µF) ∼= µF . The isomorphism is witnessed by the arrows in ∈ C(F (µF), µF)
and LF in M ∈ C(µF ,F (µF)). We calculate

in · LF in M = id
⇐⇒ { reflection }

in · LF in M = Lin M
⇐= { fusion (23) }

in · F in = in · F in

For the reverse direction, we reason

LF in M · in
= { computation }

F in · F LF in M

A category theory primer 9

= { F functor }
F (in · LF in M)

= { see proof above }
F id

= { F functor }
id .

Perhaps surprisingly, folds also enjoy a functor fusion law. To be able to
formulate the law, we have to turn µ into a higher-order functor of type CC →
C. The object part of this functor maps a functor to its initial algebra. The
arrow part, which maps a natural transformation � : F →̇ G to an arrow µ� ∈
C(µF , µG), is given by

µ� = Lin · �M. (24)

(To reduce clutter we have omitted the type argument of � on the right-hand
side, which should read Lin · � (µG)M). Like for products, we postpone the proof
that µ preserves identity and composition.

The functor fusion law states that we can fuse a fold after a map to form
another fold:

Lb · �M = Lb M · µ�, (25)

for all � : F ′ →̇ F ′′. To establish functor fusion we reason

Lb M · µ� = Lb · �M
⇐⇒ { definition of µ (24) }

Lb M · Lin · �M = Lb · �M
⇐= { fusion (23) }

Lb M · in · � = b · � · F ′ Lb M
⇐⇒ { computation (21) }

b · F ′′ Lb M · � = b · � · F ′ Lb M
⇐⇒ { naturality of � }

b · � · F ′ Lb M = b · � · F ′ Lb M.

Given these prerequisites, it is straightforward to show that µ preserves identity

µid
= { definition of µ (24) }

Lin · id M
= { identity and reflection (22) }

id

10 Ralf Hinze

and composition

µ� · µ�

= { definition of µ (24) }
Lin · �M · µ�

= { functor fusion (25) }
Lin · � · �M

= { definition of µ (24) }
µ(� · �).

To summarise, functor fusion expresses that L−M is natural in F :

L−M : ∀F . C(F B ,B)→ C(µF ,B).

The arrow in : F (µF)→ µF is natural in F , as well. The arrow part of the
higher-order functor ΛF . F (µF) is λ � . F ′′ (µ�) · � = λ � . � · F ′ (µ�).

µ� · in = in · � · F (µ�) (26)

We reason

µ� · in
= { definition of µ (24) }

Lin · �M · in
= { computation (21) }

in · � · F Lin · �M
= { definition of µ (24) }

in · � · F (µ�).

The development nicely dualises to F -coalgebras and unfolds. An F -coalgebra
is a pair 〈A, a〉 consisting of an object A ∈ C and an arrow a ∈ C(A,F A). An
F -homomorphism between coalgebras 〈A, a〉 and 〈B , b〉 is an arrow h ∈ C(A,B)
such that F h ·a = b ·h. Identity is an F -homomorphism and F -homomorphisms
compose. Consequently, the data defines a category, called Coalg(F). The fi-
nal object in this category — if it exists — is the so-called final F -coalgebra
〈νF , out〉. The import of finality is that there is a unique arrow to 〈νF , out〉
from any other F -coalgebra 〈A, a〉. This unique arrow is written [(a)] and is called
unfold or anamorphism. Expressed in terms of the base category, it satisfies the
following universal property.

F g · a = out · g ⇐⇒ [(a)] = g (27)

Like for initial algebras, the universal property implies computation, reflection,
fusion and functor fusion laws. Computation law :

F [(a)] · a = out · [(a)]. (28)

A category theory primer 11

Reflection law :

[(out)] = id . (29)

Fusion law :

[(a ′)] = [(a ′′)] · h ⇐= F h · a = a ′′ · h. (30)

The object part of the functor ν is defined

ν� = [(� · out)]. (31)

Functor fusion law :

ν� · [(a)] = [(� · a)] (32)

Finally, out is a natural transformation.

