
'

&

$

%

Partiality is an Effect

Venanzio Capretta

Thorsten Altenkirch

Tarmo Uustalu

WG 2.8, Kalvi, 1–4 Oct. 2005

1

'

&

$

%

Outline

• The problem of partiality

• The delay datatype and monad

• Constructive domain theory and recursion

• Combining partiality with other effects

2

'

&

$

%

Problem

• Partial/non-terminating programs may be ok, but partial proofs are not.

• In dependently typed programming, where no distinction is made between

programs and proofs, this becomes critical.

• Partial maps (total functions on subsets) are no solution.

• Idea: Could non-termination be seen as an effect?

• Answer: Yes! Just use the fact that termination/non-termination is about

waiting.

3

'

&

$

%

Delay datatype

• Delayed values:

data Delay a = Now a | Later (Delay a) -- coinductive

• Infinite delay:

never :: Delay a

never = Later never

• Minimalization:

minim :: (Int -> Bool) -> Delay Int

minim p = minimFrom p 0

minim :: (Int -> Bool) -> Int -> Delay Int

minimFrom p n = if p n then Now n else Later (minimFrom p (n+1))

4

'

&

$

%

• Competition of two computations:

race :: Delay a -> Delay a -> Delay a

race (Now a) _ = Now a

race (Later _) (Now a) = Now a

race (Later d) (Later d’) = Later (race d d’)

• Competition of omega many computations:

omegarace :: [Delay a] -> Delay a

omegarace (d:ds) = race d (Later (omegarace ds))

• Note that all function definitions above are guarded corecursive.

5

'

&

$

%

Monadic structure of Delay

• Delay is a monad: we have the Kleisli identity and composition:

instance Monad Delay where

return = Now

Now a >>= k = k a

Later d >>= k = Later (d >>= k)

• A special operation:

repeat :: (a -> Delay (Either b a)) -> a -> Delay b

repeat k a = do v <- k a

case v of

Left b -> return b

Right a -> Later (rep k a)

This is not guarded in an obvious fashion.

6

'

&

$

%

• A closely related one with a clearly guarded definition:

while :: (a -> Delay (Either b a)) ->

Delay (Either b a) -> Delay b

while k (Now (Left b)) = Now b

while k (Now (Right a)) = Later (while k (k a))

while k (Later c) = Later (while k c)

repeat :: (a -> Delay (Either b a)) -> a -> Delay b

repeat k a = while k (Now (Right a))

7

'

&

$

%

• More specific versions:

repeat’ :: (a -> Delay a) -> (a -> Delay Bool) -> a -> Delay a

repeat’ k p

= repeat (\ a -> do a’ <- k a

b <- p a’

return (if b then Left a’ else Right a’))

while’ :: (a -> Delay Bool) -> (a -> Delay a) -> a -> Delay a

while’ p k

= repeat (\ a -> do b <- p a

if b then do { a’ <- k a ; return (Right a’) }

else return (Left a))

8

'

&

$

%

Some category theory

• Monads like the delay monad A 7→ νX.A + X have been discussed extensively

by Adamek et al in category theory.

• The delay monad is the free completely iterative monad over the identity

functor.

• In general, the free completely iterative monad over a functor H is

A 7→ νX.A + HX.

• Complete iterativeness: Unique existence of a combinator satisfying the

equation of repeat.

• Freeness: the “smallest” such monad.

• In a good mathematical sense, the delay monad is the universal one among the

monads suitable for capturing iteration.

9

'

&

$

%

Constructive domain theory

• We have looping, what about recursion?

• Domains (posets with a bottom and lubs of all omega-chains):

class Dom a where

bot :: a

lub :: [a] -> a

• Some constructions of domains:

instance Dom b => Dom (a -> b) where

bot a = bot

lub fs a = lub (map (\ f -> f a) fs)

instance (Dom a, Dom b) => Dom (a, b) where

bot = (bot, bot)

lub abs = (lub (map fst abs), lub (map snd abs))

10

'

&

$

%

• Least fixpoints construction:

iterate :: (a -> a) -> a -> [a]

iterate f a = a : iterate f (f a)

lfp :: Dom a => (a -> a) -> a

lfp f = lub (iterate f bot)

• Delay types are domains:

instance Dom (Delay a) where

bot = never

lub = omegarace

• Partial ordering: d v d′ iff d ↓ a implies d′ ↓ a where ↓ is defined inductively by

– now(a) ↓ a,

– if d ↓ a, then later(d) ↓ a.

• This is not antisymmetric, we only have a preordered set and to get a partial

order, we must quotient wrt the symmetric closure.

11

'

&

$

%

• An example:

fib :: Integer -> Delay Integer

fib = lfp (\ fib -> \ n ->

if n == 0 then return 0

else if n == 1 then return 1

else do x <- fib (n-1)

y <- fib (n-2)

return (x+y)

)

12

'

&

$

%

A monadic interpreter

• A typed cbv language with integers and booleans.

• Term syntax:

type Var = String

data Tm = V Var | L Var Tm | Tm :@ Tm

| Tm :& Tm | Fst Tm | Snd Tm

| N Integer | Tm :+ Tm | ...

| TT | FF | If Tm Tm Tm | ...

-- looping

| While Tm Tm | Until Tm Tm

-- general recursion

| Rec Var Tm

• Semantic domains:

data Val = I Integer | B Bool | P (Val, Val) | F (Val -> Delay Val)

type Env = [(Var, Val)]

13

'

&

$

%

• Evaluation:

ev :: Tm -> Env -> Delay Val

ev (V x) env = return (unsafelookup x env)

ev (L x e) env = return (F (\ a -> ev e (update x a env)))

ev (e :@ e’) env = do F k <- ev e env

a <- ev e’ env

k a

...

ev (While e e’) env

= do F p <- ev e env

F k <- ev e’ env

return (F (while’ (\ a -> do { B b <- g a ; return b } k)))

ev (Until e e’) env

= do F k <- ev e env

F p <- ev e’ env

return (F (repeat’ k (\ a -> do { B b <- g a ; return b })))

ev (Rec x e) env = return (F (lfp f))

where f k a = do {F k’ <- ev e (update x (F k) env) ; k’ a }

14

'

&

$

%

• Example:

-- fib = rec fib -> \ n -> if n == 0 then 0

-- else if n == 1 then 1

-- else fib (n-1) + fib (n-2)

fib = Rec "fib" (L "n"

(If (V "n" :== N 0) (N 0)

(If (V "n" :== N 1) (N 1)

((V "fib" :@ (V "n" :- N 1)) :+ (V "fib" :@ (V "n" :- N 2))))))

15

'

&

$

%

Adding iteration to other monads

• For any monad, there is a monad supporting looping.

newtype Delay r a = D { unD :: r (Either a (Delay r a)) }

-- coinductive

instance Functor r => Functor (Delay r) where

fmap f (D d) = D (fmap (either (Left . f) (Right . fmap f)) d)

instance Monad r => Monad (Delay r) where

return a = D (return (Left a))

D d >>= k = D (d >>= either (unD . k) (return . Right . (>>= k)))

repeat :: Monad r => (a -> Delay r (Either b a)) -> a -> Delay r b

repeat k a = k a >>= either return (D . return . Right . repeat k)

• The original monad can be embedded into the derived one.

lift :: Functor r => r a -> Delay r a

lift c = It (fmap Left c)

16

'

&

$

%

• In a more concise notation, instead of the monad A 7→ νX. A + X, we are now

considering the monad A 7→ νX. R(A + X) induced by a monad R.

Quite importantly, this is not the same as A 7→ νX. A + RX, which is the free

completely iterative monad on R as a functor.

17

