
Concurrent Programming with 
Join Patterns via STMs

Satnam Singh, Microsoft

WG2.8 Estonia



Overview

Nothing clever.
Bait and switch operation.
Join patterns in Comega
Joins encoded with STMs:

Synchronous and asynchronous joins.
Choice.
Dynamic Joins.



Comega asynchronous methods
using System ;

public class MainProgram
{ public class ArraySummer
{ public async sumArray (int[] intArray)
{ int sum = 0 ;
foreach (int value in intArray)
sum += value ;

Console.WriteLine ("Sum  = " + sum) ;
}

}

static void Main()
{ Summer = new ArraySummer () ;
Summer.sumArray (new int[] {1, 0, 6, 6, 1, 9, 6, 6}) ;
Summer.sumArray (new int[] {3, 1, 4, 1, 5, 9, 2, 6}) ;
Console.WriteLine ("Main method done.") ;

}
}



Comega chords
using System ;

public class MainProgram
{ public class Buffer
{ public async Put (int value) ;
public int Get () & Put(int value)
{ return value ; }   

}

static void Main()
{ buf = new Buffer () ;
buf.Put (42) ;
buf.Put (66) ;
Console.WriteLine (buf.Get() + " " + 

buf.Get()) ;
}

}



“STM”s in Haskell
data STM a
instance Monad STM
-- Monads support "do" notation and sequencing
-- Exceptions
throw :: Exception -> STM a
catch :: STM a -> (Exception->STM a) -> STM a
-- Running STM computations
atomically :: STM a -> IO a
retry :: STM a
orElse :: STM a -> STM a -> STM a
-- Transactional variables
data TVar a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()



Join2

module Main
where

import Control.Concurrent
import Control.Concurrent.STM

join2 :: TChan a -> TChan b -> IO (a, b)
join2 chanA chanB
= atomically (do a <- readTChan chanA

b <- readTChan chanB
return (a, b)

)

taskA :: TChan Int -> TChan Int -> IO ()
taskA chan1 chan2
= do (v1, v2) <- join2 chan1 chan2

putStrLn ("taskA got: " ++ show (v1, v2))

main
= do chanA <- atomically newTChan

chanB <- atomically newTChan
atomically (writeTChan chanA 42)
atomically (writeTChan chanB 75)
taskA chanA chanB



One-Shot Synchronous Join
(&) :: TChan a -> TChan b -> STM (a, b)
(&) chan1 chan2
= do a <- readTChan chan1

b <- readTChan chan2
return (a, b)

(>>>) :: STM a -> (a -> IO b) -> IO b
(>>>) joinPattern handler

= do results <- atomically joinPattern
handler results

example chan1 chan2
= chan1 & chan2 >>>
\ (a, b) -> putStrLn (show (a, b))



Puzzle
main :: IO ()
main
= do chan1 <- atomically $ newTChan

atomically $ writeTChan chan1 42
atomically $ writeTChan chan1 74
chan1 & chan1 >>> 
\ (a, b) -> putStrLn (show (a,b))



Repeating Asynchronous Join
(>!>) :: STM a -> (a -> IO ()) -> IO ()
(>!>) joins cont

= do forkIO (asyncJoinLoop joins cont)
return () -- discard thread ID

asyncJoinLoop :: (STM a) -> (a -> IO ()) -> IO ()
asyncJoinLoop joinPattern handler
= do joinPattern >>> forkIO . handler

asyncJoinLoop joinPattern handler

example chan1 chan2
= chan1 & chan2 >!> 
\ (a, b) -> putStrLn (show ((a, b)))



Exploiting Overloading
class Joinable t1 t2 where
(&) :: t1 a -> t2 b -> STM (a, b)

instance Joinable TChan TChan where
(&) = join2

instance Joinable TChan STM where
(&) = join2b

instance Joinable STM TChan where
(&) a b = do (x,y) <- join2b b a

return (y, x)

chan1 & chan2 & chan3 >>> 
\ ((a, b), c) -> putStrLn (show (a,b,c))



Biased Synchronous Choice
(|+|) :: (STM a, a -> IO c) -> 

(STM b, b -> IO c) -> 
IO c

(|+|) (joina, action1) (joinb, action2)
= do io <- atomically 

(do a <- joina
return (action1 a)

`orElse`
do b <- joinb

return (action2 b))
io

(chan1 & chan2 & chan3, 
\ ((a,b),c) -> putStrLn (show (a,b,c))) 

|+|
(chan1 & chan2, 

\ (a,b) -> putStrLn (show (a,b)))



Dynamic Joins
example numSensors numSensors chan1 chan2 chan3
= if numSensors = 2 then

chan1 & chan2 >!> \ (a, b) -> 
putStrLn (show ((a, b)))

else
chan1 & chan2 & chan3 >!> \ (a, (b, c))
-> putStrLn (show ((a, b, c)))



Conditional Joins
(??) :: TChan a -> (a -> Bool) -> STM a
(??) chan predicate

= do value <- readTChan chan
if predicate value then

return value
else

retry

(chan1 ?? \x -> x > 3) & chan2 >>> 
\ (a, b) -> putStrLn (show (a, b))



Summary and Questions

“Free” joins encoded nicely in terms 
of STMs.
Model for understanding join patterns 
in terms of STMs.
A good literal implementation (?)

Parallel execution?
Joins as statements instead of 
declarations.
Other work: JSR-166 library
What are joins good for anyway?



Conditional Joins

(?) :: TChan a -> Bool -> STM a
(?) chan predicate
= if predicate then

readTChan chan
else
retry

(chan1 ? cond) & chan2 >>> 
\ (a, b) -> putStrLn (show (a, b))



Conditional Joins

(?) :: TChan a -> STM Bool -> STM a
(?) chan predicate

= do cond <- predicate
if cond then

readTChan chan
else

retry



Backup



Backup 


	Concurrent Programming with Join Patterns via STMs
	Overview
	Comega asynchronous methods
	Comega chords
	“STM”s in Haskell
	Join2
	One-Shot Synchronous Join
	Puzzle
	Repeating Asynchronous Join
	Exploiting Overloading
	Biased Synchronous Choice
	Dynamic Joins
	Conditional Joins
	Summary and Questions
	Conditional Joins
	Conditional Joins
	Backup
	Backup

