
From Dirt to Shovels:From Dirt to Shovels:
Inferring PADS descriptions fromInferring PADS descriptions from ASCII DataASCII Data

July 2007

Kathleen Fisher
David Walker
Peter White
Kenny Zhu

Data,Data,everywhere!Data,Data,everywhere!

Incredible amounts of data stored in well-behaved formats:

Databases:

XML:

Tools

 Schema
 Browsers
 Query Languages
 Standards
 Libraries
 Books, documentation
 Training courses
 Conversion tools
 Vendor support
 Consultants...

WeWe’’re not always so lucky!re not always so lucky!

Vast amounts of chaotic ad hoc data:

Tools
 Perl
 Awk
 C
 ...

Government statsGovernment stats
"MSN","YYYYMM","Publication Value","Publication Unit","Column Order"
"TEAJBUS",197313,-0.456483,Quadrillion Btu,4
"TEAJBUS",197413,-0.482265,Quadrillion Btu,4
"TEAJBUS",197513,-1.066511,Quadrillion Btu,4
"TEAJBUS",197613,-0.177807,Quadrillion Btu,4
"TEAJBUS",197713,-1.948233,Quadrillion Btu,4
"TEAJBUS",197813,-0.336538,Quadrillion Btu,4
"TEAJBUS",197913,-1.649302,Quadrillion Btu,4
"TEAJBUS",198013,-1.0537,Quadrillion Btu,4

Train StationsTrain Stations

Southern California Regional Railroad Authority,"Los Angeles, CA",
U,45,46,46,47,49,51,U,45,46,46,47,49,51
Connecticut Department of Transportation ,"New Haven, CT",
U,U,U,U,U,U,8,U,U,U,U,U,U,8
Tri-County Commuter Rail Authority ,"Miami, FL",
U,U,U,U,U,U,18,U,U,U,U,U,U,18
Northeast Illinois Regional Commuter Railroad Corporation,"Chicago,
IL",226,226,226,227,227,227,227,91,104,104,111,115,125,131
Northern Indiana Commuter Transportation District,"Chicago,
IL",18,18,18,18,18,18,20,7,7,7,7,7,7,11
Massachusetts Bay Transportation Authority,"Boston, MA",
U,U,117,119,120,121,124,U,U,67,69,74,75,78
Mass Transit Administration - Maryland DOT ,"Baltimore, MD",
U,U,U,U,U,U,42,U,U,U,U,U,U,22
New Jersey Transit Corporation ,"New York,
NY",158,158,158,162,162,162,167,22,22,41,46,46,46,51

Web logsWeb logs

207.136.97.49 - - [15/Oct/2006:18:46:51 -0700] "GET /turkey/amnty1.gif HTTP/1.0" 200 3013
207.136.97.49 - - [15/Oct/2006:18:46:51 -0700] "GET /turkey/clear.gif HTTP/1.0" 200 76
207.136.97.49 - - [15/Oct/2006:18:46:52 -0700] "GET /turkey/back.gif HTTP/1.0" 200 224
207.136.97.49 - - [15/Oct/2006:18:46:52 -0700] "GET /turkey/women.html HTTP/1.0" 200 17534
208.196.124.26 - Dbuser [15/Oct/2006:18:46:55 -0700] "GET /candatop.html HTTP/1.0" 200 -
208.196.124.26 - - [15/Oct/2006:18:46:57 -0700] "GET /images/done.gif HTTP/1.0" 200 4785
www.att.com - - [15/Oct/2006:18:47:01 -0700] "GET /images/reddash2.gif HTTP/1.0" 200 237
208.196.124.26 - - [15/Oct/2006:18:47:02 -0700] "POST /images/refrun1.gif HTTP/1.0" 200 836
208.196.124.26 - - [15/Oct/2006:18:47:05 -0700] "GET /images/hasene2.gif HTTP/1.0" 200 8833
www.cnn.com - - [15/Oct/2006:18:47:08 -0700] "GET /images/candalog.gif HTTP/1.0" 200 -
208.196.124.26 - - [15/Oct/2006:18:47:09 -0700] "GET /images/nigpost1.gif HTTP/1.0" 200 4429
208.196.124.26 - - [15/Oct/2006:18:47:09 -0700] "GET /images/rally4.jpg HTTP/1.0" 200 7352
128.200.68.71 - - [15/Oct/2006:18:47:11 -0700] "GET /amnesty/usalinks.html HTTP/1.0" 143 10329
208.196.124.26 - - [15/Oct/2006:18:47:11 -0700] "GET /images/reyes.gif HTTP/1.0" 200 10859

