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Integrate Logical Frameworks and Functional Programming.

• LF level provides a generalized datatype mechanism adequate

for syntax, judgements, rules, proofs.
• FP level provides the means to compute over these datatypes.

In this talk we restrict attention to simple (non-indexed) types (to

appear, LICS 2008).

Current work on extending to dependent types and indexed types

(not to appear, ICFP 2008).
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Polarized type systems.

• Positive types are inductively defined by intro/focusing rules,

manipulated by elim/inversion rules.
• Negative types are inductively defined by elim/inversion rules,

manipulated by intro/focusing rules.

Contextual modal type systems.

• 〈Ψ〉A has as elements “open terms” with parameters specified

by context Ψ.

• Treats binding and scope without reliance on effects/state.
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Goal: integrate representation and computation in a functional

language.

1. Representation: types for syntax including binding and scope.

2. Computation: type of higher-order computations over these

types.
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Goal: integrate representation and computation in a functional

language.

1. Representation: types for syntax including binding and scope.

2. Computation: type of higher-order computations over these

types.

Requirements:

1. Sufficiently powerful to represent syntax, judgements, rules,

proofs.

2. Sufficiently flexible to permit computation by structural induction

modulo α-equivalence.

3. Purely functional, so that we may index types by syntax.



Example: Domain-Specific Logics

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

7 / 41

Access control logic (excerpts):

sort : type.

princ : sort.

res : sort.

term : sort => type.

dan : term princ.

bob : term princ.

/home/dan/pub : term res.

prop : type.

owns : term princ => term res => prop.

mayrd : term princ => term res => prop.
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Access control logic (excerpts):

true : prop => type.

affirms : term princ => prop => type.

impi : (imp A B) true <= (A true => B true).

impe : B true <= A true <= (imp A B) true.

aff : K affirms A <= A true.

saysi : (K says A) true <= K affirms A.

sayse : (K affirms C) <= (says K A) <=

(K affirms A => K affirms C).
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Signature for proof-carrying access control:

type file[r:term res]

val paper.tex : file[/home/dan/pub]

type iam[p:term princ]

val iambob : iam[bob]

val read :

∀r.∀p.∀pf:atom (p mayrd r) true.

file[r] -> iam[p] -> string

Implementation of read structurally analyzes proofs at run-time!
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There are two different function spaces in play here!

1. Representational: A⇒ B (aka B ⇐ A).

2. Computational: A→ B (aka B ← A).

Representational functions:
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• Closed-ended: schemas built from parameters by composing
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There are two different function spaces in play here!

1. Representational: A⇒ B (aka B ⇐ A).

2. Computational: A→ B (aka B ← A).

Representational functions:

• Adequate for syntax, rules, proofs.
• Closed-ended: schemas built from parameters by composing

rules.

Computational functions:

• Compute by pattern matching.

• Open-ended: any form of computation allowable.
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Representational functions witness derivabilities, J1 ⊢ J2.
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Representational functions witness derivabilities, J1 ⊢ J2.

• J2 is derivable, taking J1 as a fresh axiom.

• Evidence is uniform: λx:J1.M : J1 ⇒ J2.



Derivability and Admissibility

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

11 / 41

Representational functions witness derivabilities, J1 ⊢ J2.

• J2 is derivable, taking J1 as a fresh axiom.

• Evidence is uniform: λx:J1.M : J1 ⇒ J2.

Computational functions witness admissibilities, J1 |= J2.
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Representational functions witness derivabilities, J1 ⊢ J2.

• J2 is derivable, taking J1 as a fresh axiom.

• Evidence is uniform: λx:J1.M : J1 ⇒ J2.

Computational functions witness admissibilities, J1 |= J2.

• Derivability of J1 implies derivability of J2.
• Evidence is non-uniform: any function mapping derivations of J1

to derivations of J2.

Side conditions correspond to rules that mix both forms:

¬(l ∈ dom(M))

(M, l) ⇑ i.e.

l ∈ dom(M) |=⊥

(M, l) ⇑
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Representational functions are
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Representational functions are

• Introduced by composing rules from parameters.
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• Eliminated by pattern matching / structural analysis.

Computational functions are

• Introduced by pattern matching / structural analysis.
• Eliminated by application to an argument.
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Representational functions are

• Introduced by composing rules from parameters.

• Eliminated by pattern matching / structural analysis.

Computational functions are

• Introduced by pattern matching / structural analysis.
• Eliminated by application to an argument.

