
Plugging a Space Leak
with an Arrow

Paul Hudak and Paul Liu
Yale University

Department of Computer Science

July 2007
IFIP WG2.8

MiddleOfNowhere, Iceland

Background: FRP and Yampa
z Functional Reactive Programming (FRP) is based on two

simple ideas:
{Continuous time-varying values, and
{Discrete streams of events.

z Yampa is an “arrowized” version of FRP.
z Besides foundational issues, we (and others) have

applied FRP and Yampa to:
{ Animation and video games.
{ Robotics and other control applications.
{ Graphical user interfaces.
{Models of biological cell development.
{Music and signal processing.
{ Scripting parallel processes.

Behaviors in FRP

z Continuous behaviors capture any time-varying
quantity, whether:
{input (sonar, temperature, video, etc.),
{output (actuator voltage, velocity vector, etc.), or
{intermediate values internal to a program.

zOperations on behaviors include:
{Generic operations such as arithmetic, integration,

differentiation, and time-transformation.
{Domain-specific operations such as edge-detection

and filtering for vision, scaling and rotation for
animation and graphics, etc.

Events in FRP

z Discrete event streams include user input as well as
domain-specific sensors, asynchronous messages,
interrupts, etc.

z They also include tests for dynamic constraints on
behaviors (temperature too high, level too low, etc.)

z Operations on event streams include:
{Mapping, filtering, reduction, etc.
{Reactive behavior modification (next slide).

An Example from Graphics (Fran)

A single animation example that demonstrates
key aspects of FRP:

growFlower = stretch size flower
where size = 1 + integral bSign

bSign =
0 `until`
(lbp ==> -1 `until` lbr ==> bSign) .|.
(rbp ==> 1 `until` rbr ==> bSign)

Differential Drive Mobile Robot

θ

l

vl

vr

y

x

An Example from Robotics

z The equations governing the x position of a differential
drive robot are:

z The corresponding FRP code is:
x = (1/2) * (integral ((vr + vl) * cos theta)

theta = (1/l) * (integral (vr - vl))

(Note the lack of explicit time.)

Time and Space Leaks

z Behaviors in FRP are what we now call signals, whose
(abstract) type is:

Signal a = Time -> a

z Unfortunately, unrestricted access to signals makes it far
too easy to generate both time and space leaks.

z (Time leaks occur in real-time systems when a
computation does not “keep up” with the current time,
thus requiring “catching up” at a later time.)

z Fran, Frob, and FRP all suffered from this problem to
some degree.

Solution: no signals!

z To minimize time and space leaks, do not provide
signals as first-class values.

z Instead, provide signal transformers, or what we prefer
to call signal functions:

SF a b = Signal a -> Signal b

z SF is an abstract type. Operations on it provide a
disciplined way to compose signals.

z This also provides a more modular design.
z SF is an arrow – so we use arrow combinators to

structure the composition of signal functions, and
domain-specific operations for standard FRP concepts.

A Larger Example

z Recall this FRP definition:
x = (1/2) (integral ((vr + vl) * cos theta))

z Assume that:
vrSF, vlSF :: SF SimbotInput Speed
theta :: SF SimbotInput Angle

then we can rewrite x in Yampa like this:
xSF :: SF SimbotInput Distance
xSF = let v = (vrSF&&&vlSF) >>> arr2 (+)

t = thetaSF >>> arr cos
in (v&&&t) >>> arr2 (*) >>> integral >>> arr (/2)

z Yikes!!! Is this as clear as the original code??

Arrow Syntax
z Using Paterson’s arrow syntax, we can instead write:

xSF' :: SF SimbotInput Distance
xSF' = proc inp -> do

vr <- vrSF -< inp
vl <- vlSF -< inp
theta <- thetaSF -< inp
i <- integral -< (vr+vl) * cos theta
returnA -< (i/2)

z Feel better? ☺
z Note that vr, vl, theta, and i are signal samples, and

not the signals themselves. Similarly, expressions to
the right of “-<” denote signal samples.

z Read “proc inp -> …” as “\ inp -> …” in Haskell.
Read “vr <- vrSF -< inp” as “vr = vrSF inp” in Haskell.

Graphical Depiction

&&&

>>>

>>>

>>>

>>>
>>>

&&&
xSF' :: SF SimbotInput Distance
xSF' = proc inp -> do

vr <- vrSF -< inp
vl <- vlSF -< inp
theta <- thetaSF -< inp
i <- integral -< (vr+vl) * cos theta
returnA -< (i/2)

xSF = let v = (vrSF &&& vlSF) >>> arr2 (+)
t = thetaSF >>> arr cos

in (v &&& t) >>> arr2 (*) >>> integral >>> arr (/2)

+
vrSF

vlSF

costhetaSF

integral* /2

vr

vl

theta

iinp

A Recursive Mystery

z Our use of arrows was motivated by performance and
modularity.

z But the improvement in performance seemed better than
expected, and happened for FRP programs that looked
Ok to us.

z Many of the problems seemed to occur with recursive
signals, and had nothing to do with signals not being
abstract enough.

z Further investigation of recursive signals is what the rest
of this talk is about.

z We will see that arrows do indeed improve performance,
but not just for the reasons that we first imagined!