And many others...And many others...

Gene ontology data
Cosmology data
Financial trading data
Telecom billing data
Router config files
System logs
Call detail data
Netflow packets
DNS packets
Java JAR files
Jazz recording info
...

Learning: Goals & ApproachLearning: Goals & Approach

Email

Problem: Producing useful tools for ad hoc data takes a lot of time.
Solution: A learning system to generate data descriptions and tools automatically .

Raw Data

ASCII log files Binary Traces
struct {

}

Data Description
XML

CSV

Standard formats & schema;

Visual Information

End-user
tools

PADS ReminderPADS Reminder

• Provides rich base type library; many specialized for systems data.
– Pint8, Puint8, … // -123, 44

 Pstring(:’|’:) // hello |
Pstring_FW(:3:) // catdog
Pdate, Ptime, Pip, …

• Provides type constructors to describe data source structure:
– sequences: Pstruct, Parray,

– choices: Punion, Penum, Pswitch

– constraints: allow arbitrary predicates to describe expected
properties.

Inferred data formats are described using a specialized language of types

PADS compiler generates stand-alone tools including xml-conversion,
Xquery support & statistical analysis directly from data descriptions.

Go to demoGo to demo

Format inference overviewFormat inference overview

Tokenization

 Structure
 Discovery

Scoring
Function

PADS
Description

Format
Refinement

Raw Data

PADS
Compiler

Accumlator

XMLifier

Analysis
Report

XML

IR to PADS
Printer

Chunking
Process

• Convert raw input into sequence of “chunks.”

• Supported divisions:
– Various forms of “newline”
– File boundaries

• Also possible: user-defined “paragraphs”

Chunking ProcessChunking Process

TokenizationTokenization

•Tokens expressed as regular expressions.
•Basic tokens

•Integer, white space, punctuation, strings
•Distinctive tokens

•IP addresses, dates, times, MAC addresses, ...

HistogramsHistograms

Two frequency distributions are similar if they have the
same shape (within some error tolerance) when the columns
are sorted by height.

ClusteringClustering

Cluster 1

Group clusters with similar frequency distributions

Cluster 2 Cluster 3

Rank clusters by metric that rewards high coverage and
narrower distributions. Chose cluster with highest
score.

Partition chunksPartition chunks

In our example, all the tokens appear in the same
order in all chunks, so the union is degenerate.

Find subcontextsFind subcontexts

Tokens in selected cluster:
 Quote(2) Comma White

Then Recurse...Then Recurse...

Inferred typeInferred type

Finding arraysFinding arrays

Single cluster with
high coverage, but
wide distribution.

PartitioningPartitioning

Context 1,2:
String * Pipe

Context 3: String

Selected tokens for array cluster: String Pipe

String [] sep(‘|’)

Structure Discovery ReviewStructure Discovery Review

• Compute frequency distribution for each token.