Focusing provides a general framework for such dualities!
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Sums A⊕ B are positive:

• Introduced by choosing inl or inr

• Eliminated by pattern-matching

Computational functions A→ B are negative:

• Introduced by pattern-matching on A

• Eliminated by choosing an A to apply it to

Operationally: positive = eager, negative = lazy
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Sums A⊕ B are positive:

• Introduced by choosing inl or inr

• Eliminated by pattern-matching

Computational functions A→ B are negative:

• Introduced by pattern-matching on A

• Eliminated by choosing an A to apply it to

Focus = make choices
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Sums A⊕ B are positive:

• Introduced by choosing inl or inr

• Eliminated by pattern-matching

Computational functions A→ B are negative:

• Introduced by pattern-matching on A

• Eliminated by choosing an A to apply it to

Inversion = respond to all possible choices



Polarity and Focusing

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

18 / 41

Positive type Negative type

Intro Focus Inversion

Elim Inversion Focus
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A concise way to define a language:

• Specify a type by its focused behavior

• Derive the inversion phase generically
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A concise way to define a language:

• Specify a type by its focused behavior

◦ Choices = patterns

• Derive the inversion phase generically

◦ Response = pattern matching
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A+ ::= A+ ⊕ B + | A+ ⊗ B + | ↓A-

A- ::= A+ → B - | . . .

∆ 
 p :: A+

∆ 
 inl p :: A+ ⊕ B +

∆ 
 p :: B +

∆ 
 inr p :: A+ ⊕ B +
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 (p1 , p2 ) :: A+ ⊗ B +



Patterns for Positive Types

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

21 / 41

A+ ::= A+ ⊕ B + | A+ ⊗ B + | ↓A-

A- ::= A+ → B - | . . .

∆ 
 p :: A+

∆ 
 inl p :: A+ ⊕ B +

∆ 
 p :: B +

∆ 
 inr p :: A+ ⊕ B +

∆1 
 p1 :: A+ ∆2 
 p2 :: B +

∆1, ∆2 
 (p1 , p2 ) :: A+ ⊗ B +

x :A-

 x :: ↓A-
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• positive value is pattern p with substitution σ
• σ substitutes negative values v -/x for x :A- ∈ ∆

∆ 
 p :: C + Γ ⊢ σ : ∆

Γ ⊢ p [σ] :: C +
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• positive continuation is a case-analysis

• specified by meta-level function φ = {p 7→ e, . . .}
from patterns to expressions

∀(∆ 
 p :: C +). Γ, ∆ ⊢ φ(p) : D +

Γ ⊢ val+(φ) : C+ > D +
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Define

and* (true , true ) = true[·]
and* (true , false) = false[·]
and* (false , true ) = false[·]
and* (false , false) = false[·]

Then · ⊢ val+(and*) : (bool⊗ bool) > bool



Negative Focus and Inversion is Dual

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

25 / 41

• Continuation specified by destructor pattern (focus)

• Value defined by pattern-matching φ (inversion)
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• Continuation specified by destructor pattern (focus)

• Value defined by pattern-matching φ (inversion)

Simplification for this talk:

• Equate Γ ⊢ v - : A+ → B + with Γ ⊢ k + : A+ > B +

e.g. · ⊢ add* : (bool⊗ bool)→ bool

• Eliminated by choosing a value to apply it to
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• Class of datatypes P
• Datatype constructors u specified by signature

Ψ = . . . , u :R, . . .
• Rules R have the form P ⇐ A+

1
· · · ⇐ A+

n

(construct P from A+
1, . . . , A

+
n)

Natural numbers:

Ψnat = zero : nat, succ : nat⇐ nat
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Add signature to pattern judgement: ∆ ; Ψ 
 p :: A+

u :P ⇐ A+
1
· · · ⇐ A+

n ∈ Ψ
∆1 ; Ψ 
 p1 :: A+

1

...

∆n ; Ψ 
 pn :: A+
n

∆1, . . . , ∆n ; Ψ 
 u p1 . . . pn :: P
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Meta-functions φ now require infinitely many cases:

Ψnat = zero : nat, succ : nat⇐ nat

To prove
Ψnat; · ⊢ val+(double*) : nat > nat

STS

∀(∆ ; Ψnat 
 p :: nat). Ψnat; ∆ ⊢ double*(p) : nat
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∀(∆ ; Ψnat 
 p :: nat). Ψnat; ∆ ⊢ double*(p) : nat

double* 0 = 0

double* 1 = 2

double* 2 = 4

...