Representing Signals
z Conceptually, signals are represented by:

Signal a ≈ Time -> a

z Pragmatically, this will not do: stateful signals could
require re-computation at every time-step.

z Two possible alternatives:
{ Stream-based implementation:

newtype S a = S ([DTime] -> [a])

(similar to that used in SOE and original FRP)
{ Continuation-based implementation:

newtype C a = C (a, DTime -> C a)

(similar to that used in later FRP and Yampa)

(DTime is the domain of time intervals, or “delta times”.)

Integration: A Stateful Computation

z For convenience, we include an initialization argument:
integral :: a -> Signal a -> Signal a

z Concrete definitions:
integralS :: Double -> S Double -> S Double
integralS i (S f) =

S (\dts -> scanl (+) i (zipWith (*) dts (f dts))

integralC :: Double -> C Double -> C Double
integralC i (C p) =

C (i, \dt -> integralC (i + fst p * dt) (snd p dt))

“Running” a Signal

z Need a function to produce results:
run :: Signal a -> [a]

z For simplicity, we fix the delta time dt -- but this is not
true in practice!

z Concretely:
runS :: S a ->[a]
runS (S f) = f (repeat dt)

runC :: C a -> [a]
runC (C p) = first p : runC (snd p dt)

dt = 0.001

z So far so good…

Example: The Exponential Function

z Consider this definition:

z Or, in our Haskell framework:
eS :: S Double

eS = integralS 1 eS

eC :: C Double
eC = integralC 1 eC

z Looks good… but is it really?

∫+=
t

dttete
0

)(1)(

Space/ Time Leak!
z Let int = integralC, run = runC, and recall:

int i (C p) = C (i, \dt-> int (i+fst p*dt) (snd p dt))
run (C p) = first p : run (snd p dt)

z Then we can unwind eC:
eC = int 1 eC

= C (1, \dt-> int (1+fst p*dt) (snd p dt))
p

= C (1, \dt-> int (1+1*dt) (· dt))
q

run eC
= run (C (1,q))
= 1 : run (q dt)
= 1 : run (int (1+dt) (q dt))
= 1 : run (C (1+dt, \dt-> int (1+dt*(1+dt)*dt) (· dt)))
= ...

z This leads to O(n) space and O(n2) time to compute n
elements! (Instead of O(1) and O(n).)

Streams are no better

z Recall:
int i (S f) =

S (\dts -> scanl (+) i (zipWith (*) dts (f dts))

z Therefore:
eS = int 1 eS

= S (\dts -> scanl (+) 1 (zipWith (*) dts (· dts))

z This leads to the same O(n2) behavior as before.

Signal Functions
z Instead of signals, suppose we focus on signal functions.

Conceptually:
SigFun a b = Signal a -> Signal b

z Concretely using continuations:
newtype CF a b = CF (a -> (b, DTime -> CF a b))

z Integration over CF:
integralCF :: Double -> CF Double Double
integralCF i = CF (\x-> (i,\dt-> integralCF (i+dt*x)))

z Composition over CF:
(^.) :: CF b c -> CF a b -> CF a c
CF f2 ^. CF f1 = CF (\a -> let (b,g1) = f1 a

(c,g2) = f2 b
in (c, \dt -> comp (g2 dt) (g1 dt)))

z Running a CF:
runCF :: CF () Double -> [Double]
runCF (CF f) = let (i,g) = f ()

in i : runCF (g dt)

Look Ma, No Leaks!

z This program still leaks:
eCF = integralCF 1 ^. eCF

z But suppose we define:
fixCF :: CF a a -> CF () a

fixCF (CF f) =
CF (\() -> let (y, c) = f y

in (y, \dt -> fixCF (c dt)))

z Then this program:
eCF = fixCF (integralCF 1)

does not leak!! It runs in constant space and linear time.
z To see why…

z Recall:
int i = CF (\x -> (i, \dt -> int (i+dt*x)))
fix (CF f) = CF (\() -> let (y, c) = f y

in (y, \dt -> fix (c dt)))
run (CF f) = let (i,g) = f () in i : run (g dt)

z Unwinding eCF:
fix (int 1)
= fix (CF (\x-> (1, \dt-> int (1+dt*x))))
= CF (\()-> let (y,c) = (1, \dt-> int (1+dt*y))

in (y, \dt-> fix (c dt)))
= CF (\()-> (1, \dt-> fix (int (1+dt))))

run (·)
= let (i,g) = (1, \dt-> fix (int (1+dt)))

in i : run (g dt)
= 1 : run (fix (int (1+dt*y)))

z In short, fixCF creates a “tighter” loop than Haskell’s fix.