• Cluster tokens with similar frequency distributions.
• Create hypothesis about data structure from cluster distributions

– Struct
– Array
– Union
– Basic type (bottom out)

• Partition data according to hypothesis & recurse

“123, 24”
“345, begin”
“574, end”
“9378, 56”
“12, middle”
“-12, problem”
…

Format inference overviewFormat inference overview

Tokenization

 Structure
 Discovery

Scoring
Function

PADS
Description

Format
Refinement

Raw Data

PADS
Compiler

Accumlator

XMLifier

Analysis
Report

XML

IR to PADS
Printer

Chunking
Process

Format RefinementFormat Refinement

• Rewrite format description to:
– Optimize information-theoretic complexity

• Simplify presentation
– Merge adjacent structures and unions

• Improve precision
– Identify constant values
– Introduce enumerations and dependencies

– Fill in missing details
• Find completions where structure discovery stops
• Refine types

– Termination conditions for strings
– Integer sizes
– Identify array element separators & terminators

“0, 24”
“foo, beg”
“bar, end”
“0, 56”
“baz, middle”
“0, 12”
“0, 33”
…

“0, 24”
“foo, beg”
“bar, end”
“0, 56”
“baz, middle”
“0, 12”
“0, 33”
…

struct

“ ”, unionunion

int alpha int alpha

structure
discovery

“0, 24”
“foo, beg”
“bar, end”
“0, 56”
“baz, middle”
“0, 12”
“0, 33”
…

struct

“ ”, unionunion

int alpha int alpha

structure
discovery

(id2)

struct

“ ”, unionunion

int (id3)

tagging/
table gen

(id1)

id1 id2

2

11

2

id3

--

0

...

alpha (id4) int (id5) alpha (id6)

id4

--

id5

...

id6

--

...

foo beg--

...

24

“0, 24”
“foo, beg”
“bar, end”
“0, 56”
“baz, middle”
“0, 12”
“0, 33”
…

struct

“ ”, unionunion

int alpha int alpha

structure
discovery

(id2)

struct

“ ”, unionunion

int (id3)

tagging/
table gen

(id1)

id3 = 0

id1 = id2

(first union is “int” whenever
second union is “int”)

constraint
inference

id1 id2

2

11

2

id3

--

0

...

alpha (id4) int (id5) alpha (id6)

id4

--

id5

...

id6

--

...

foo beg--

...

24

“0, 24”
“foo, beg”
“bar, end”
“0, 56”
“baz, middle”
“0, 12”
“0, 33”
…

struct

“ ”, unionunion

int alpha int alpha

structure
discovery

(id2)

struct

“ ”, unionunion

int (id3)

tagging/
table gen

(id1)

id3 = 0

id1 = id2

(first union is “int” whenever
second union is “int”)

constraint
inference

rule-based
structure
rewriting

struct

“ ”union

0 alpha-stringint alpha-string

struct struct

, ,

id1 id2

2

11

2

id3

--

0

...

more accurate:
-- first int = 0
-- rules out “int , alpha-string” records

alpha (id4) int (id5) alpha (id6)

id4

--

id5

...

id6

--

...

foo beg--

...

24

Format inference overviewFormat inference overview

Tokenization

 Structure
 Discovery

Scoring
Function

PADS
Description

Format
Refinement

Raw Data

PADS
Compiler

Accumlator

XMLifier

Analysis
Report

XML

IR to PADS
Printer

Chunking
Process

ScoringScoring

• Goal: A quantitative metric to evaluate the
quality of inferred descriptions and drive
refinement.

• Challenges:
• Underfitting. Pstring(Peof) describes data, but is too

general to be useful.
• Overfitting. Type that exhaustively describes data

(‘H’, ‘e’, ‘r’, ‘m’, ‘i’, ‘o’, ‘n’, ‘e’,…) is too precise
to be useful.

• Sweet spot: Reward compact descriptions that
predict the data well.

Minimum Description LengthMinimum Description Length

• Standard metric from machine learning.

• Cost of transmitting the syntax of a description
plus the cost of transmitting the data given the
description:

cost(T,d) =

 complexity(T) + complexity(d|T)

• Functions defined inductively over the structure
of the type T and data d respectively.

• Normalized MDL gives compression factor.

• Scoring function triggers rewriting rules.

