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This could happen to you

Write a reduction semantics for, e.g.,

conditional arithmetic expressions.
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Terms and values

datatype term =

NUM of int

| ADD of term * term

| BOO of bool

| CND of term * term * term

datatype value =

VNUM of int

| VBOO of bool
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Potential redexes

datatype potredex =

SUM of value * value

| SEL of value * term * term

A redex may be an actual one or a stuck one.
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Contraction

(* contract : potredex -> term option *)

fun contract (SUM (VNUM n1, VNUM n2))

= SOME (NUM (n1 + n2))

| contract (SEL (VBOO b, t2, t3))

= SOME (if b then t2 else t3)

| contract r

= NONE
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Reduction strategey

Depth-first, left-to-right.
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Challenge

Wanted:

• the grammar of reduction contexts,

• the corresponding plug function,

• a decomposition function, and

• a unique-decomposition property.
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Root of the problem (1/2)

Contexts are notoriously tricky to get right:

• Are all cases covered?

• Are some of them redundant?

• Are they “outside in” or “inside out”?
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Root of the problem (2/2)

Contexts are notoriously tricky to get right:

• Shouldn’t they be like stack frames or

something?

• Does the unique-decomposition property

hold?

(cf. the Flatt test)
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Plan

• a 2-step method

• a variant of the 2nd step

• lessons learned

• perspectives
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Step 1

Write a compositional function

term -> potredex option

searching for the first redex in a term.
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Step 2

Expand the search function
to return a fill function

(potredex * (term -> term)) option

• applying it to the potential redex
yields back the term

• applying it to the contractum
yields the next term in the reduction sequence
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Step 2a: synthesizing the fill function

• constructing the fill function at return time
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Step 2a: synthesizing the fill function

• constructing the fill function at return time

• defunctionalize the fill function
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Step 2a: synthesizing the fill function

• constructing the fill function at return time

• defunctionalize the fill function

Result: outside-in reduction contexts

+ plug function
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Step 2b: inheriting the fill function

• constructing the fill function at call time
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Step 2b: inheriting the fill function

• constructing the fill function at call time

• defunctionalize the fill function
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Step 2b: inheriting the fill function

• constructing the fill function at call time

• defunctionalize the fill function

Result: inside-out reduction contexts

+ plug function
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Variant of the 2nd step

• fill is an endofunction

• represent it with explicit function composition

• replace the monoid of functions

by a monoid of lists

• defunctionalize each elementary function

in the list
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Results:

• synthesized: plug done with right fold

• inherited: plug done with left fold

• inherited: LIFO list of control-stack frames
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Lessons learned

• simple, mechanical way
of obtaining reduction contexts

• scales up

• unique-decomposition property
follows as corollary

• clarification of outside-in and
inside-out contexts

21



Perspectives: small-step semantics (1/4)

function
implementing
a structural
operational
semantics

CPS
transf.

//

defunct.
//

function
implementing
a reduction
semantics
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Perspectives: big-step semantics (2/4)

function
implementing

a natural
semantics

CPS
transf.

//

defunct.
//

function
implementing

a big-step
abstract
machine

Reynolds, 1972
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Perspectives: small-step semantics (3/4)

function
implementing
a reduction
semantics

refocusing
//

function
implementing
a small-step

abstract
machine

Danvy and Nielsen, BRICS RS-04-26
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Perspectives: abstract machines (4/4)

function
implementing
a small-step

abstract
machine

lightweight
fusion

//

function
implementing

a big-step
abstract
machine

Ohori and Sasano, POPL’07

Danvy and Millikin, BRICS RS-07-08
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Conclusions

• abstract machines: a natural meeting ground

• reduction contexts = evaluation contexts
(They are in defunctionalized form, and
it’s their apply function that matters.)

• the ubiquitous zipper
(Ditto.)
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“There is a striking analogy

between computing a program

and assigning semantics to it.”

“Intuitionistic model constructions

and normalization proofs”

Thierry Coquand and Peter Dybjer, 1993
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