
Toward the optimization of Concurrent ML∗

John Reppy
University of Chicago

October 2005

∗Joint work with Yingqi Xiao

Quick CML review

Basic features:

• Explicit threading with preemptive scheduling.

• Threads communicate and synchronize via message passing using a
variety of primitives (buffered channels, I-variables, and M-variables).

• Synchronization and communication are supported by the mechanism
of first-class synchronous operations (called events).

October 2005 WG 2.8 1

Interprocess communication

type ’a chan

val channel : unit -> ’a chan
val recv : ’a chan -> ’a
val send : (’a chan * ’a) -> unit

Sending a message is a blocking operation in CML.

Most interactions between processes involve multiple messages.

A process may need to interact with multiple partners (nondeterministic
choice).

October 2005 WG 2.8 2

Protocols (continued ...)

Here are message sequence diagrams for a client/server protocol with
acknowledgments.

Client commits

reply

request

Client Server

ack

send

recv
send

recv
send

recv

Client aborts

request

Client Server

replynack

send

timeout

recv

send
recv

October 2005 WG 2.8 3

Events

We use event values to package up protocols as abstractions.

An event is an abstraction of a synchronous operation, such as receiving a
message or a timeout.

type ’a event

Base-event constructors create event values for communication primitives:

val recvEvt : ’a chan -> ’a event

Events allow complicated communication protocols to be implemented as
first-class abstractions.

October 2005 WG 2.8 4

Events (continued ...)

CML event operations:

• Event wrappers for post-synchronization actions.

• Event generators for pre-synchronization actions and cancellation.

• Choice for managing multiple communications.

• Synchronization on an event value.

October 2005 WG 2.8 5

Example — client/server protocol

Recall the client/server protocol from before.

reply

request

Client Server

ack

send

recv
send

recv
send

recv

request

Client Server

replynack

send

timeout

recv

send
recv

Using events, we can package it with the following abstract interface:

type serv
val new : () -> serv
val call : (serv * request) -> reply event

where request and reply are the argument and result types.

October 2005 WG 2.8 6

Opportunities for optimization

A couple of observations about CML in practice:

• CML communication primitives have general implementations
(multi-party, choice, multiple messages), but a given dynamic instance
of a primitive often has a restricted usage pattern.

• CML programs and libraries often use abstraction to localize a family of
instances.

October 2005 WG 2.8 7

Channel specialization

CML communication primitives have general implementations (multi-party,
choice, multiple messages), but a given dynamic instance of a primitive often
has a restricted usage pattern.

For example, we can classify channels by the number of threads that might
perform an operation on the channel.

number of
senders receivers messages topology

≤1 ≤1 ≤1 one-shot
≤1 ≤1 >1 point-to-point
≤1 >1 >1 one-to-many (fan-out)
>1 ≤1 >1 many-to-one (fan-in)
>1 >1 >1 many-to-many

Use in a choice context (or not) is another property of interest.

October 2005 WG 2.8 8

Channel specialization (continued ...)

Does exploiting this patterns gain anything?

For the current implementation of CML, we know that one-shot channels
can be replaced by I-variables for a big improvement.

For the other patterns, the benefits are less clear in the current
single-threaded implementation.

For distributed or multithreaded implementations, we expect benefit from
using these specialized operations (see Demaine 1998).

October 2005 WG 2.8 9

Example: a simple server

Consider a simple service that holds an integer key and that provides an
operation for swapping the key.

signature SIMPLE_SERV =
sig

type serv
val new : unit -> serv
val call : (serv * int) -> int

end

October 2005 WG 2.8 10

Example: a simple server (continued ...)

structure SimpleServ : SIMPLE_SERV =
struct

datatype serv = S of (int * int chan) chan
fun new () = let

val ch = channel ()
fun server v = let

val (req , replCh) = recv ch
in

send (replCh , v);
server req

end
in

spawn (server 0);
S ch

end
fun call (S ch, v) = let

val replCh = channel ()
in

send (ch , (v, replCh));
recv replCh

end
end

October 2005 WG 2.8 11

Example: a simple server (continued ...)

Unknown
clients

fun new () = let
 val ch = channel()
 fun server v = let
 val (req, replCh) = recv ch
 in
 send(replCh, v);
 server req
 end
 in
 spawn (server 0);
 S ch
 end

fun call (S ch , v) = let
 val replCh = channel()
 in
 send (ch , (v, replCh));
 recv replCh
 end

October 2005 WG 2.8 12

Example: a simple server (continued ...)

structure SimpleServ : SIMPLE_SERV = struct
datatype serv = S of (int * int OneShot . chan) FanIn . chan
fun new () = let

val ch = FanIn . channel ()
fun server v = let

val (req , replCh) =
FanIn . recv ch

in
OneShot . send(replCh , v);

server req
end

in
spawn (server 0);
S ch

end
fun call (S ch, v) = let

val replCh = OneShot . channel ()
in

FanIn . send (ch , (v, replCh));

OneShot . recv replCh
end

end

October 2005 WG 2.8 13

Analysis

The hard part is knowing when it is safe to replace channels and channel
operations with specialized versions.

To understand this problem, we consider a subset of CML that has
abstype declarations (instead of modules), threads and channel, send and
receive operations, and a monomorphic type system.

Terms in this language are annotated with unique labels that denote their
program point.

October 2005 WG 2.8 14

Dynamic semantics

A program state is a tree (called a trace), where the leaves are terms that
represent the current state of the threads and the path from the root to a leaf
represents the history of that thread in that execution.