Testing and EvaluationTesting and Evaluation

• Evaluated overall results qualitatively
– Compared with Excel -- a manual process with limited facilities

for representation of hierarchy or variation
– Compared with hand-written descriptions –- performance variable

depending on tokenization choices & complexity

• Evaluated accuracy quantitatively
– Implemented infrastructure to use generated accumulator

programs to determine inferred description error rates

• Evaluated performance quantitatively
– Tokenization & rough structure inference perform well:

less than 1 second on 300K
– Dependency analysis can take a long time on complex format (but

can be cut down easily).

Benchmark FormatsBenchmark Formats

Log from package installer Yum18221328Yum.txt

Log from Mac LoginWindow server52394680Windowserver_last.log

Application log66288671Scrollkeeper.log

US Rail road info621867Railroad.txt

Spread sheet1017762quarterlypersonalincome

Printer log from CUPS28170354Page_log

Output from netstat -an14355202Netstat-an

Command ls -l output197935Ls-l.txt

AT&T phone provision data142607999Sirius.1000

Modified crashreporter daemon log49255441Crashreporter.log.mod

Original crashreporter daemon log50152441Crashreporter.log

Mac OS boot log16241262Boot.log

Log file of MAC ASL2796001500Asl.log

Web server log2934603000Ai.3000

Comma-separated records21731491MER_T01_01.cvs

Transaction records709299991967Transactions.short

DescriptionBytesChunksData source

Execution TimesExecution Times

2.03

10.07

3.40

2.76

5.18

0.65

0.82

0.11

8.00

4.00

3.73

2.53

55.26

28.64

2.92

2.56

Tot (s)

5.01.910.11Yum.txt

1.59.650.37Windowserver_last.log

1.03.240.13Scrollkeeper.log

2.02.690.06Railroad.txt

485.110.07quarterlypersonalincome

0.50.550.08Page_log

1.00.740.07Netstat-an

1.00.100.01Ls-l.txt

1.55.692.24Sirius.1000

2.03.830.15Crashreporter.log.mod

2.03.580.12Crashreporter.log

1.02.400.11Boot.log

1.052.072.90Asl.log

1.026.351.97Ai.3000

0.52.820.11MER_T01_01.cvs

4.02.320.201967Transactions.short

HW (h)Ref (s)SD (s)Data source

SD: structure
 discovery
Ref: refinement
Tot: total

HW: hand-written

Training TimeTraining Time

Normalized MDL ScoresNormalized MDL Scores

0.4740.3050.827Yum.txt

0.2670.2410.618Windowserver_last.log

0.3520.3540.625Scrollkeeper.log

0.5220.5060.715Railroad.txt

0.3540.3670.544quarterlypersonalincome

0.3530.1070.540Page_log

0.3190.3940.413Netstat-an

0.4010.3330.559Ls-l.txt

0.4380.4700.602Sirius.1000

0.3470.3290.612Crashreporter.log.mod

0.3480.3280.607Crashreporter.log

0.7030.4810.620Boot.log

0.3610.2670.630Asl.log

0.3380.3320.503Ai.3000

0.1380.1120.648MER_T01_01.cvs

0.2680.2180.2951967Transactions.short

HWRefSDData source

SD: structure
 discovery
Ref: refinement

HW: hand-written

Training AccuracyTraining Accuracy

Type Complexity and Min. Training SizeType Complexity and Min. Training Size

75600.0485Railroad.txt

65500.0461Ls-l.txt

60450.0213Boot.log

10100.0170quarterlypersonalincome

45300.0124Yum.txt

35250.0118Netstat-an

1550.0084Windowserver_last.log

1550.0053Crashreporter.log.mod

15100.0052Crashreporter.log

550.0037MER_T01_01.csv

550.0032Page_log

550.0020Scrollkeeper.log

1050.0012Asl.log

1050.0004Ai.3000

550.00031967Transaction.short

1050.0001Sirius.1000

95%90%Norm. Ty ComplexityData source

Problem: TokenizationProblem: Tokenization

• Technical problem:
– Different data sources assume different tokenization strategies
– Useful token definitions sometimes overlap, can be ambiguous, aren’t

always easily expressed using regular expressions
– Matching tokenization of underlying data source can make a big difference

in structure discovery.

