The Monad of Strict Computation

A Categorical Framework for the Semantics
of Languages in which Strict and Non-strict
computation rules are mixed

Dick Kieburtz
Portland State University
WG2.8 Meeting
July 16-20, 2007

The Problem, illustrated

Consider the Haskell datatype:
data Slist a = Nil | Scons 'a (Slist a)

— What is an appropriate denotation for Scons?

« Scons can be used to define the seq function
seq x y = case Scons x Nilof { _->y}

« Scons should be modeled by a curried function, but its
uncurried equivalent is not simply the injection of a cartesian
product of types.

— What domain structure models the data type Slist?
« Slist can be modeled by a sum, but it's not a sum of products.

— Is there a simple structure with which to characterize a
domain for Slist?

Frame Semantics
(a quick review)

« A frame category is a type-indexed, cartesian
category, D, with the additional structure

- D is equipped with a family of operations,
°t . VU'. (Dpo; x D) = Dy
« A frame category, D, is extensional if
Vi, 7.VfigeDy.(WeD,.fe.d=ged)=>f=g
 An arrow ¢ € Dy = D, is representable if
dfe Dy ,.. M eDy. p(d)= feud

Partial-Order Categories

Objects of the category CPO are sets with complete partial orders.

— A p.o. setis w-complete if it contains limits of finite and enumerable
chains; pointed if it contains a least element.

Generalize c.p.o. sets to categories
— Arrows represent =, manifesting the order relation

» Least element, L, of a c.p.0. becomes an initial object in a p-o category

— Defn: (Barr & Wells) A category is said to be w-cocomplete if every
(small) diagram has a colimit.

— Characterization of domain objects as partial-order categories is due to
« Wand, 1979, further elaborated by Smyth-Plotkin, 1982
An abstract domain for modeling semantics is a category with
products and sums whose objects are w-cocomplete categories

— Its functors preserve order and colimits. (i.e. they are continuous)
« Continuous functors are representable
* An w-cocomplete frame category is extensional

We take for a semantics domain a CPO category, D, with all

products, an initial object, L, and finite sums
- D is w-cocomplete (Smyth-Plotkin)

The Monad of Strict Computation

Strict .- D - D is analogous to a Maybe monad without
its explicit data constructors
data Maybe a = Nothing | Just a
monad Maybe where
return = Just
Nothing >>=f = Nothing
Justx>>=1f =fx

monad Strict where
return = id

1 >=f=_1

x>>=Ff =fxwhen x # L

Strict induces a monad transformer, analogous to
Maybe T

The tensor product, ®, and sum, &

e The product in Strict becomes a tensor in D

(L,_)g it Strict a - Strict b - Strict (a x b)
(X,Y)g = X >>= (X" >y >>= (Y~ (X))

* The tensor product has strict projections

P1(XY)e=X P2(XY)g=Y
where x+ LAy +1

p1 (le)®=p2(xiy)® -1
whenx=1Vy=_1

 The sum in Strict is a coalesced sumin D
inlg . Strict a » Strict (a+b) inrg, .2 Strict b - Strict (a+b)
iNlgy X =Xx>>= (X" > inl X) inrg y =y >>=(Ly’ > inry’)

The Lifted functor

e Lifted:: D->D

lift - | = Lifted
is a natural transformation that injects a pointed type frame,
D. into a domain that adds a new bottom element under 1,
drop :: Lifted = |
is the natural transformation that identifies the bottom element
of Lifted D_ with the bottom element of D._.

drop o lift = id

lift o drop 2 id, i, W Lifted D,
lift

The meanings of a data constructor

« A data constructor (of arity N) has two formal aspects
— It maps a sequence of N types to a new type;
— It maps N appropriately typed values to a value in its
codomain type
« This suggests its semantic interpretation by a functor

— Interpretation is in a type-indexed category
» The object mapping takes N type frames to another type frame;

« The arrow mapping takes N typed arrows (elements of N type
frames) to an arrow (element in the frame of its codomain type)

* An interpretation functor
[_1]:: Type - (tyvar — Strict D) - Strict D

where Type is a “free” category of syntactically well-formed type
expressions and compatibly typed term expressions;

D is a frame category (objects are type frames);
(tyvar — Strict D) is a type-variable environment.