� · F (ν�) · out = out · ν�

6 Adjunctions

We have noted in Sec. 3 that products and coproducts are part of an adjunction.
In this section, we explore the notion of an adjunction in greater depth.

Let C and D be categories. The functors L and R are adjoint, denoted L a R,

C
≺

L

⊥
R
�

D

if and only if there is a bijection

φ : ∀A B . C(L A,B) ∼= D(A,R B),

that is natural both in A and B . The isomorphism φ is called the adjoint trans-
position. It is also called the left adjunct with φ◦ being the right adjunct. That φ
and φ◦ are mutually inverse, can be captured using an equivalence.

f = φ◦ g ⇐⇒ φ f = g (33)

(The left-hand side lives in C, and the right-hand side in D.) The formula is
reminiscent of the universal property of products. That the latter indeed defines
an adjunction can be seen more clearly if we re-formulate (2) in terms of the
categories involved.

f = 〈outl , outr〉 ·∆ g ⇐⇒ Mf = g

The right part of the diagram below explicates the categories involved.

C
≺

+

⊥
∆
�

C× C
≺

∆

⊥
×

�
C

12 Ralf Hinze

We actually have a double adjunction with + being left adjoint to ∆. Rewritten
in terms of product categories, the universal property of coproducts (11) becomes

f = Og ⇐⇒ ∆ f · 〈inl , inr〉 = g .

Initial objects and final objects also define (a rather trivial adjunction) be-
tween the category 1 and C.

C
≺

0

⊥
∆

�
1
≺

∆

⊥
1

�
C

The category 1 consists of a single object ∗ and a single arrow id∗. The diagonal
functor is now defined ∆A = ∗ and ∆ f = id∗. The objects 0 and 1 are seen as
constant functors from 1. (An object A ∈ C seen as a functor A : 1→ C maps ∗
to A and id∗ to idA.)

f = ¡B · 0 g ⇐⇒ ∆ f · id∗ = g (34)
f = id∗ ·∆ g ⇐⇒ 1 f · !A = g (35)

The universal properties are a bit degenerated as the right-hand side of (34) and
the left-hand side of (35) is vacuously true.

An adjunction can be defined in a variety of ways. An alternative approach
makes use of two natural transformations: the counit ε : L ◦R →̇ Id and the unit
η : Id →̇R ◦ L. For products, the counit is the pair of arrows 〈outl , outr〉 and the
unit is the diagonal arrow δ = id M id . The units must satisfy

(ε ◦ L) · (L ◦ η) = idL and (R ◦ ε) · (η ◦ R) = idR,

where ◦ denotes (horizontal) composition of a natural transformation with a
functor: (F ◦ �) A = F (� A) and (� ◦ F) A = � (F A). It is useful to explicate
the typing information.

L
L ◦ η
� L ◦ R ◦ L

L

ε ◦ L

g

id
L

�

R
η ◦ R
� R ◦ L ◦ R

R

R ◦ ε

g

id
R

�

You may want to think of L and R as closure operations. The unit laws express
that going left-right-left is the same as going left once and likewise for going
right.

All in all, an adjunction consists of six entities: two functors, two adjuncts,
and two units. Every single of those can be defined in terms of the others:

φ◦ g = ε · L g
φ f = R f · η

ε = φ◦ id
η = φ id

L g = φ◦ (η · g)
R f = φ (f · ε).

A category theory primer 13

In terms of programming language concepts, adjuncts correspond to intro-
duction and elimination rules (M introduces a pair, O eliminates a sum). The
units can be seen as simple variants of these rules (〈outl , outr〉 eliminates a pair
and 〈inl , inr〉 introduces a sum). When we discussed products, we derived a
variety of laws from the universal property. Table 1 re-formulates these laws us-
ing the new vocabulary. For instance, from the perspective of the right adjoint
f = φ◦ (φ f) corresponds to a computation law or β-rule, viewed from the left
it is an η-rule.3 The table merits careful study. Table 2 lists some examples of

Table 1. Adjunctions and laws (view from the left / right).

