Partiality is an Effect

Venanzio Capretta
Thorsten Altenkirch

Tarmo Uustalu

WG 2.8, Kalvi, 1-4 Oct. 2005

OUTLINE '

The problem of partiality
The delay datatype and monad
Constructive domain theory and recursion

Combining partiality with other effects

PROBLEM '

Partial /non-terminating programs may be ok, but partial proofs are not.

In dependently typed programming, where no distinction is made between

programs and proofs, this becomes critical.
Partial maps (total functions on subsets) are no solution.
Idea: Could non-termination be seen as an effect?

Answer: Yes! Just use the fact that termination/non-termination is about

walting.

///'

DELAY DATATYPE '

e Delayed values:

data Delay a = Now a | Later (Delay a) —-- coinductive

e Infinite delay:
never :: Delay a
never = Later never
e Minimalization:

minim :: (Int -> Bool) -> Delay Int

minim p = minimFrom p O

minim :: (Int -> Bool) -> Int -> Delay Int

minimFrom p n = if p n then Now n else Later (minimFrom p (n+1))

/

///*

e Competition of two computations:

race :: Delay a -> Delay a -> Delay a

race (Now a) _ = Now a

race (Later _) (Now a) = Now a

race (Later d) (Later d’) = Later (race d 4’)

e Competition of omega many computations:

omegarace :: [Delay al] -> Delay a

omegarace (d:ds) = race d (Later (omegarace ds))

e Note that all function definitions above are guarded corecursive.

N

///'

MONADIC STRUCTURE OF DELAY'

e Delay is a monad: we have the Kleisli identity and composition:

instance Monad Delay where
return = Now
Now a >>=k =k a
Later d >>= k = Later (d >>= k)

e A special operation:

repeat :: (a -> Delay (Either b a)) -> a -> Delay b
repeat k a = do v <- k a
case v of
Left b -> return b
Right a -> Later (rep k a)

This is not guarded in an obvious fashion.

N

/

e A closely related one with a clearly guarded definition:

while :: (a -> Delay (Either b a)) —->

Delay (Either b a) -> Delay b
while k (Now (Left b)) = Now b
while k¥ (Now (Right a)) = Later (while k (k a))
while k (Later c) = Later (while k c)

repeat :: (a -> Delay (Either b a)) -> a -> Delay b
repeat k a = while k (Now (Right a))

///*

e More specific versions:

repeat’ :: (a -> Delay a) -> (a -> Delay Bool) -> a -> Delay a

repeat’ k p

= repeat (\ a -> do a’ <- k a

b <-p a’
return (if b then Left

while’ :: (a -> Delay Bool) -> (a -> Delay a)

while’ p k

= repeat (\ a -> do b <- p a

if b then do { a’ <- k

else return (Left

a’ else Right a’))

-> a -> Delay a

a ; return (Right a’) }

a))

/

~

SOME CATEGORY THEORY'

Monads like the delay monad A — v X.A 4+ X have been discussed extensively
by Adamek et al in category theory.

The delay monad is the free completely iterative monad over the identity

functor.

In general, the free completely iterative monad over a functor H is
A—vX. A+ HX.

Complete iterativeness: Unique existence of a combinator satisfying the

equation of repeat.
Freeness: the “smallest” such monad.

In a good mathematical sense, the delay monad is the universal one among the

/

monads suitable for capturing iteration.

///'

CONSTRUCTIVE DOMAIN THEORY'

e We have looping, what about recursion?

e Domains (posets with a bottom and lubs of all omega-chains):

class Dom a where
bot :: a
lub :: [a] -> a

e Some constructions of domains:

instance Dom b => Dom (a -> b) where
bot a = bot
lub fs a = lub (map (\ £ -> f a) fs)

instance (Dom a, Dom b) => Dom (a, b) where
bot = (bot, bot)
lub abs = (lub (map fst abs), lub (map snd abs))

N

10

Least fixpoints construction:

iterate :: (a -> a) -> a -> [a]

iterate f a = a : iterate f (f a)

1fp :: Dom a => (a -> a) -> a
1fp £ = 1lub (iterate f bot)

Delay types are domains:

instance Dom (Delay a) where
bot = never

lub = omegarace

Partial ordering: d C d" iff d | a implies d’ | a where | is defined inductively by

— now(a) | a,

— if d | a, then later(d) | a.

This is not antisymmetric, we only have a preordered set and to get a partial

order, we must quotient wrt the symmetric closure.

/

11

///*

e An example:

fib :: Integer -> Delay Integer
fib = 1fp (\ fib -> \ n ->

if n
else

else

if
do

O then return O

n == 1 then return 1
x <- fib (n-1)

y <= fib (n-2)

return (x+y)

12

/ A MONADIC INTERPRETER'

e A typed cbv language with integers and booleans.

e Term syntax:

type Var = String

data Tm = V Var | L Var Tm | Tm :Q@ Tm
| Tm :& Tm | Fst Tm | Snd Tm
| N Integer | Tm :+ Tm |
| TT | FF | If Tm Tm Tm |
—-— looping
| While Tm Tm | Until Tm Tm
—-— general recursion

| Rec Var Tm

e Semantic domains:

data Val = I Integer | B Bool | P (Val, Val) | F (Val -> Delay Val)

type Env = [(Var, Val)]
N /

13

///fovaahnﬂjon:

N

ev o

ev

ev

ev

ev

ev

ev

Tm -> Env -> Delay Val

(V x) env = return (unsafelookup x env)
(L xe) env=return (F (\ a -> ev e (update x a env)))
(e :@ e’) env =do F k <- ev e env

a <- ev e’ env

k a

(While e e’) env

do F p <- ev e env

F k <- ev e’ env
return (F (while’

(Until e e’) env

I
Q.
®)

F k <- ev e env

F p<-eve’ env

return (F (repeat’ k¥ (\ a -> do { B b <- g a ; return b }))
(Rec x e) env = return (F (1fp f))
where f k a = do {F k’ <- ev e (update x (F k) env) ; k’ a }l///

(\a->do{Bb<-ga; return b } k))

14

///

e Example:
-- fib = rec fib > \' n -> if n == then O
-— else if n == 1 then 1
- else fib (n-1) + fib (n-2)
fib = Rec "fib" (L "n"
(If (V "n" :== N 0) (N 0)
(If (V "n" :== N 1) (N 1)
((v "fip" :@ (V "n" :-= N 1)) :+ (V "fip" :@ (V "n"

= N 2))))

/

15

))

///’

AIEHNGITERATKHQTI)OTHERJMONADS'

e For any monad, there is a monad supporting looping.

newtype Delay r a = D { unD :: r (Either a (Delay r a)) }
—-— coinductive
instance Functor r => Functor (Delay r) where
fmap £ (D d) = D (fmap (either (Left . f) (Right . fmap £f)) d)

instance Monad r => Monad (Delay r) where
return a = D (return (Left a))
Dd>=%k =D (d >>= either (unD . k) (return . Right . (>>= k)))

repeat :: Monad r => (a -> Delay r (Either b a)) -> a -> Delay r b
repeat k a = k a >>= either return (D . return . Right . repeat k)
The original monad can be embedded into the derived one.

1lift :: Functor r => r a -> Delay r a
lift ¢ = It (fmap Left c)

16

e In a more concise notation, instead of the monad A — v X. A+ X, we are now
considering the monad A — vX. R(A + X) induced by a monad R.

Quite importantly, this is not the same as A +— vX. A+ RX, which is the free
completely iterative monad on R as a functor.

17