Open-endedness:

compatible with any concrete presentation of φ
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Make hypotheses contextual:

∆ ::= · | ∆, x : 〈Ψ〉A-

x : 〈Ψ〉A- ; Ψ 
 x :: ↓A-

Rule from before:

x :A-

 x :: ↓A-
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Make continuations transform contextualized types:

∀(∆ ; Ψ 
 p :: A+). Γ, ∆ ⊢ φ(p) : 〈Ψ1〉A
+
1

Γ ⊢ val+(φ) : 〈Ψ〉A+ > 〈Ψ1〉A
+
1

Rule from before:

∀(∆ 
 p :: C +). Γ, ∆ ⊢ φ(p) : D +

Γ ⊢ val+(φ) : C+ > D +
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Make continuations transform contextualized types:

∀(∆ ; Ψ 
 p :: A+). Γ, ∆ ⊢ φ(p) : 〈Ψ1〉A
+
1

Γ ⊢ val+(φ) : 〈Ψ〉A+ > 〈Ψ1〉A
+
1

Rule from before:

∀(∆ 
 p :: C +). Γ, ∆ ⊢ φ(p) : D +

Γ ⊢ val+(φ) : C+ > D +

Allows for types that manipulate Ψ . . .
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Represent binding with a positive function space:

∆ ; Ψ, u :R 
 p :: A+

∆ ; Ψ 
 λ u. p :: R ⇒ A+

• Representational arrow R ⇒ A+ binds a

scoped datatype constructor

• Pattern-matching gives induction over HOAS
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e ::= num[k] | e1 ⊙f e2 | let x = e1 in e2

Represent with a datatype ari:

zero : nat, succ : nat⇐ nat,
num : ari⇐ nat

binop : ari⇐ ari⇐ (nat⊗ nat→ nat)⇐ ari

let : ari⇐ ari⇐ (ari⇒ ari)
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Evaluator:

· ⊢ fix(ev .ev∗) : 〈Ψari〉 (ari→ nat)

STS:

∀(∆ 
 p :: 〈Ψari〉 ari).
(ev : 〈Ψari〉 ari→ nat, ∆) ⊢ (ev∗ p) : 〈Ψari〉 nat
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∀(∆ 
 p :: 〈Ψari〉 ari).
(ev : 〈Ψari〉 ari→ nat, ∆) ⊢ (ev∗ p) : 〈Ψari〉 nat

ev∗ (num p) 7→ p
ev∗ (binop p1 f p2 ) 7→ f (ev p1 ) (ev p2 )
ev∗ (let p0 (λ u. p)) 7→ ev (apply (λ u. p, p0 ))
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∀(∆ 
 p :: 〈Ψari〉 ari).
(ev : 〈Ψari〉 ari→ nat, ∆) ⊢ (ev∗ p) : 〈Ψari〉 nat

ev∗ (num p) 7→ p
ev∗ (binop p1 f p2 ) 7→ f (ev p1 ) (ev p2 )
ev∗ (let p0 (λ u. p)) 7→ ev (apply (λ u. p, p0 ))

What is apply?
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apply : 〈Ψ〉 ((P ⇒ A)⊗ P)→ A

• Just a program: not forced by the type theory

• Should it always be defined?
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apply : 〈Ψ〉 ((P ⇒ A)⊗ P)→ A

• Just a program: not forced by the type theory

• Should it always be defined?

Substitution requires weakening. . .
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weaken : 〈Ψ〉A→ (P ⇒ A)

Can you weaken

• . . . an ari to ari⇒ ari?
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weaken : 〈Ψ〉A→ (P ⇒ A)

Can you weaken

• . . . an ari to ari⇒ ari?

Hint: let : ari⇐ ari⇐ (ari⇒ ari)
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weaken : 〈Ψ〉A→ (P ⇒ A)

Can you weaken

• . . . an ari to ari⇒ ari?

Hint: let : ari⇐ ari⇐ (ari⇒ ari)

• . . . a nat to ari⇒ nat?
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weaken : 〈Ψ〉A→ (P ⇒ A)

Can you weaken

• . . . an ari to ari⇒ ari?
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• . . . an ari to nat⇒ ari?
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weaken : 〈Ψ〉A→ (P ⇒ A)

Can you weaken

• . . . an ari to ari⇒ ari?

Hint: let : ari⇐ ari⇐ (ari⇒ ari)

• . . . a nat to ari⇒ nat?

• . . . an ari to nat⇒ ari?

Hint: binop : ari⇐ ari⇐ (nat⊗ nat→ nat)⇐ ari



Structural Properties

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

39 / 41

• Structural properties hold when types are not circumscribed

(includes all LF rule systems)

• Exploiting open-endedness, implement

apply, weaken, . . . once as datatype-generic programs at the

meta-level
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• Logical framework for rules that mix⇒ and→

◦ Representation is positive

◦ Computation is negative

• Get structural properties “for free” under conditions

Otherwise you have to implement them, if they’re even true

• Lots more to the story. . . (see LICS’08 paper and follow-ups).
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