
Multi-way Rendezvous in

Haskell+STM

Nalini Vasudevan

Satnam Singh

Cambridge, UK

Objectives

• Goal: trying to encode various kinds of
concurrency idioms in STM Haskell.

• Deterministic parallelism.

• Par/seq?

• Multi-way rendezvous (SHIM).

• Can this be implemented adequately as a
library in Haskell with MVars and STM?

• Is it sensible to try and encode
concurrency idioms with STM?

Comega Join Patterns

using System ;

public class MainProgram
{ public class Buffer
{ public async Put (int value) ;

public int Get () & Put(int value)
{ return value ; }

}

static void Main()
{ buf = new Buffer () ;

buf.Put (42) ;
buf.Put (66) ;
Console.WriteLine (buf.Get() + " " +

buf.Get()) ;
}

}

One Shot Synchronous Join

(&) :: TChan a -> TChan b -> STM (a, b)
(&) chan1 chan2

= do a <- readTChan chan1
b <- readTChan chan2
return (a, b)

(>>>) :: STM a -> (a -> IO b) -> IO b
(>>>) joinPattern handler

= do results <- atomically joinPattern
handler results

example chan1 chan2
= chan1 & chan2 >>>

\ (a, b) -> putStrLn (show (a, b))

Biased Choice

(|+|) :: (STM a, a -> IO c) ->
(STM b, b -> IO c) ->
IO c

(|+|) (joina, action1) (joinb, action2)
= do io <- atomically

(do a <- joina
return (action1 a)

`orElse`
do b <- joinb

return (action2 b))
io

(chan1 & chan2 & chan3,
\ ((a,b),c) -> putStrLn (show (a,b,c)))

|+|
(chan1 & chan2,

\ (a,b) -> putStrLn (show (a,b)))

Conditional Joins

(??) :: TChan a -> (a -> Bool) -> STM a

(??) chan predicate
= do value <- readTChan chan

if predicate value then
return value

else
retry

(chan1 ?? \x -> x > 3) & chan2 >>>
\ (a, b) -> putStrLn (show (a,
b))

SHIM

void f(int a, int &b) {
while (true) {

b = a + 1;
next b; // sends b since b is passed by reference
next a; // receives a since a is passed by value

}
}

void g(int b, int &c) {
while (true) {
next b; // receives
c = b;
next c; // sends
}

}

void main() {
int a; a = 0; int b; int c;
f(a, b); par g(b, c); par g(c, a);

}

SHIM

void fifo(int i, int &o, int n)

{

int c; int m; m = n- 1;

if (m) {

g(i, c); par fifo(c, o, m);

} else {

g(i, o);

}

}

Multi-Way Rendezvous

DVar

data DVar a

= DVar

{ dval :: TVar (Maybe a), -- This is the value of the DVar variable (if it has one)

dname :: String, -- This is the name of the DVar

writerRegistered :: TVar Bool, -- Writer registered?

numReaders :: TVar Int, -- The number of registered readers

numReadsSoFar :: TVar Int, -- The number of reads that have occurred

allReadsDone :: TVar Bool -- True if all the reads on a dVar have been performed

}

writeDVar

writeDVar :: DVar a -> a -> IO ()

writeDVar dVar value

= do -- First perform the write

atomically $ writeTVar (dval dVar) (Just value)

writeTVar (allReadsDone dVar) False

-- Now wait for all reads to occcur

atomically $ do allDone <- readTVar (allReadsDone dVar)

if not allDone then

retry

else

return ()

waitOnValue

waitOnValue :: TVar (Maybe a) -> STM a

waitOnValue maybeT

= do jv <- readTVar maybeT

let Just v = jv

if isNothing jv then

retry

else

return v

readDVar

readDVar :: DVar a -> IO a
readDVar dVar
= do v <- atomically $ do v <- waitOnValue (dval dVar)

-- Indicate that we have read it
nrRead <- readTVar (numReadsSoFar dVar)
writeTVar (numReadsSoFar dVar) (nrRead+1)
-- See if all the reads have occured
nrReaders <- readTVar (numReaders dVar)
when (nrRead+1 == nrReaders)
-- Release waiting writer
$ writeTVar (allReadsDone dVar) True

return v
atomically $ do -- Wait until all reads have occured

allDone <- readTVar (allReadsDone dVar)
when (not allDone)
retry

nrRead <- readTVar (numReadsSoFar dVar)
writeTVar (numReadsSoFar dVar) (nrRead-1)
when (nrRead == 1)
$ writeTVar (dval dVar) Nothing

return v

dPar

dPar :: IO a -> IO b -> IO (a, b)
dPar function1 function2
= do done1 <- newEmptyMVar

done2 <- newEmptyMVar
forkIO (do res <- function1

putMVar done1 res
)

forkIO (do res <- function2
putMVar done2 res

)
res1 <- takeMVar done1
res2 <- takeMVar done2
return (res1, res2)

registerWriter

registerWriter :: DVar a -> IO ()

registerWriter dVar

= -- Has someone already registered write interest

atomically $ do anyWriters <- readTVar (writerRegistered dVar)

if anyWriters then

error "Too many writers."

else

-- Record that fact that this dVar now has a writer

writeTVar (writerRegistered dVar) True

•

TwoReaders

• (Emacs)

Dynamically created dPars

Question

• In SHIM the compiler can tell by analysis

how many reading and writing threads are

acting on a DVar.

• If we want to embed a DPar like

mechanism in Haskell is it possibly to

statically check for programs with too

many writers?

