
The Monad of Strict Computation
A Categorical Framework for the Semantics
of Languages in which Strict and Non-strict

computation rules are mixed

Dick Kieburtz
Portland State University

WG2.8 Meeting
July 16-20, 2007

The Problem, illustrated

• Consider the Haskell datatype:
data Slist a = Nil | Scons !a (Slist a)
– What is an appropriate denotation for Scons?

• Scons can be used to define the seq function
seq x y = case Scons x Nil of { _ -> y}

• Scons should be modeled by a curried function, but its
uncurried equivalent is not simply the injection of a cartesian
product of types.

– What domain structure models the data type Slist?
• Slist can be modeled by a sum, but it’s not a sum of products.

– Is there a simple structure with which to characterize a
domain for Slist?

Frame Semantics
(a quick review)

• A frame category is a type-indexed, cartesian
category, D, with the additional structure
– D is equipped with a family of operations,

• :: ’. (D’d % D’) d D
• A frame category, D, is extensional if

 , ’. f, g  D’d .(d  D. f •d = g •d) e f = g
• An arrow   D’ d D is representable if

 f  D’d . d  D’. (d) = f •d

A

A A A

E A

Partial-Order Categories
• Objects of the category CPO are sets with complete partial orders.

– A p.o. set is -complete if it contains limits of finite and enumerable
chains; pointed if it contains a least element.

• Generalize c.p.o. sets to categories
– Arrows represent b, manifesting the order relation

• Least element, z, of a c.p.o. becomes an initial object in a p-o category
– Defn: (Barr & Wells) A category is said to be -cocomplete if every

(small) diagram has a colimit.
– Characterization of domain objects as partial-order categories is due to

• Wand, 1979, further elaborated by Smyth-Plotkin, 1982
• An abstract domain for modeling semantics is a category with

products and sums whose objects are -cocomplete categories
– Its functors preserve order and colimits. (i.e. they are continuous)

• Continuous functors are representable
• An -cocomplete frame category is extensional

• We take for a semantics domain a CPO category, D, with all
products, an initial object, z, and finite sums
– D is -cocomplete (Smyth-Plotkin)

The Monad of Strict Computation
• Strict :: D d D is analogous to a Maybe monad without

its explicit data constructors
data Maybe a = Nothing | Just a
monad Maybe where

return = Just
Nothing >>= f = Nothing

 Just x >>= f = f x

monad Strict where
return = id

z >>= f = z
x >>= f = f x when x ≠ z

• Strict induces a monad transformer, analogous to
MaybeT

The tensor product, 1, and sum, /
• The product in Strict becomes a tensor in D

 (_,_)1 :: Strict a d Strict b d Strict (a % b)
(x,y)1 = x >>= (x’ d y >>= (y’ d (x’,y’)))

• The tensor product has strict projections
p1 (x,y)1 = x, p2 (x,y)1 = y

where x g z . y g z
p1 (x,y)1 = p2 (x,y)1 = z

when x = z - y = z

• The sum in Strict is a coalesced sum in D
inl/ :: Strict a d Strict (a+b) inr/ :: Strict b d Strict (a+b)
inl/ x = x >>= (x’ d inl x’) inr/ y = y >>= (y’ d inr y’)

The Lifted functor
• Lifted :: D -> D

 lift :: I t Lifted
is a natural transformation that injects a pointed type frame,
D into a domain that adds a new bottom element under z

drop :: Lifted t I
is the natural transformation that identifies the bottom element
of Lifted D with the bottom element of D.

 drop º lift = id
 lift º drop t idLifted

.

.

D Lifted D

z
z

lift
drop

The meanings of a data constructor
• A data constructor (of arity N) has two formal aspects

– It maps a sequence of N types to a new type;
– It maps N appropriately typed values to a value in its

codomain type
• This suggests its semantic interpretation by a functor

– Interpretation is in a type-indexed category
• The object mapping takes N type frames to another type frame;
• The arrow mapping takes N typed arrows (elements of N type

frames) to an arrow (element in the frame of its codomain type)

• An interpretation functor
[[_]] :: Type d (tyvar d Strict D) d Strict D
where Type is a “free” category of syntactically well-formed type

expressions and compatibly typed term expressions;
 D is a frame category (objects are type frames);
 (tyvar d Strict D) is a type-variable environment.