A small-step semantics defines how we add children to the leaves. The
spawn operation adds two children to a leaf. Communication adds a single
child to two leaves (the sender and the receiver).

Threads are named by the path to their spawn site in the trace. Likewise,
channel instances are named by the path to their creation site (e.g. c@π).

We say that π � π′ if π is a prefix of π′.

October 2005 WG 2.8 15

Semantics (continued ...)

p

E[a: chan c in e]

π

E[b: spawn e]

E[c: recv c@π]

E[d: send(c@π, v)]

October 2005 WG 2.8 16

Semantics (continued ...)

We can state our channel classification in terms of traces.

For a program p, Trace(p) is the set of possible finite traces.

For a trace t and channel instance k, we define

Sendst(k) = {π | t.π = E[send (k, v)]}
Recvst(k) = {π | t.π = E[recv k]}

We say that a channel c defined in a program p has the single-sender
property if for any t ∈ Trace(p) and instance c@π of c occurring in t, if
π1, π2 ∈ Sendst(c@π), then either π1 � π2 or π2 � π1.

The single-receiver property is defined similarly.

October 2005 WG 2.8 17

Semantics (continued ...)

For a channel identifier c in a program p, we can classify its topology as
follows:

• The channel c is a one-shot channel if for any t ∈ Trace(p) and
k = c@π occurring in t, |Sendst(k)| ≤ 1.

• The channel c is point-to-point if it has both the single-sender and
single-receiver properties.

• The channel c is a fan-out channel if it has the single-sender property,
but not the single-receiver.

• The channel c is a fan-in channel if it has the single-receiver property,
but not the single-sender.

October 2005 WG 2.8 18

An analysis algorithm

Our analysis processes one module (abstype) at a time. It is organized into
three steps:

1. A modular, type-sensitive, CFA based on Serrano’s version of 0-CFA.

2. Construct an extended CFG for the module.

3. Analyze the extended CFG to determine a safe approximation of the
communication topology.

The analysis can distinguish between multiple threads created at the same
static location.

October 2005 WG 2.8 19

The simple server

We’ll illustrate the analysis using the simple server example.

a1 : fun new () = (
a2 : chan ch in
a3 : fun server v = (
a4 : let (w’ , replCh’) = recv ch in
a5 : send (replCh’ , v);
a6 : server w’)

in
a7 : spawn (a8 : server 0);
a9 : S ch)

a10 : fun call (s, w) = (
a11 : let S ch’ = s in
a12 : chan replCh in
a13 : send (ch , (w, replCh));
a14 : recv replCh)

October 2005 WG 2.8 20

Type-sensitive CFA

The CFA computes approximations of the call sites of functions and the
send and receive sites of channels.

̂SendSites(ch) = {a13}
̂RecvSites(ch) = {a4}

̂SendSites(replCh) = {a5}
̂RecvSites(replCh) = {a14}

Note that even though new and call are escaping functions and ch

escapes into the wild, the analysis is able to come up with useful information.

October 2005 WG 2.8 21

Extended CFA

We use the results of the
CFA to construct an ex-
tended CFG.
The CFG has edges for:
control-flow, spawning, mes-
sages sent from known sites
to known receivers, and wild
edges.
We label edges with the live
known channels.

a2

a3

a7

a4

a9

a5

a6

a13

a14

a11

a12

{}

{ch}

{ch}

{ch} {ch}

{ch}

{ch}

{}

{ch}

{replCh}

{ch, replCh}

{ch, replCh}

{ch}

{ch}

{replCh}

new

call

a8

{ch}

{ch}

Control edge

Spawn edge

Message edge

Wild edge

{}

October 2005 WG 2.8 22

CFG analysis

We use the CFG to compute an approximation of the paths from where an
instance of a channel c is created to its use sites. These paths are split into
a process ID part and a path part. The special ID ∗ represents more than
one process.

From the path approximation, we compute the sets of sender (Ŝc) and
receiver (R̂c) paths for c.

We define approximate single-sender/single-receiver properties in terms of
Ŝc and R̂c.

These properties imply a safe classification of channels.

We restrict the analysis to the relevant sub-CFG.

October 2005 WG 2.8 23

CFG analysis (continued ...)

P̂replCh (a12) = {ε:ε}
P̂replCh (a13) = {ε:a12}
P̂replCh (a14) = {ε:a12a13}
P̂replCh (a4) = {a13:ε}
P̂replCh (a5) = {a13:a4}

̂SreplCh = P̂replCh (a5)

= {a13:a4}
̂RreplCh = P̂replCh (a14)

= {ε:a12a13}

a4

a5

a13

a14

a12

{replCh}

{ch, replCh}

{ch, replCh}

{replCh}

Thus, replCh is a one-shot channel.

October 2005 WG 2.8 24

CFG analysis (continued ...)

The analysis for ch is more involved, since there are loops, spawns, and wild
edges involved.

The result is

Ŝch = {∗:a11a12}
R̂ch = {π:a8, π:a8a4a5a6}

where pi = a2a3ā7.

Thus, ch has the approximate single receiver property, but not the
single-sender property, and can be implemented using a fan-in channel.

October 2005 WG 2.8 25

TODO

• Typed-based CFA as an alternative to our abstract interpretation style
algorithm.

• Correctness proofs (should we use a proof assistant?)

• Other properties: no choice; single-threaded servers; ...

• Extend CFA to include event types and combinators

• Extend CFA to modules

• Implementation.

October 2005 WG 2.8 26

