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The Problem, illustrated

• Consider the Haskell datatype:
data Slist a = Nil  |  Scons !a (Slist a)
– What is an appropriate denotation for Scons?

• Scons can be used to define the seq function
seq x y = case Scons x Nil of { _ -> y}

• Scons should be modeled by a curried function, but its
uncurried equivalent is not simply the injection of a cartesian
product of types.

– What domain structure models the data type Slist?
• Slist can be modeled by a sum, but it’s not a sum of products.

– Is there a simple structure with which to characterize a
domain for Slist?



Frame Semantics
(a quick review)

• A frame category is a type-indexed, cartesian
category, D, with the additional structure
– D is equipped with a family of operations,

• ::   ’. (D’d % D’) d D
• A frame category, D, is extensional if

  , ’.   f, g  D’d .(   d  D. f •d = g •d) e f = g
• An  arrow   D’ d D is representable if

 f  D’d .   d  D’. (d) =  f •d
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Partial-Order Categories
• Objects of the category CPO are sets with complete partial orders.

– A p.o. set is -complete if it contains limits of finite and enumerable
chains; pointed if it contains a least element.

• Generalize c.p.o. sets to categories
– Arrows represent b, manifesting the order relation

• Least element, z, of a c.p.o. becomes an initial object in a p-o category
– Defn: (Barr & Wells) A category is said to be -cocomplete if every

(small) diagram has a colimit.
– Characterization of domain objects as partial-order categories is due to

• Wand, 1979, further elaborated by Smyth-Plotkin, 1982
• An abstract domain for modeling semantics is a category with

products and sums whose objects are -cocomplete categories
– Its functors preserve order and colimits. (i.e. they are continuous)

• Continuous functors are representable
• An -cocomplete frame category is extensional

• We take for a semantics domain a CPO category, D, with all
products, an initial object, z, and finite sums
– D is -cocomplete (Smyth-Plotkin)



The Monad of Strict Computation
• Strict :: D d D is analogous to a Maybe monad without

its explicit data constructors
data Maybe a = Nothing  |  Just a
monad Maybe where

return = Just
Nothing    >>= f  = Nothing

    Just x >>= f  = f x

monad Strict where
return = id

z >>= f  = z
x >>= f  = f x   when x ≠ z

• Strict induces a monad transformer, analogous to
MaybeT



The tensor product, 1, and sum, /
• The product in Strict becomes a tensor in D

    (_,_)1 :: Strict a d Strict b d Strict (a % b)
(x,y)1 = x >>= (x’ d y >>= (y’ d (x’,y’)))

• The tensor product has strict projections
p1 (x,y)1 = x,       p2 (x,y)1 = y

where x g z . y g z
p1 (x,y)1 = p2 (x,y)1 = z

when x = z - y = z

• The sum in Strict is a coalesced sum in D
inl/ :: Strict a d Strict (a+b)    inr/ :: Strict b d Strict (a+b)
inl/ x = x >>= (x’ d inl x’)   inr/ y = y >>= (y’ d inr y’)



The Lifted functor
• Lifted :: D -> D

 lift :: I t Lifted
is a natural transformation that injects a pointed type frame,
D into a domain that adds a new bottom element under z

drop :: Lifted t I
is the natural transformation that identifies the bottom element
of Lifted D with the bottom element of D.

  drop º lift = id
  lift º drop t idLifted

.
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The meanings of a data constructor
• A data constructor (of arity N) has two formal aspects

– It maps a sequence of N types to a new type;
– It maps N appropriately typed values to a value in its

codomain type
• This suggests its semantic interpretation by a functor

– Interpretation is in a type-indexed category
• The object mapping takes N type frames to another type frame;
• The arrow mapping takes N typed arrows (elements of N type

frames) to an arrow (element in the frame of its codomain type)

• An interpretation functor
[[ _ ]] :: Type d (tyvar d Strict D) d Strict D
where Type is a “free” category of syntactically well-formed type

expressions and compatibly typed term expressions;
    D is a frame category (objects are type frames);
    (tyvar d Strict D) is a type-variable environment.



Formal semantics of a Haskell data type
• An explicit representation of strictness annotations

data T a1 … am = … | C (s1,1) … (sn,n) | …
• Meaning of a strictness annotated type expression

[[ (s,) ]]  = [[  ]]  when s = “!”
[[ (s,) ]]  = Lifted([[  ]] ) when s = “”

• Meaning of a saturated data constructor application
(object mapping)
[[C(n) (s1,1) … (sn,n) ]]  = [[(s1,1)]]  1 … 1 [[(sn,n)]] 

• Meaning of a list of alternative type constructions
[[ 1 | … | p ]]  = [[ 1]]  / … / [[ 1]] 

where / is the sum in category D (coalesced bottoms)
• Meaning of a (non-recursive) type constructor declaration

[[T a1 … am = ]]Decl DE e
(T = 1…m. [[  ]] [(a1x1), …,(amxm)]) c DE,

where DE is a declaration environment
I’ve omitted showing data constructor definitions entered into DE



Example: a data constructor with
strictness annotation

data S a b = …  |  S1 !a b  | …
– What’s the meaning of the constructor S1?

