
[Faculty of Science
Information and Computing Sciences]

NixOS

Andres Löh

joint work with Eelco Dolstra

Department of Information and Computing Sciences
Utrecht University

June 17, 2008



[Faculty of Science
Information and Computing Sciences]

2

Introduction

I NixOS is a Linux distribution.

I It is based on the Nix package manager.

I Nix offers a functional domain-specific language to
describe system components.

I In NixOS, programs/packages but also configurations and
services are described by Nix expressions.

I Like in a pure functional language, system configurations
cannot be updated destructively. Instead, new
configurations can be built by evaluating new expressions.



[Faculty of Science
Information and Computing Sciences]

3

Overview

Nix – a purely functional package manager

Imperative vs. functional

The Nix store

Nix expressions

NixOS

Nixpkgs

System configuration



[Faculty of Science
Information and Computing Sciences]

4

Nix – a purely functional package manager



[Faculty of Science
Information and Computing Sciences]

5

Package management is usually imperative

I Software is distributed in many components.

I Components may depend on each other.

I On one system, a certain selection of components is
installed at one point in time.

I Components are installed into a common filesystem and
usually find other components by looking in specific
situations.

I The system configuration is like a mutable variable: new
installations, upgrades, package removals destructively
update the configuration: they overwrite files in the file
system.



[Faculty of Science
Information and Computing Sciences]

6

Consequences

Upgrading or changing one component can break other
components:

I Consider a program (say GHC) that makes use of Perl, by
calling /usr/bin/perl at run-time.

I Another program depends on a later version of Perl, so
installing the program triggers a destructive upgrade of
Perl.

I It is now not clear if GHC still works.



[Faculty of Science
Information and Computing Sciences]

7

Other disadvantages

I Often incomplete dependency specifications (using version
ranges only).

I Difficult to upgrade configuration files:
I overwrite
I keep old
I merge in some way

I Difficult to install multiple variants of one component on a
system at the same time.

I Difficult to reproduce a specific configuration.

I Difficult to recover from an inconsistent state.



[Faculty of Science
Information and Computing Sciences]

8

Functional package management

I Components are described using Nix expressions.

I Evaluating Nix expressions corresponds to building one or
several components.

I Built components are stored in the Nix store and
immutable once built.

I The Nix store also serves as a cache: if the same
component is required multiple times, it is built only once.



[Faculty of Science
Information and Computing Sciences]

9

The Nix store

I Like a heap for components.

I Components are stored in isolation.

I Installing or upgrading components amounts to allocating
new objects in the Nix store. The old components are
unaffected and remain available.

I It is easy to install several variants of a component on the
same system.



[Faculty of Science
Information and Computing Sciences]

10

The Nix store in more detail

I The Nix store is one directory in the file system, usually
/nix/store.

I Every entry in the store is a subdirectory. The subdirectory
includes a cryptographic hash reflecting the identity of the
component: the complete Nix expression including all
dependencies determines the hash.

Example

/nix/store/rb4sqlpdnlcinsqr7pfbisdlpngc5jax-ghc-6.8.2



[Faculty of Science
Information and Computing Sciences]

11

Advantages of using cryptographic hashes

I Since the hash is based on everything that determines the
identity of a component, we get different components in
isolation, but also automatic maximal sharing of
components.

I Hashes are much more finegrained than a name and a
version number.
/nix/store/q5cq4g7rpm4vgk49qkmvlks4ijrz90n6-ghc-6.8.2

/nix/store/rb4sqlpdnlcinsqr7pfbisdlpngc5jax-ghc-6.8.2

I The hashes are difficult to guess, so it is difficult to find
components except with the help of Nix.

I We can use hashes to check for run-time dependencies, by
scanning the store entry for hash occurrences.



