Boxy types: Inference for higher-rank types and
impredicativity

Dimitrios Vytiniotis!
Simon Peyton Jones?
Stephanie Weirich!

LComputer and Information Science Department
University of Pennsylvania

2Microsoft Research

Kalvi, October 2005

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction

Future of FP

What will the type system of future functional programming
languages look like?

GADTs

Poymorphic recursion
Higher-rank
Impredicativity
Type-level lambdas
Equi-recursive types
Effects

Dependent types

vV V.V VvV vV vV VY

How can we reconcile HM-type inference with all of these?

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction

Future of FP

What will the type system of future functional programming
languages look like?

GADTs

Poymorphic recursion
Higher-rank
Impredicativity
Type-level lambdas
Equi-recursive types
Effects

Dependent types

vV V.V VvV vV vV VY

How can we reconcile HM-type inference with all of these?
And should we? (If not, this is the end of the talk.)

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction

Programming in System F

There is a good chance that future programming languages will be
based on System F.
Type inference for System F lacks principal types. For some terms,

there is no “best” type

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction

Programming in System F

There is a good chance that future programming languages will be
based on System F.

Type inference for System F lacks principal types. For some terms,
there is no “best” type

Two choices:

» Enrich type system

» Require user annotation to disambiguate

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction

Our proposal

Boxy types:

» An extension of Haskell with higher-rank and impredicative
polymorphism.

» Basic idea: propagate type annotations and contextual
information using local type inference.

» Single pass, unlike Rémy'’s stratified type inference.

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction

Design goal:
» Type check all Haskell code (use unification for monotypes)
» Not too fancy: use annotations for polytypes

» Reach all of System F

» Use annotations to mark polymorphic instantiations and
generalizations

» Compilation to System F (GHC core language)

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

Boxy Types

Idea: Make the type checker understand about “partially known
and partially unknown types”

» Combine '+ e:pand I' | e: p into single judgment form:

lFe:p’.
= Va.p o/ == Vap'l| o
p 1= o—o0|T p/ == o =o' |lp|T
T u= altT—7T

» Constraints: No nested boxes, no quantified vars free inside
boxes, no boxes in the type context.

» Reminiscent of coloured local type inference (Odersky, Zenger,
and Zenger, 2001).

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

By-reference parameters

Typing judgment form: T+ e: p’.
» Boxes in p’ are filled in by the algorithm during this call by

the type checker. The rest of p’ is checkable information.

» The specification includes the appropriate types that are the
“output” of the algorithm.

> If a box meets known information somewhere in the
specification, then it may be filled in by a polytype.
» If not, the box is filled in by a guessed monotype.
Examples:
» Completely inference: ' t:p

» Completely checking: 't :p

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

Typing rules

» Typing rules are syntax-directed: instantiation occurs at
variable occurrences, and generalization at let expressions.

'Fwu:lp
Fo<p' x:0€Tl 3 = ftv(p) — ftv(T)
Nex:p’ VAR x:Vaphkt:p o

N -letx=uint:p’

» A lot of trickyness in <, we'll get to that.
» Unbox p in let.

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Semantics of Boxy Types

Application typing rules

Typing rules
Boxy matching
Subsumption

N-t:lo — p’
rEey .o APP
Ftu:p’

F-t:p’
a¢ ftv(lN GEN1
MY ¢ vap!

» Check the function argument type (possibly polymorphic).

» More to come for PO

D Vytiniotis, S Peyton Jones, S Weirich

Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

Type annotations

Type annotations let us introduce unboxed polytypes.

FEPY y:o Tx:obt:p
letx:o=uint:p’

SIGLET

» Note: type annotations do not contain boxes

» This rule has been simplified, in the full system we support
lexically-scoped type variables.

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

Abstraction rules

Fol~o
M- (Ax.t): 61 — (09 1

'k (Ax.t) :log — 02

ABS1 Nx:oy P ¢ 05 ABS2
' (Ax.t): 0] — 0}

'Et:lp
WGEB&

r
» Note higher rank
» The relation ~ is boxy-matching.

» Don't generalize in inference mode.

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

Boxy matching

» The two types complement eachother.

» Symmetric, but not reflexive or transitive.

» For monotypes, an equivalence relation.

» Walk down structure of type, filling in holes on either side.

Examples:

F Va.a— a ~Va.a— a
F Vaa—a - Vaa—a~(Vaa— a) — Vaa— a
¥/ Va.a— a ~ Va.a— a
F Int ~ Int
FInt — Int ~ Int — Int

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

Boxes for impredicativity

Recall the rule for variables.

Fo<p' x:0€Tl
N'-x:p'

VAR

Suppose that f : Va.a — a in the context. Then our goal is:
'Ef:lt—=1 butnot THf: 0= 0o

On, the other hand we should be able to check arbitrary
polytypes:
'-f:0—-0

So we want:

Vaa—ma<t—o1T Vaa—af o—0 Vaa—a<o—oo

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

More Examples of subsumption

» Guess monotype instantiations:
FVa.a— a< Int — Int

FVa.a— a< Int — Int

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

More Examples of subsumption

» Guess monotype instantiations:
FVa.a— a< Int — Int
FVa.a— a < Int — Int
» Even in result type of functions:

F (Vab.a — b) — (Va.a — a) < (Vab.a — b) — (Int — 'Int)

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

More Examples of subsumption

» Guess monotype instantiations:
FVa.a— a< Int — Int
FVYa.a— a < Int — Int
» Even in result type of functions:
F (Vab.a — b) — (Va.a — a) < (Vab.a — b) — (Int — |Int)