Formal semantics of a Haskell data type
• An explicit representation of strictness annotations

data T a1 … am = … | C (s1,1) … (sn,n) | …
• Meaning of a strictness annotated type expression

[[(s,)]]  = [[]]  when s = “!”
[[(s,)]]  = Lifted([[]] ) when s = “”

• Meaning of a saturated data constructor application
(object mapping)
[[C(n) (s1,1) … (sn,n)]]  = [[(s1,1)]]  1 … 1 [[(sn,n)]] 

• Meaning of a list of alternative type constructions
[[1 | … | p]]  = [[1]]  / … / [[1]] 

where / is the sum in category D (coalesced bottoms)
• Meaning of a (non-recursive) type constructor declaration

[[T a1 … am = ]]Decl DE e
(T = 1…m. [[]] [(a1x1), …,(amxm)]) c DE,

where DE is a declaration environment
I’ve omitted showing data constructor definitions entered into DE

Example: a data constructor with
strictness annotation

data S a b = … | S1 !a b | …
– What’s the meaning of the constructor S1?

As the object mapping part of a functor:
 [[S1]]  = 1 2. [[1]]  1 Lifted([[2]] )

As a data constructor, at a type S 1 2:
[[S1]]Exp  = xcD1 ycD2. (x, lift y)1

where  : var d D is a typed valuation environment

D1 1 Lifted D2

z

Tuple, alternative and arrow types

• Haskell type tuples are lifted products
[[(1,2)]]  = Lifted ([[1]]  % [[2]] )

• Haskell alternatives are coalesced sums
[[(1 | 2)]]  = [[1]]  / [[2]] 

• Haskell arrow types are lifted encodings of the
elements of hom-sets
[[(1 t 2)]]  = Lifted (code1,2 (HomD([[1]] , [[2]] )))
where code :: Hom(D) t Obj(D) is a bi-natural transformation
that codes continuous functions into representations as data

Semantics of Haskell expressions
[[_]]Exp :: Exp d (Var d D) d (D d r) d r
[[e1 e2]]Exp   =

[[e1]]Exp  (v1. [[e2]]Exp  (v2. (drop v1 • v2)))
[[x.e]]Exp   = (lift (code (v. [[e]]Exp [x xv])))
[[(e1,e2)]]Exp   =

[[e1]]Exp  (v1. [[e2]]Exp  (v2.  (lift (v1,v2)))
[[fst]]Exp   =  (lift (1 º drop))
[[addInt]]Exp   =  (lift (x. lift (y. (+) (x,y)1)))
[[C(1) :: (s,)]]Exp   =  lift, where s = “!”
[[C(1) :: (s,)]]Exp   =  id, where s = “”
[[if e0 then e1 else e2]]Exp   =

[[e0]]Exp  (b. b >>=Strict (b’. case b’ of

True d [[e1]]Exp  

False d [[e2]]Exp  ))

Semantics of Haskell expressions
[[_]]Exp :: Exp d (Var d Strict D) d (D d Strict r) d Strict r
[[e1 e2]]Exp   =

[[e1]]Exp  >>=Strict (v1. [[e2]]Exp  >>=Strict (v2. (drop v1 • v2)))
[[x.e]]Exp   =  (lift (code (v. [[e]]Exp [x xv])))
[[(e1,e2)]]Exp   =

[[e1]]Exp  >>=Strict (v1. [[e2]]Exp  >>=Strict (v2.  (lift (v1,v2)))
[[fst]]Exp   =  (lift (code (1 º drop)))
[[addInt]]Exp   =  (lift (code (x. lift (code (y. x+y)))
[[C(1) :: (s,)]]Exp   =  (lift (code id)), where s = “!”
[[C(1) :: (s,)]]Exp   =  (lift (code lift)), where s = “”
[[if e0 then e1 else e2]]Exp   =

[[e0]]Exp  >>=Strict (b. case b of

True d [[e1]]Exp  

False d [[e2]]Exp  ))

Recursive Datatype Definitions
Part 1: Simple recursion; ground types

• Returning to our example, let’s substitute for the type parameter:
 data Slist_Int = Nil | Scons !Int (Slist_Int)

– Replace the recursive instance on the RHS by a new tyvar
 data Slist_Int = Nil | Scons !Int s

where s = Slist_Int
– The RHS of the declaration is an expression

[s]. Nil | Scons !Int s
that designates a functor in Type d Type

– Map the expression to the semantic interpretation domain,
-binding the variable, , which ranges over objects of D

[[s. Nil | Scons !Int s]] Ø = . Lifted_1 / (DInt 1 Lifted )
 which designates the least fixed-point of a functor in D d D

– The least fixed-point, computed by iteration, is the meaning of
Slist_Int, entered into the declaration environment.

Conclusions
• A categorical framework for semantic domains has some

advantages
– Avoids irrelevant details of representation
– Dual aspect of a functor (mapping objects & arrows) provides an

integrated meaning for constructors
• The Strict monad provides a coherent framework in which to

model computation rules
– Simplifies explanation of Haskell’s strictness-annotated data

constructors
• Simply recursive data types are modeled as initial fixed points

of functors that interpret data type declarations
– An initial fixed point yields an initial algebra in a category of

functor algebras
• Categorical basis for generic programming derivations

End