[Faculty of Science
Information and Computing Sciences]

12

Description of a simple component

{stdenv, fetchurl, pkgconfig, libXaw, libXt}:

stdenv.mkDerivation {

name = "xmessage-1.0.2";

src = fetchurl {

url = http://.../X11R7.3/.../xmessage-1.0.2.tar.bz2;

sha256 = "1hy3n227iyrm323hnrdld8knj9h82fz6...";

};

buildInputs = [pkgconfig libXaw libXt ];

}



[Faculty of Science
Information and Computing Sciences]

13

Easy to define your own abstractions

{cabal, X11, xmessage}:

cabal.mkDerivation (self : {

pname = "xmonad";

version = "0.7";

sha256 = "d5ee338eb6d0680082e20eaafa0b23b3...";

extraBuildInputs = [X11];

meta = {

description = "xmonad is a tiling window manager for X";

};

preConfigure = ’’

substituteInPlace XMonad/Core.hs --replace \

’"xmessage"’ ’"${xmessage}/bin/xmessage"’

’’;

})



[Faculty of Science
Information and Computing Sciences]

14

Combining packages

rec {

...

xmonad = import ../applications/window-managers/xmonad {

inherit stdenv fetchurl ghc X11;

inherit (xlibs) xmessage;

};

...

}



[Faculty of Science
Information and Computing Sciences]

15

Nix expressions

I Dynamically typed, pure, lazy functional language.

I Convenience features: URI literals, path literals, multi-line
string literals with interpolation.

I Attribute sets (records).

I No real module system, but
with import path ; ...
construct.



[Faculty of Science
Information and Computing Sciences]

16

Derivations

I The functions

stdenv.mkDerivation

cabal.mkDerivation

are wrappers around the built-in function derivation.
I The built-in function derivation takes an attribute set

describing a build action:

{ system = ...; # the architecture of the system

name = ...; # name of the package

builder = ...; # shell script to perform the build

... # augmenting the build environment

}



[Faculty of Science
Information and Computing Sciences]

17

Evaluating derivations

I Evaluating the derivation
I evaluates all the store paths that occur in the input

attribute set (build-time dependencies)
I computes the store location for the derivation
I builds the package in a restricted build environment (if it

does not yet exist)
I returns the store location of the built package

I Evaluating a derivation is the only way to get hold of a
store location.



[Faculty of Science
Information and Computing Sciences]

18

The build environment

I Additional attributes passed to derivation are added to the
build environment as environment variables.

I In particular, other derivations can be passed to make their
store paths known.

I The builder (a shell script) can use this information to
facilitate the build process:

I binaries from store paths that are dependencies are added
to the search path

I libraries from store paths that are dependencies are added
to the linker search path

I . . .

I The builder of a component can only write to the
temporary build environment and to the designated output
path of the Nix store.



[Faculty of Science
Information and Computing Sciences]

19

Binary distribution

I Store paths are unique even across different systems.

I Downloading a pre-built binary instead of building a
component locally is a simple optimization.

I It is possible to apply binary patching techniques in order
to reduce the size of downloads necessary.



[Faculty of Science
Information and Computing Sciences]

20

Profiles

I A profile provides a view on a set of store entries. A
specific set of components can be symlinked into a
directory tree so that it can easily be used.

I There can be a system-wide profile with defaults for all
users, but every user can have a personal profile.

I A profile consists of a history of user environments.

I Each user environment is an immutable store entry.

I Installing a package as a user builds an updated user
environment and exports it as a new generation of the
user’s profile.

I Rollbacks are easy by switching to an older generation of a
profile.



[Faculty of Science
Information and Computing Sciences]

21

Installing components

I nix-env -i ghc

installs the latest version of ghc defined in the default Nix
expression into the default profile.

I nix-env -i ghc-6.8.1

selects a specific version.
I nix-env -u ghc

upgrades ghc in the default profile to the latest version.
I nix-env -e ghc

removes ghc from the default profile (but not from the
store!).



[Faculty of Science
Information and Computing Sciences]

22

Garbage collection

I Garbage collection removes unused entries from the Nix
store.