Mystery Solved

z Casting all this into the arrow framework reveals why
Yampa is better behaved than FRP. In particular:
instance ArrowLoop CF where

loop :: CF (b,d) (c,d) -> CF b c
loop (CF f) = CF (\x -> let ((y,z), f') = f (x,z)

in (y, loop . f'))
e = proc () -> do rec

e <- integral 1 -< e
returnA -< e

z Compare loop to:
fixCF :: CF a a -> CF () a

fixCF (CF f) = CF (\()-> let (y, f’) = f y
in (y, fixCF . f’))

Alternative Solution
z Recall this unwinding:

eC = int 1 eC
= C (1, \dt-> int (1+1*dt) (· dt))

q

z The problem is that (q dt) is not recognized as being the
same as q. What we’d really like is:
eC = ...

= C (1, \dt-> int (1+1*dt) ·)

= C (1, \dt-> let loop = int (1+dt) loop in loop

z But this needs to happen on each step in the computation,
and thus needs to be part of the evaluation strategy.

z Indeed, both optimal reduction [Levy,Lamping] and
(interestingly) completely lazy evaluation [Sinot] do this,
and the space / time leak goes away!

Final Thoughts

z Being able to redefine recursion (via fix) is a Good Thing!
z What is the “correct” evaluation strategy for a compiler?
z John Hughes’ original motivation for arrows arose out of

the desire to plug a space leak in monadic parsers – is
this just a coincidence?

z There are many other performance issues involving
arrows (e.g. excessive tupling) and we are exploring
optimization methods (e.g. using arrows laws, zip/unzip
fusion, etc).

z An ambitous goal: real-time sound generation for
Haskore / HasSound on stock hardware.

The End

Monadic Parsers

z Need failure and choice:
class Monad m => MonadZero m where

zero :: m a
class MonadZero m => MonadPlus m where

(++) :: m a -> m a -> m a

z p1 ++ p2 means “try parse p1 – if it fails, then try p2.”

z A monadic parser based on:
data Parser s a = P ([s] -> Maybe (a,[s]))

leads to a space leak:
processing p1 ++ p2 requires holding on
to the stream being parsed by p1.

Plugging the Leak

z This problem can be fixed through some cleverness that
leads to this representation of parsers:
data Parser s a = P (StaticP s) (DynamicP s a)

z The cleverness requires that (++) see the static part of
both of its arguments – but there’s no way to achieve this
with bind:
(>>=) :: Parser s a -> (a -> Parser s b) -> Parser s b)

z What to do? Make “(a -> Parser s b)” abstract – i.e.
define an arrow Parser a b.

Arrows

z A b c is the arrow type of computations that take
inputs of type b and produce outputs of type c.

z The arrow combinators impose a point-free
programming style:
arr :: (b -> c) -> A b c arr f:
(>>>) :: A b c -> A c d -> A b d f >>> g:
first :: A b c -> A (b,d) (c,d) first f:
(***) :: A b d -> A c e -> A (b,c) (d,e) f***g:

Every pure function may be
treated as a computation Computations can be
composed sequentially

A computation may be applied
to part of the input

fb c

f gcb d

f

d d

b cTwo computations can be
composed in parallel

f
c e

b d

g

Arrow and ArrowLoop classes

z As with monads, we use type classes to capture the
arrow combinators.

class Arrow a where
arr :: (b -> c) -> a b c
(>>>) :: a b c -> a c d -> a b d
first :: a b c -> a (b,d) (c,d)

class Arrow a => ArrowLoop a where
loop :: a (b,d) (c,d) -> a b c

(loop can be thought of as a fixpoint operator for arrows.)

Graphical Depiction of
Arrow Combinators

sf1

sf2

sf1
sf

sf

sf2

sf1

sf2

sf1 >>> sf2 first sf arr sf

sf1 &&& sf2 sf1 *** sf2 loop sf

sf

z Conceptually: SF a b = Signal a -> Signal b
z But it is more efficient to design from scratch:

data SF a b = SF (a -> (b, DTime -> SF a b))

instance Arrow SF where
arr f x = (f x, \dt -> arr f)
first f (x, z) = ((y, z), first . f‘)

where (y, f') = f x
(f >>> g) x = (z, \dt -> f' dt >>> g' dt)

where (y, f') = f x
(z, g') = g y

instance ArrowLoop SF where
loop f x = (y, loop . f')

where ((y, z), f') = f (x, z)

(Note “tight” recursion.)

Signal Functions in Yampa

	Plugging a Space Leak�with an Arrow
	Background: FRP and Yampa
	Behaviors in FRP
	Events in FRP
	An Example from Graphics (Fran)
	Differential Drive Mobile Robot
	An Example from Robotics
	Time and Space Leaks
	Solution: no signals!
	A Larger Example
	Arrow Syntax
	Graphical Depiction
	A Recursive Mystery
	Representing Signals
	Integration: A Stateful Computation
	“Running” a Signal
	Example: The Exponential Function
	Space/ Time Leak!
	Streams are no better
	Signal Functions
	Look Ma, No Leaks!
	Mystery Solved
	Alternative Solution
	Final Thoughts
	The End
	Monadic Parsers
	Plugging the Leak
	Arrows
	Arrow and ArrowLoop classes
	Graphical Depiction of �Arrow Combinators
	Signal Functions in Yampa