» Pull quantifiers out: F Int —» Va.a —» a<Va.Int - a— a

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

More Examples of subsumption

» Guess monotype instantiations:
FVa.a— a< Int — Int
FVYa.a— a < Int — Int
» Even in result type of functions:
F (Vab.a — b) — (Va.a — a) < (Vab.a — b) — (Int — |Int)

» Pull quantifiers out: F Int —» Va.a —» a<Va.Int - a— a
» Require guessed polytypes to meet known information:

l/ Va.a— a < Va.a— a F Vaa— a <Vaa—a

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

More Examples of subsumption

» Guess monotype instantiations:
FVa.a— a< Int — Int
FVYa.a— a < Int — Int
» Even in result type of functions:
F (Vab.a — b) — (Va.a — a) < (Vab.a — b) — (Int — |Int)

» Pull quantifiers out: F Int —» Va.a —» a<Va.Int - a— a
» Require guessed polytypes to meet known information:

l/ Va.a— a < Va.a— a F Vaa— a <Vaa—a

» Monotypes may be boxed F 17 </t

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

More Examples of subsumption

» Guess monotype instantiations:
FVa.a— a< Int — Int

FVa.a— a< Int — Int

» Even in result type of functions:
F (Vab.a — b) — (Va.a — a) < (Vab.a — b) — (Int — 'Int)
» Pull quantifiers out: F Int —» Va.a —» a<Va.Int - a— a
» Require guessed polytypes to meet known information:
l/ Va.a— a < Va.a— a F Vaa— a <Vaa—a
» Monotypes may be boxed F 17 </t
» All together:

F (Vab.a — b) - Va.a— a< Vab.a— b — (Int — Int)

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

Subsumption relation

» Defines when a type is “at least as general” as another.

» Instantiate type variables with boxy polytypes.

FVa.p! <ps béfi P!
MONO Va.p; < p2/ b ¢7tV/(VE pl)
Fr<nt F Va.p; < Vb.p,

SKOL

Fla— alp] < p}
I—VEp{ Spé SPEC

» More rules to come, but note, with T instead of '@ this is HM
subsumption relation.

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

Copying into boxes

When box meets non-box, the algorithm copies the information
into the box.

SBOXY-SIMPL

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

Copying into boxes

When box meets non-box, the algorithm copies the information
into the box.

————— SBOXY-SIMPL
Fo<o

Generalize this rule to allow boxes on the right hand side.

Flo ~o
Fla<o T

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

A subtle point

» What if we add this (suggestively-named) rule:

Fo'~o

SBOXY-WRONG
Fo' <

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

A subtle point

» What if we add this (suggestively-named) rule:

Fo'~o

SBOXY-WRONG
Fo' <

» Overlap between SBOXY-WRONG and SPEC. If a polytype
meets a box, what should we do?

Fla— lalp] < p4
I—Vépigpé SPEC

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

Can't restrict spec

Could restrict SPEC so that the RHS cannot be a box:

Fla—alp; <p) ps#lp
- Va.p; < p5

SPEC-NOBOX

but then we would lose some Haskell programs:

id :Va.a— at id: Int — Int

requires - Va.a — a < Int — Int

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

Tension between higher-rank and impredicativity

Standard subsumption rule for higher-rank types:

!/ / / /
Fo3>0] Foy<o,
/ / / /
Fop—0y,<03—0,

F2

But we aren’t going to use this rule.

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

Subsumption and function types

Want to encode all of System F type instantiations using type
annotations.
» Need - Va.p < p[o/al
» SPEC introduces boxes on the left. If we are to fill them, they
better stay on the left.

» Invariance for the argument of a function type.

/ / / /

F2
/ !/ !/ !/
Fop — o0, <030,

» Essential to show:

Vaa— a< (Vaa—a) - Vaa—a

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

Properties of the type system

>
>
>
>

Type-safety through translation to System F.
Algorithm computes principal types.
Type system extends Hindley-Milner.

Monotypes can be unboxed/boxed arbitrarily. Unification
takes care of that.

v

Can embed System F.

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

Expressiveness

There are several programs that don’t typecheck, that we really
would like to.
For example:

id:Va.a— a
sing : Va.a — [al

Even if we know the result type:
't/ sing id : [Va.a — a]
This requires that:

FVa.a— [a]l < Va.a— a — [Va.a — a

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

Smart application

We have been exploring alternative rules for application.

x:Vao—oeTl
dc=anftv(o) Fe=3—3a
Flac — oclo < p’
MY Ui a6 o (0w, 3075 Oclo
N-xu:p’

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Typing rules
Semantics of Boxy Types Boxy matching
Subsumption

Smart application

We have been exploring alternative rules for application.

x:Vao—oeTl
dc=anftv(o) Fe=3—3a
Flac — oclo < p’
MY Ui a6 o (0w, 3075 Oclo
N-xu:p’

Not quite satisfactory:
» Completeness problem
» Can't typecheck '+ hd ids:a — a

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Conclusion and Future Work

Questions

» Is this the right tradeoff between expressiveness and
simplicity?
» Stratified vs. monolithic type inference?

» Is there a different strategy altogether?

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Conclusion and Future Work

More questions

» Is System F the right “core” language?

» Can the user understand when the program type checks?
“Simple” specification vs. powerful inference vs. good error
messages?

» Is it easy to modify programs if there are a lot of type
annotations all over the place?

» Why is thinking about type inference addictive?

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Conclusion and Future Work

More information

Draft paper available at:
www.cis.upenn.edu/ "dimitriv/boxy

Revision appearing soon.

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

	Introduction
	Semantics of Boxy Types
	Typing rules
	Boxy matching
	Subsumption

	Conclusion and Future Work

