
Reduction contexts
without headaches

— a functional pearl —

Olivier Danvy

(danvy@brics.dk)

IFIP WG 2.8 July 17, 2007

1



This could happen to you

Write a reduction semantics for, e.g.,

conditional arithmetic expressions.

2



Terms and values

datatype term =

NUM of int

| ADD of term * term

| BOO of bool

| CND of term * term * term

datatype value =

VNUM of int

| VBOO of bool

3



Potential redexes

datatype potredex =

SUM of value * value

| SEL of value * term * term

A redex may be an actual one or a stuck one.

4



Contraction

(* contract : potredex -> term option *)

fun contract (SUM (VNUM n1, VNUM n2))

= SOME (NUM (n1 + n2))

| contract (SEL (VBOO b, t2, t3))

= SOME (if b then t2 else t3)

| contract r

= NONE

5



Reduction strategey

Depth-first, left-to-right.

6



Challenge

Wanted:

• the grammar of reduction contexts,

• the corresponding plug function,

• a decomposition function, and

• a unique-decomposition property.

7



Root of the problem (1/2)

Contexts are notoriously tricky to get right:

• Are all cases covered?

• Are some of them redundant?

• Are they “outside in” or “inside out”?

8



Root of the problem (2/2)

Contexts are notoriously tricky to get right:

• Shouldn’t they be like stack frames or

something?

• Does the unique-decomposition property

hold?

(cf. the Flatt test)

9



Plan

• a 2-step method

• a variant of the 2nd step

• lessons learned

• perspectives

10



Step 1

Write a compositional function

term -> potredex option

searching for the first redex in a term.

11



Step 2

Expand the search function
to return a fill function

(potredex * (term -> term)) option

• applying it to the potential redex
yields back the term

• applying it to the contractum
yields the next term in the reduction sequence

12



Step 2a: synthesizing the fill function

• constructing the fill function at return time

13



Step 2a: synthesizing the fill function

• constructing the fill function at return time

• defunctionalize the fill function

14



Step 2a: synthesizing the fill function

• constructing the fill function at return time

• defunctionalize the fill function

Result: outside-in reduction contexts

+ plug function

15



Step 2b: inheriting the fill function

• constructing the fill function at call time

16



Step 2b: inheriting the fill function

• constructing the fill function at call time

• defunctionalize the fill function

17



Step 2b: inheriting the fill function

• constructing the fill function at call time

• defunctionalize the fill function

Result: inside-out reduction contexts

+ plug function

18



Variant of the 2nd step

• fill is an endofunction

• represent it with explicit function composition

• replace the monoid of functions

by a monoid of lists

• defunctionalize each elementary function

in the list

19



Results:

• synthesized: plug done with right fold

• inherited: plug done with left fold

• inherited: LIFO list of control-stack frames

20



Lessons learned

• simple, mechanical way
of obtaining reduction contexts

• scales up

• unique-decomposition property
follows as corollary

• clarification of outside-in and
inside-out contexts

21



Perspectives: small-step semantics (1/4)

function
implementing
a structural
operational
semantics

CPS
transf.

//

defunct.
//

function
implementing
a reduction
semantics

22



Perspectives: big-step semantics (2/4)

function
implementing

a natural
semantics

CPS
transf.

//

defunct.
//

function
implementing

a big-step
abstract
machine

Reynolds, 1972

23



Perspectives: small-step semantics (3/4)

function
implementing
a reduction
semantics

refocusing
//

function
implementing
a small-step

abstract
machine

Danvy and Nielsen, BRICS RS-04-26

24



Perspectives: abstract machines (4/4)

function
implementing
a small-step

abstract
machine

lightweight
fusion

//

function
implementing

a big-step
abstract
machine

Ohori and Sasano, POPL’07

Danvy and Millikin, BRICS RS-07-08

25



Conclusions

• abstract machines: a natural meeting ground

• reduction contexts = evaluation contexts
(They are in defunctionalized form, and
it’s their apply function that matters.)

• the ubiquitous zipper
(Ditto.)

26



“There is a striking analogy

between computing a program

and assigning semantics to it.”

“Intuitionistic model constructions

and normalization proofs”

Thierry Coquand and Peter Dybjer, 1993

27


