Concurrent Programming with
Join Patterns via STMs

Satnam Singh, Microsoft

WG2.8 Estonia |

Overview

|. m Nothing clever.
*® w Bait and switch operation.
= Join patterns in Comega

= Joins encoded with STMs:
= Synchronous and asynchronous joins.
= Choice.
= Dynamic Joins.

Comega asynchronous methods

using System ;

public class MainProgram
{ public class ArraySummer
{ public async sumArray (int[] intArray)
Tint sum = 0 ;
foreach (int value in IntArray)
sum += value ;
Console._WriteLine ("Sum =" + sum) ;

}
}

static void Main()

{ Summer = new ArraySummer () ;
Summer .sumArray (new int[] {1, 0, 6, 6, 1, 9, 6, 6
Summer.sumArray (new int[] {3, 1, 4, 1, 5, 9, 2, 6
Console._WriteLine (“'Main method done.™) ;

by

1R
D

}

Comega chords

using System ;

public class MainProgram
{ public class Buffer
{ public async Put (int value) ;
public Int Get () & Put(int value)
{ return value ; }

}

static void Main()

{ buf = new Buffer Q ;
buf.Put (42) ;
buf.Put (66) ;

Console.WriteLine (buf.Get() + ™ " +
buf.Get()) ;

}

}

“STM”s In Haskell

data STM a

instance Monad STM

—— Monads support "'do' notation and sequencing
—— EXceptions

throw :: Exception -> STM a

catch :: STM a -> (Exception->STM a) -> STM a
—— Running STM computations

atomically -: STM a -> 10 a

retry -: STM a

orElse -: STM a -> STM a -> STM a

-- Transactional variables

data TVar a

newTVar :: a -> STM (TVar a)

readTVar :: TVar a -> STM a

writeTVar :: TVar a -> a -> STM ()

Join2

module Main
where

import Control.Concurrent
import Control.Concurrent.STM

join2 :: TChan a -> TChan b -> 10 (a, b)
join2 chanA chanB
= atomically (do a <- readTChan chanA
b <- readTChan chanB
return (a, b)

)

taskA -: TChan Int -> TChan Int -> 10 O
taskA chanl chan2
= do (v1, v2) <- join2 chanl chan2
putStrLn (“"taskA got: " ++ show (v1, v2))

main
= do chanA <- atomically newTChan
chanB <- atomically newTChan
atomically (writeTChan chanA 42)
atomically (writeTChan chanB 75)
taskA chanA chanB

One-Shot Synchronous Join

(&) :: TChan a -> TChan b -> STM (a, b)
(&) chanl chan2
= do a <- readTChan chanl
b <- readTChan chan2
return (a, b)

(>>>) :: STMa -> (a ->10b) -=> 10 Db
(>>>) joinPattern handler
= do results <- atomically joinPattern
handler results

example chanl chanZ2
= chanl & chan2 >>>
\ (a, b) -> putStrLn (show (a, b))

Puzzle

main -: 10 O

= do chanl <- atomically $ newTChan
atomically $ writeTChan chanl 42
atomically $ writeTChan chanl 74
chanl & chanl >>>
\ (a, b) -> putStrLn (show (a,b))

Repeating Asynchronous Join

G1>) - STMa -> (@ ->10 O) > 10 O
(>!>) joins cont
= do forklO (asyncJoinLoop joins cont)
return () -- discard thread ID

asyncJoinLoop :: (STM a) -> (a->10 () -> 10 ()
asyncJoinLoop joinPattern handler
= do joinPattern >>> forklO . handler
asyncJoinLoop joinPattern handler

example chanl chanZ2
= chanl & chan2 >1>
\ (a, b) -> putStrLn (show ((a, b)))

Exploiting Overloading

class Joinable t1 t2 where
(&) - tl a ->t2 b -> STM (a, b)

instance Joinable TChan TChan where
(&) = join2

instance Joinable TChan STM where
(&) = join2b

instance Joinable STM TChan where
(&) a b = do (X,y) <- join2b b a
return (y, X)

chanl & chan2 & chan3 >>>
\ ((a, b), ¢) -> putStrLn (show (a,b,c))

Biased Synchronous Choice

T% a+l) :: (¢SstiM a, a -> 10 ¢c) ->
2 (STM b, b -> 10 ¢) ->

i 10 C
s (I+I) (jOina, aCtionl) (jOinb, aCtiOI’lZ)
= do 10 <- atomically
(do a <- joina
return (actionl a)
“orElse”
do b <- joinb
return (action2 b))

10

(chanl & chan2 & chan3,
\ ((a,b),c) -= putStrLn (show (a,b,c)))
|+|
(chanl & chan2,
\ (a,b) -> putStrLn (show (a,b)))

Dynamic Joins

e example numSensors numSensors chanl chan2 chan3
= = = if numSensors = 2 then
chanl & chan2 >I> \ (a, b) ->
putStrLn (show ((a, b)))
else
chanl & chan2 & chan3 >!> \ (a, (b, ¢))
-> putStrLn (show ((a, b, ©)))

Conditional Joins

) (??) :: TChan a -> (a -> Bool) -> STM a
Y (??) chan predicate
[= do value <- readTChan chan
iIT predicate value then
return value
else
retry

(chanl ?? \x -> x > 3) & chan2 >>>
\ (a, b) -> putStrLn (show (a, b))

Summary and Questions

" = “Free” joins encoded nicely Iin terms
of STMs.

— = Model for understanding join patterns
In terms of STMs.

= A good literal implementation (?)
= Parallel execution?

m Joins as statements instead of
declarations.

m Other work: JSR-166 library
= What are joins good for anyway?

Conditional Joins

(?) :-: TChan a -> Bool -> STM a
(?) chan predicate
= 1T predicate then
readTChan chan
else

retry

(chanl ? cond) & chan2 >>>
\ (a, b) -> putStrLn (show (a, b))

Conditional Joins

(?) :: TChan a -> STM Bool -> STM a
(7) chan predicate
= do cond <- predicate
iIT cond then
readTChan chan
else
retry

	Concurrent Programming with Join Patterns via STMs
	Overview
	Comega asynchronous methods
	Comega chords
	“STM”s in Haskell
	Join2
	One-Shot Synchronous Join
	Puzzle
	Repeating Asynchronous Join
	Exploiting Overloading
	Biased Synchronous Choice
	Dynamic Joins
	Conditional Joins
	Summary and Questions
	Conditional Joins
	Conditional Joins
	Backup
	Backup