As the object mapping part of a functor:
   [[ S1 ]]  = 1 2. [[ 1]]  1 Lifted([[ 2]] )

As a data constructor, at a type S 1 2:
[[ S1 ]]Exp  = xcD1 ycD2. (x, lift y)1

where  : var d D is a typed valuation environment

D1 1 Lifted D2

z



Tuple, alternative and arrow types

• Haskell type tuples are lifted products
[[ (1,2)]]   = Lifted ([[1]]  % [[2]]  )

• Haskell alternatives are coalesced sums
[[ (1 | 2)]]   = [[1]]  / [[2]] 

• Haskell arrow types are lifted encodings of the
elements of hom-sets
[[ (1 t 2)]]   = Lifted (code1,2 (HomD([[1]] , [[2]] )))
where code :: Hom(D) t Obj(D) is a bi-natural transformation
that codes continuous functions into representations as data



Semantics of Haskell expressions
[[ _ ]]Exp :: Exp d (Var d D) d (D d r) d r
[[ e1 e2 ]]Exp   =

[[ e1 ]]Exp  (v1. [[ e2 ]]Exp  (v2. (drop v1 • v2)))
[[ x.e ]]Exp    = (lift (code (v. [[ e ]]Exp [x xv])))
[[ (e1,e2) ]]Exp   =

[[ e1 ]]Exp  (v1. [[ e2 ]]Exp  (v2.  (lift (v1,v2)))
[[ fst ]]Exp    =  (lift (1 º drop))
[[ addInt ]]Exp           =  (lift (x. lift (y. (+) (x,y)1 )))
[[ C(1) :: (s,) ]]Exp    =  lift, where s = “!”
[[ C(1) :: (s,) ]]Exp    =  id, where s = “”
[[ if e0 then e1 else e2 ]]Exp   =

[[e0 ]]Exp  (b. b >>=Strict (b’. case b’ of

True  d [[ e1 ]]Exp  

False d [[ e2 ]]Exp  ))



Semantics of Haskell expressions
[[ _ ]]Exp :: Exp d (Var d Strict D) d (D d Strict r) d Strict r
[[ e1 e2 ]]Exp    =

[[ e1 ]]Exp  >>=Strict (v1. [[ e2 ]]Exp  >>=Strict (v2. (drop v1 • v2)))
[[ x.e ]]Exp    =  (lift (code (v. [[ e ]]Exp [x xv])))
[[ (e1,e2) ]]Exp   =

[[ e1 ]]Exp  >>=Strict (v1. [[ e2 ]]Exp  >>=Strict (v2.  (lift (v1,v2)))
[[ fst ]]Exp    =  (lift (code (1 º drop)))
[[ addInt ]]Exp            =  (lift (code (x. lift (code (y. x+y )))
[[ C(1) :: (s,) ]]Exp    =  (lift (code id)), where s = “!”
[[ C(1) :: (s,) ]]Exp    =  (lift (code lift)), where s = “”
[[ if e0 then e1 else e2 ]]Exp   =

[[e0 ]]Exp  >>=Strict (b. case b of

True  d [[ e1 ]]Exp  

False d [[ e2 ]]Exp  ))



Recursive Datatype Definitions
Part 1: Simple recursion; ground types

• Returning to our example, let’s substitute for the type parameter:
   data Slist_Int = Nil  |  Scons !Int (Slist_Int)

– Replace the recursive instance on the RHS by a new tyvar
  data Slist_Int = Nil  |  Scons !Int s

where s = Slist_Int
– The RHS of the declaration is an expression

[s]. Nil  |  Scons !Int s
that designates a functor in Type d Type

– Map the expression to the semantic interpretation domain,
-binding the variable, , which ranges over objects of D

[[ s. Nil  |  Scons !Int s]] Ø = . Lifted_1 / (DInt 1 Lifted )
  which designates the least fixed-point of a functor in D d D

– The least fixed-point, computed by iteration, is the meaning of
Slist_Int, entered into the declaration environment.



Conclusions
• A categorical framework for semantic domains has some

advantages
– Avoids irrelevant details of representation
– Dual aspect of a functor (mapping objects & arrows) provides an

integrated meaning for constructors
• The Strict monad provides a coherent framework in which to

model computation rules
– Simplifies explanation of Haskell’s strictness-annotated data

constructors
• Simply recursive data types are modeled as initial fixed points

of functors that interpret data type declarations
– An initial fixed point yields an initial algebra in a category of

functor algebras
• Categorical basis for generic programming derivations
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