Formal semantics of a Haskell data type
* An explicit representation of strictness annotations

dataT7a,...a,=...|C(S,y4) --- (S,,70) | ---
« Meaning of a strictness annotated type expression
L) In=1rI1n when s =1

[[(s;y) 117 =Lifted([[y]l#) whens="
 Meaning of a saturated data constructor application
(object mapping)
[(C" (s1,y9) o Spy) N0 =Sy 1 ® ... RIS,y 7
* Meaning of a list of alternative type constructions

Lyl -y ldn=Uydlne®...®lydln
where @ is the sum in category D (coalesced bottoms)

e Meaning of a (non-recursive) type constructor declaration

[[Ta,...a,=9py DE =

(T=Azq...7. [[7] [(@4—7,),,(@+—7,)]) € DE,
where DE is a declaration environment
I’'ve omitted showing data constructor definitions entered into DE

Example: a data constructor with

stricthess annotation
dataSab=...| S1lab |...

— What's the meaning of the constructor S77?

D, ® Lifted D,

As the object mapping part of a functor:
[[ST1%=Ay;, [[vl n @ Lifted([[y.l] n)

As a data constructor, at a type S 7, 7.
[[ST1epp = /IXEDT1 yeDTz. (x, lift y)g
where p : var, -» D, is a typed valuation environment

Tuple, alternative and arrow types

Haskell type tuples are lifted products
[[(vysv2)ll m = Lifted ([[y,]] 7 X [[y211 77)

Haskell alternatives are coalesced sums
[y =1yl n @ [yl n

Haskell arrow types are lifted encodings of the

elements of hom-sets

[[(ys— v2)lln = Lifted (code,, ,, (Homx([[y,Il 7, [[721] 7))
where code :: Hom(D) — Obj(D) is a bi-natural transformation

that codes continuous functions into representations as data

Semantics of Haskell expressions

[_lep i Exp—> (Var—> D) > (D —>r)—>r
[e;elleprr=

([&1 e p (AVy. [l €2 1lgsp P (AV,. K(drop v, * v))))
[ix.e e, p = x(lift (code (Av. [[e]lg,, pLlX — VD))
[(€e1,€0) llgyp p K =
[&1 e p (Avy [l €5 llesp P (AVy. K (lift (v4,)))

[st Jlgxp P K¢ = K (lift (z, o drop))

[addint Jg,, p x = rc (lift (Ax. lift (Ay. (+) (x,¥)g)))
[CO i (s7) Nl P = i lift, where s =“I"

[CO i (s7) Nl P =k id, where s ="

if €o then e, else e,]]Exp pK=
[le,]]Exp p (Ab. b>>=,__ (\b’. case b’ of

True — [[e,]]Exp P K

False — [[e,]]Exp P K))

Semantics of Haskell expressions

[[_ g it Exp = (Var — Strict D) — (D — Strict r) — Strict r
[e;elleprr =

[[€1 lexp 2 >>=spict (AVy- [€2 llexp P >>Zspicr (AVo. K(drOp v * Vy)))
[ixelleypr = (ift (code (iv. [[& llgy plx — 1)
[(€e1,€0) llgyp p K =
[[€1 llexp P >>=stict (AV3- [€2 lexp P >>=sprict (AVo. K (lift (v4,5)))

[st Jlgxp P K¢ =k (lift (code (r, o drop)))

[addint J]g,, p =k (lift (code (/x. lift (code (Ly. x+y)))
[CO i (s7) g p = k (lift (code id)), where s = “I”
[CO i (s7) Nl P = x (lift (code lift)), where s =

if €o then e, else e,]]Exp pK=
[[90]]Exp P Z>=ghrict (}vb case b of

True — [[e,]]Exp p K

False — [[e,]]Exp P K))

Recursive Datatype Definitions
Part 1. Simple recursion; ground types

Returning to our example, let's substitute for the type parameter:

data Slist_Int = Nil | Scons !Int (Slist_Int)
Replace the recursive instance on the RHS by a new tyvar
data Slist_Int= Nil | Scons!ints
where s = Slist_Int
The RHS of the declaration is an expression
[S]. Nil | Scons!ints
that designates a functor in Type — Type
Map the expression to the semantic interpretation domain,
u-binding the variable, {, which ranges over objects of D

[us. Nil | Sconslints]] @ = ul. Lifted_1 & (D,,; ® Lifted {)
which designates the least fixed-point of a functor in D - D

The least fixed-point, computed by iteration, is the meaning of
Slist_Int, entered into the declaration environment.

Conclusions

A categorical framework for semantic domains has some
advantages

— Avoids irrelevant details of representation

— Dual aspect of a functor (mapping objects & arrows) provides an
integrated meaning for constructors

The Strict monad provides a coherent framework in which to
model computation rules

— Simplifies explanation of Haskell's strictness-annotated data
constructors

Simply recursive data types are modeled as initial fixed points
of functors that interpret data type declarations

— An initial fixed point yields an initial algebra in a category of
functor algebras

« Categorical basis for generic programming derivations

End

