
Combining
Access Control and Information Flow

in DCC
(work in progress)

Steve Zdancewic
University of Pennsylvania

In collaboration with: Martín Abadi,
 Karl Mazurak and Jeff Vaughan

Steve Zdancewic -- WG 2.8 2007 2

Dependency Core Calculus (DCC)

• A Core Calculus of Dependency
[Abadi, Banerjee, Heintz, Riecke: POPL 1999]

– Monadic type system with lattice of "labels" TL

– Key property: noninterference
– Showed how to encode many dependency analyses: information

flow, binding time analysis, slicing, etc.

• Access control in a Core Calculus of Dependency
 [Abadi: ICFP 2006]

– Essentially the same type system is an authorization logic
– Instead of TL read the type as "L says T"
– Curry-Howard isomorphism "programs are proofs"

• Question: Can these two different interpretations be
combined in a sensible way?

Steve Zdancewic -- WG 2.8 2007 3

Goal of this work:

• Develop a programming language that exploits these two
interpretations of DCC:
– Proof-carrying Authorization

[Appel & Felton 1999] [Bauer et al. 2002]

– Strong information-flow properties
(as in Jif [Myers et al.] , FlowCaml [Pottier & Simonet])

• Why?
– Good theoretical foundations
– Declarative policies (for access control & information flow)
– Auditing & logging: proofs of authorization are informative

• In this talk: A high-level tour of DCC and some of my current
thoughts about structuring such a programming language

Steve Zdancewic -- WG 2.8 2007 4

Polymorphic DCC

• Types // Authorization Logic

 T ::= true

 c
α

 T ∧ T

T ∨ T

T → T

 ∀α.T

P says T

• Labels // Principals
 P,Q,R,S,…
• Ordering:

 P ≤ Q
– Labels: "Data labeled with Q

is more restricted than data
labeled with P"

 untainted ≤ tainted

 or
 public ≤ secret

– Principals: "P acts for Q" or
"P is more trusted than Q"

Steve Zdancewic -- WG 2.8 2007 5

DCC = Polymorphic λ Calculus +

Γ |- e : T
Γ |- ηP e : P says T

Γ |- e1 : P says T1

Γ,x:T1 |- e2 : Q says T2

Γ |- P ≤ Q
Γ |- bind x = e1 in e2 : Q says T2

Steve Zdancewic -- WG 2.8 2007 6

Authorization Logic Example Theorems

• T → P says T
"Principals assert all true statements"

• (P says T) → (P says (T → U)) → (P says U)
"Principals' assertions are closed under deduction"

• If P ≤ Q then (P says T) → (Q says T)

 "If P acts for Q then whatever P says, Q says"

• Define "P speaks-for Q" = ∀α. (P says α) → (Q says α)

• (Q says (P speaks-for Q)) → (P speaks-for Q)

"Q can delegate its authority to P" (The "hand off" axiom)

Steve Zdancewic -- WG 2.8 2007 7

Example Non-theorems

• It is not possible to prove false: ∀T. T
– "The logic is consistent"

• It is not possible to prove: P says false
– "Principals are consistent"

• It is not possible to prove: ∀T.(A says T) → T
– "Just because A says it doesn't mean it's true"

• If ¬(Q ≤ P) then there is no T such that:
(Q says T) → P says false
– "Nothing Q can say can cause P to be inconsistent"

Steve Zdancewic -- WG 2.8 2007 8

Example: File System authorization policy

• P1: FS says Owns(A,F1)
• P2: FS says Owns(B,F2)

…
• OwnerControlsRead:
∀P,Q,F. (FS says Owns(P,F)) →

(P says MayRead(Q,F)) →
MayRead(Q,F)

• Read operation: expects a proof that MayRead(A,F1)
whenever A requests to read F1
– [Question: isn't this too static?]

Steve Zdancewic -- WG 2.8 2007 9

Connection to Information Flow

• There is no proof of:
 ∀T. ∀S. Q says (T ∨ S) → (Q says T) ∨ (Q says S)

• Crucial point: says doesn't distribute over disjunction

• Authorization Logic:
– The type above would allow an adversary to control which

statement is made by Q.

• Explicit information flow vs. Implicit information flow:
– Explicit = Data (tag on the sum type)

– Implicit = Control (branch taken when destructing the sum)

Steve Zdancewic -- WG 2.8 2007 10

Noninterference in DCC

• Assume:
– ¬ (P ≤ Q)
– x:(P says T) |- e : (Q says bool)
– |- e1, e2 : P says T

• Then:
e{e1/x} →* v iff e{e2/x} →* v

• Corollary: Any term of type
 (Tainted says T) → (Untainted says bool)

is a constant function.

Steve Zdancewic -- WG 2.8 2007 11

Summary So Far

• DCC as an information-flow type system:
– Types express information-flow constraints
– Well-typed terms are programs that satisfy the information-flow

constraints.

• DCC as an authorization logic:
– Types express authorization policies
– Well-typed terms are constructive proofs that are evidence of

authorization.

• Just use DCC and we're done combining access control and
information flow, right?
– Not quite!

Steve Zdancewic -- WG 2.8 2007 12

Decentralized Authorization

• Authorization policies require uninterpreted constants or free
variables (uninhabited types):
– e.g. "MayRead(B,F)" or "Owns(A,F)"

– Otherwise, it would be easy to "forge" authorization proofs

• But, principal A should be able to create a proof of
 A says MayRead(B,F)
– No justification required -- this is a matter of policy, not fact!