I Only run on explicit request:

nix-store --gc

I Conservative garbage collection via hashes.

I Can be used to remove build-time dependencies that are
not run-time dependencies.

I Can affect the ability to roll back to previous versions.



[Faculty of Science
Information and Computing Sciences]

23

NixOS



[Faculty of Science
Information and Computing Sciences]

24

From Nix to NixOS

I The Nix package manager can in theory be used together
with multiple operating systems (various Linux
distributions, various BSD distributions, MacOS, Windows
with Cygwin, . . . )

I NixOS is a full Linux distribution using Nix not just for the
software, but also for the system configuration.

I Things built by Nix expressions in NixOS include:
I software
I the kernel and kernel modules
I configuration files
I services



[Faculty of Science
Information and Computing Sciences]

25

Nixpkgs – the Nix packages collection

I Nix expressions for more than 1300 packages and growing.

I GCC, X11, KDE, Gnome, Apache, PostgreSQL, GHC,
OCaml, . . .

I Also expressions for some closed-source software such as
Acrobat Reader.

I Selection slightly biased on the needs of current
contributors.

I Provides functions for each package plus predefined
combinations of current versions that are being tested on a
build farm.

I Selected binaries (depending on license issues, relevance,
build time) are automatically made available for binary
distribution.



[Faculty of Science
Information and Computing Sciences]

26

System configuration

I One Nix expression, located in

/etc/nixos/nixos/default.nix

describes an attribute set with an attribute system.
Evaluating that attribute (re-)builds the whole system
configuration.

I The Nix expression imports a configuration file

/etc/nixos/configuration.nix

that allows to adjust the configuration in several ways.



[Faculty of Science
Information and Computing Sciences]

27

Example configuration

{

boot = {

grubDevice = "/dev/sda";

};

fileSystems = [

{ mountPoint = "/";

device = "/dev/sda1";

}

];

services = {

sshd = {

enable = true;

forwardX11 = true;

};

xserver = {

enable = true;

videoDriver = "vesa";

sessionType = "xterm";

windowManager = "xmonad";

};

};

}



[Faculty of Science
Information and Computing Sciences]

28

System components

I The Linux kernel is built including selected external
modules, and is a normal store entry.

I On a kernel upgrade, external modules are automatically
rebuilt.

I The initial ramdisk is also built in the Nix store.

I Services (X server, dhcp client, sshd) are built as upstart
services and linked to /etc/event.d.



[Faculty of Science
Information and Computing Sciences]

29

Configuration files

I Most configuration files are package-specific and generated
in the Nix store (for instance, the sshd configuration is not
contained in /etc).

I Other configuration files are used by multiple packages
(/etc/hosts) and are therefore symlinked to /etc.

I A select few configuration files (/etc/passwd) are not
maintained via the Nix store, but Nix ensures the presence
of certain entries.



[Faculty of Science
Information and Computing Sciences]

30

Changing the configuration

I A configuration contains an activation script that
starts/stops services, creates links in /etc, ensures the
presence of user accounts, . . .

I To change the system configuration, one must
I edit configuration.nix
I call nixos-rebuild switch

I Then,
I attribute system of the top-level Nix expression is

evaluated
I the activation script is run
I the resulting derivation is installed in a special system

profile
I the boot menu is regenerated from the system profile



[Faculty of Science
Information and Computing Sciences]

31

Conclusions

I It works – too much state is just making things
complicated.

I Purity and laziness are essential for the Nix expression
language.

I Experiments show that the current way of enforcing purity
is sufficient.



[Faculty of Science
Information and Computing Sciences]

32

Future

I Enforce purity more strictly.
I Static nominal type system:

I generating GUIs from type information
I QuickChecking Nix expressions

I Why restrict Nix expressions to describe only one system?
Networks!


	Nix -- a purely functional package manager
	Imperative vs. functional
	The Nix store
	Nix expressions

	NixOS
	Nixpkgs
	System configuration