• Current solution:
– Parameterize learning system with customizable configuration files
– Automatically generate lexer file & basic token types

• Future solutions:
– Use existing PADS descriptions and data sources to learn probabilistic

tokenizers
– Incorporate probabilities into sophisticated back-end rewriting system

• Back end has more context for making final decisions than the
tokenizer, which reads 1 character at a time without look ahead

Structure Discovery AnalysisStructure Discovery Analysis

• Usually identifies top-level structure sufficiently well to be of some use
• When tokenization is accurate, this phase performs well
• When tokenization is inaccurate, this phase performs less well

– Descriptions are more complex than hand-coded ones
– Intuitively: one or two well-chosen tokens in a hand-coded description is

represented by complex combination of unions, options, arrays and
structures

• Technical Problems:
– When to give up & bottom out
– Choosing between unions and arrays

• Current Solutions:
– User-specified recursion depth
– Structs prioritzed over arrays, which are prioritized over unions

• Future Solutions:
– Information-theory-driven bottoming out
– Expand infrastructure to enable “search” and evaluation of several options

Format Refinement AnalysisFormat Refinement Analysis
• Overall, refinement substantially improves precision of data format

& sometimes improves compactness

• Technical problem 1:
– Sometimes refinement is overly aggressive, unnecessarily expanding

data descriptions without providing added value in terms of precision

• Current solution 1:
– Do not refine all possible base types -- limit refinements to simplest

types (int, string, white space).
– Refinement of complex types such as dates & URLs is not usually

needed by tools or programmers (even when they really are constant)
and often leads to overfitting.

• Future solution 1:
– Tune complexity analysis more finely and use it as a guide for rewriting
– Identify refinement opportunities for which insufficient data is

available

Format Refinement AnalysisFormat Refinement Analysis

• Technical problem 2:
– Value-space analysis is O(R * T2) where R is the number of

records and T is the number of abstract syntax tree nodes in the
description. In some descriptions, T is sufficiently large that
value-space analysis grinds to a halt.

• Current solution 2:
– Bound the size of the table generated from the abstract syntax

tree, discarding the chance to find dependencies in some
portions of the description

• Future solution 2:
– Optimize value-space algorithms intelligently

• Perform left-to-right sweep, ignoring backward dependencies
• Detect candidate dependencies on small data sets, discard

non-candidates & verify candidate feasibility on larger data
sets

Scoring AnalysisScoring Analysis
• Technical Problem: It is unclear how to weigh type complexity vs data

complexity to predict human preference in description structure
• Current Solution:

– Final type complexity and final data complexity are weighted equally
in the total cost function

– However, final data complexity grows linearly with the amount of
data used in the experiment

• Future Solutions:
– Observation: some of our experiments suggest that humans weight

type complexity more heavily than data complexity
• introduce a hyper parameter h and perform experiments, varying h until

cost of inferred results and expert descriptions match expectations:
– cost = h*type-complexity + data-complexity

• Bottom Line: Information theory is a powerful and general tool, but
more research is needed to tune it to our application domain

Technical SummaryTechnical Summary

• Format inference is feasible for many ASCII data
formats

• Our current tools infer sufficient structure that
descriptions may be piped into the PADS compiler
and used to generate tools for XML conversion and
simple statistical analysis.

Email
ASCII log files Binary Traces

struct {

}

XML

CSV

Thanks & AcknowledgementsThanks & Acknowledgements

• Collaborators
– Kenny Zhu (Princeton)
– Peter White (Galois)

• Other contributors
– Alex Aiken (Stanford)
– David Blei (Princeton)
– David Burke (Galois)
– Vikas Kedia (Stanford)
– John Launchbury (Galois)
– Rob Shapire (Princeton)