• Decentralized / distributed implementation:
– One possible proof that "A says T" is A's digital signature on a string

"T", written sign(A, "T")

Steve Zdancewic -- WG 2.8 2007 13

Adding "Say"

• How to create the value sign(A, "T")?

• Requires access to A's private key…
– Programs run with some "authority" = a private key

– With A's authority :
 say("T") evaluates to sign(A, "T")

• What T's should a program be able to say?
– T's from a statically predetermined set (static auditing)

– T's from a set determined at load time
• A bit like Java or C#'s privilege models.

• In any case: log the fact that "T" was said by the program

Steve Zdancewic -- WG 2.8 2007 14

3 Example Proofs of A says MayRead(B,F)

• sign(A, "MayRead(B,F)")
– Direct authorization via signature

• bind x = sign(C,"MayRead(B,F)") in ηA x
– Implicit delegation (assuming C ≤ A)

• bind x = sign(A, "B speaks-for A") in
x [MayRead(B,F)] sign(B,"MayRead(B,F))

– Explicit delegation to Q via speaks-for

Steve Zdancewic -- WG 2.8 2007 15

Auditing programs

• What does the program do with the proofs?

• More Logging!
– They record justifications of why certain operations were permitted.

• When do you do the logging?
– Answer: As close to the use of the privileges as possible.

– Easy for built-in security-relevant operations like file I/O.

– Also provide a "log" operation for programmers to use explicitly.

• Question: what theorem do you prove?
– Correspondence between security-relevant operations and log entries.

– Log entries should explain the observed behavior of the program.

• Speculation: A theory of auditing?

Steve Zdancewic -- WG 2.8 2007 16

A Problem with Information Flow

• These signatures conflict with DCC as a programming language!
– Evaluation can get stuck at 'bind' operations because there are now two flavors of

inhabitants of type "P says int"
 (ηA 3) vs. sign(A, "int")

• Solution: separate the "proofs" from other kinds of values
– Many possible designs
– Current approach: introduce a new type Pf T
– Pf T is the type of proofs of the proposition T
– Pf is another monad.

• This decouples the authorization-logic component from the
programming language component
– Question: Doesn't this suggest that authorization logic & information flow are

largely orthogonal?
– Answer: Yes!

Steve Zdancewic -- WG 2.8 2007 17

Ramifications of this separation

• There are no elimination forms for Pf T
– Such proof values are used only for logging
– But…any two values of type Pf T are equivalent
– As a consequence, it is safe to treat these values as

having "high integrity"

• To ensure progress, sign(A,T) can only occur under
the Pf term constructor:

 Γ;A |- T :: Prop
Γ;A |- say(T) : Pf (A says T)

Steve Zdancewic -- WG 2.8 2007 18

Signing Values?

• What about signing values to vouch for their integrity?
– Introduce (simple) dependent types:

{x:T; Pf T(x)} dependent pairs
 (x:T) → T(x) dependent functions

– (Restrict the dependency domain to first order data.)
• Alternative: use singleton types

• Question: best practice for "lightweight dependency"

– Invariant: sign only types
• computation can't depend on signatures

• But, can use predicates: {F:File; Pf FS says Owns(A,F)}

Steve Zdancewic -- WG 2.8 2007 19

Example authorization policy (revised)

• getOwner: (F:File) → Maybe (∃P.Pf FS says Owns(P,F))

• OCR (OwnerControlsRead):
 ∀P,Q. (F:File) →

 (FS says Owns(P,F)) →
(P says MayRead(Q,F)) →
MayRead(Q,F)

• send : ∀Y. (F:File) → Pf MayRead(Y,F) → true
– Sends the file F to Y (via side effects)

– Logs the proof that Y may read F

Steve Zdancewic -- WG 2.8 2007 20

Implementing a request handler

• Type Req = ∃P,Q,.{F:File, Pf P says MayRead(Q,F)}

• HandleReq : Req → true =
λr:Req.

let P,Q,{F;p} = r in
case (getOwner f) of
 Nothing => ()
| Just P',q =>

 if P = P' then
 send [Q] F (letPf x = p in letPf y = q in Pf (OCR [P] [Q] F y x))

Steve Zdancewic -- WG 2.8 2007 21

Status

• We have a core calculus worked out on paper:
– DCC + constants + sign

• for access control

– DCC + Pf + (simple) dependent types
• for information-flow

– Another connection declassification: A says t → t

• Still in the process of doing the proofs
– Type soundness / noninterference / auditing?

• Plan to implement some variant of this language
– Mainly to gain experience with how painful it is to use!

Steve Zdancewic -- WG 2.8 2007 22

Open Questions

• This story seems just fine for integrity, but what about
confidentiality?
– Is there an "encryption" analog to "signatures" interpretation?

• Other practical issues:
– Effects system? More monads?

– Channels and authentication… Nonces?

– Revocation/expiration of signed objects… Timestamps? Transactions?

– Type inference?

Steve Zdancewic -- WG 2.8 2007 23

Related Work

• Authorization Logics:
– Abadi, Burrows, Lampson, Plotkin "ABLP" [TOPLAS 1993]

• somewhat ad hoc w.r.t. delegation and negation

– Garg & Pfenning [CSFW 2006, ESORICS 2006]
• a constructive modal logic that's very close to monomorphic DCC

– Becker,Gordon, Fournet [CSFW 2007]

• Combining access control and information-flow:
– Pistoia, Banerjee & Naumann [Oakland 2007, JFP 2005]

• ACL induced information-flow policies, Stack-based access control

– Tse & Zdancewic [Oakland 2004], Zheng & Myers [FAST 2004]
• Jif-style dynamic principals and labels

• Connections to other modal logics?
– Murphy et al. [LICS 2004]