φ◦ introduction / elimination φ elimination / introduction

φ◦ : D(A,R B)→ C(L A,B) φ : C(L A,B)→ D(A,R B)

Universal property

f = φ◦ g ⇐⇒ φ f = g

ε ∈ C(L (R B),B) η ∈ D(A,R (L A))

ε = φ◦ id φ id = η

— / computation law computation law / —

η-rule / β-rule β-rule / η-rule

f = φ◦ (φ f) φ (φ◦ g) = g

reflection law / — — / reflection law

simple η-rule / simple β-rule simple β-rule / simple η-rule

id = φ◦ η φ ε = id

functor fusion law / — — / fusion law

φ◦ is natural in A φ is natural in A

φ◦ g · L h = φ◦ (g · h) φ f · h = φ (f · L h)

fusion law / — — / functor fusion law

φ◦ is natural in B φ is natural in B

k · φ◦ g = φ◦ (R k · g) R k · φ f = φ (k · f)

ε is natural in B η is natural in A

k · ε = ε · L (R k) R (L h) · η = η · h

adjunctions.
Since the components of an adjunction are inter-definable, an adjunction can

be specified by providing only part of the data. Surprisingly little is needed: for
products only the functor L and the counit ε were given, the other ingredients
were derived from those. In the rest of this section, we replay the derivation in
terms of adjunctions. Let L : D→ C be a functor, and let ε ∈ C(L (R B),B) be a
universal arrow. Universality means that for each f ∈ C(L A,B) there exists an
3 It is a coincidence that the same Greek letter is used both for extensionality (η-rule)

and for the unit of an adjunction.

14 Ralf Hinze

Table 2. Examples of adjunctions.

a
d
ju

n
ct

io
n

in
it

ia
l

o
b

je
ct

fi
n
a
l

o
b

je
ct

co
p
ro

d
u
ct

p
ro

d
u
ct

ex
p

o
n
en

ti
a
l

L 0 ∆ + ∆ −×X

R ∆ 1 ∆ × (−)X

φ◦ O uncurry

φ M λ

ε ¡ 〈outl , outr〉 apply

η ! 〈inl , inr〉

arrow φ f ∈ D(A,R B) such that

f = ε · L g ⇐⇒ φ f = g , (36)

for all g ∈ D(A,R B). The formula suggests that ε ·L g = φ◦ g . Computation law:
substituting the right-hand side into the left-hand side, we obtain

f = ε · L (φ f). (37)

Reflection law: setting f := ε and g := id , yields

φ ε = id . (38)

Fusion law: to establish

φ (f · L h) = φ f · h, (39)

we appeal to the universal property:

f · L h = ε · L (φ f · h) ⇐⇒ φ (f · L h) = φ f · h.

To show the left-hand side, we calculate

ε · L (φ f · h)
= { L functor }
ε · L (φ f) · L h

= { computation (37) }
f · L h.

The type constructor R can be turned into a functor whose action on arrows is
defined R f = φ (f · ε). (The definition is suggested by combining reflection and
functor fusion: R f = R f · φ ε = φ (f · ε).) Functor fusion law:

R k · φ f = φ (k · f). (40)

A category theory primer 15

For the proof, we reason

R k · φ f
= { definition of R }
φ (k · ε) · φ f

= { fusion (39) }
φ (k · ε · L (φ f))

= { computation (37) }
φ (k · f).

Functoriality: R preserves identity

R id
= { definition of R }
φ (id · ε)

= { identity and reflection (38) }
id

and composition

R g · R f
= { definition of R }

R g · φ (f · ε)
= { functor fusion (40) }
φ (g · f · ε)

= { definition of R }
R (g · f).

Fusion and functor fusion show that φ is natural both in A and in B . Finally,
the counit ε is natural in B .

ε · L (R k)
= { definition of R }
ε · L (φ (k · ε))

= { computation (37) }
k · ε

Dually, a functor R and a universal arrow η ∈ C(A,R (L A)) are sufficient.

f = φ◦ g ⇐⇒ R f · η = g .

Define φ f = R f · η and L g = φ◦ (η · g).

