
1 / 41

Focusing on Binding and Computation

Robert Harper
Carnegie Mellon University

(Joint work with Dan Licata and Noam Zeilberger)

June 18, 2008

The Payload

The Payload

• Main Results and
Ideas
• Main Results and
Ideas

Motivation

Focusing

Generalized Datatypes

Conclusion

2 / 41

Main Results and Ideas

The Payload

• Main Results and
Ideas
• Main Results and
Ideas

Motivation

Focusing

Generalized Datatypes

Conclusion

3 / 41

Integrate Logical Frameworks and Functional Programming.

• LF level provides a generalized datatype mechanism adequate

for syntax, judgements, rules, proofs.
• FP level provides the means to compute over these datatypes.

In this talk we restrict attention to simple (non-indexed) types (to

appear, LICS 2008).

Current work on extending to dependent types and indexed types

(not to appear, ICFP 2008).

Main Results and Ideas

The Payload

• Main Results and
Ideas
• Main Results and
Ideas

Motivation

Focusing

Generalized Datatypes

Conclusion

4 / 41

Polarized type systems.

• Positive types are inductively defined by intro/focusing rules,

manipulated by elim/inversion rules.
• Negative types are inductively defined by elim/inversion rules,

manipulated by intro/focusing rules.

Contextual modal type systems.

• 〈Ψ〉A has as elements “open terms” with parameters specified

by context Ψ.

• Treats binding and scope without reliance on effects/state.

Motivation

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

5 / 41

Representation and Computation

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

6 / 41

Goal: integrate representation and computation in a functional

language.

1. Representation: types for syntax including binding and scope.

2. Computation: type of higher-order computations over these

types.

Representation and Computation

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

6 / 41

Goal: integrate representation and computation in a functional

language.

1. Representation: types for syntax including binding and scope.

2. Computation: type of higher-order computations over these

types.

Requirements:

1. Sufficiently powerful to represent syntax, judgements, rules,

proofs.

2. Sufficiently flexible to permit computation by structural induction

modulo α-equivalence.

3. Purely functional, so that we may index types by syntax.

Example: Domain-Specific Logics

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

7 / 41

Access control logic (excerpts):

sort : type.

princ : sort.

res : sort.

term : sort => type.

dan : term princ.

bob : term princ.

/home/dan/pub : term res.

prop : type.

owns : term princ => term res => prop.

mayrd : term princ => term res => prop.

Example: Domain-Specific Logics

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

8 / 41

Access control logic (excerpts):

true : prop => type.

affirms : term princ => prop => type.

impi : (imp A B) true <= (A true => B true).

impe : B true <= A true <= (imp A B) true.

aff : K affirms A <= A true.

saysi : (K says A) true <= K affirms A.

sayse : (K affirms C) <= (says K A) <=

(K affirms A => K affirms C).

Example: Domain-Specific Logics

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

9 / 41

Signature for proof-carrying access control:

type file[r:term res]

val paper.tex : file[/home/dan/pub]

type iam[p:term princ]

val iambob : iam[bob]

val read :

∀r.∀p.∀pf:atom (p mayrd r) true.

file[r] -> iam[p] -> string

Implementation of read structurally analyzes proofs at run-time!

Representation and Computation

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

10 / 41

There are two different function spaces in play here!

1. Representational: A⇒ B (aka B ⇐ A).

2. Computational: A→ B (aka B ← A).

Representational functions:

Representation and Computation

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

10 / 41

There are two different function spaces in play here!

1. Representational: A⇒ B (aka B ⇐ A).

2. Computational: A→ B (aka B ← A).

Representational functions:

• Adequate for syntax, rules, proofs.

Representation and Computation

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

10 / 41

There are two different function spaces in play here!

1. Representational: A⇒ B (aka B ⇐ A).

2. Computational: A→ B (aka B ← A).

Representational functions:

• Adequate for syntax, rules, proofs.
• Closed-ended: schemas built from parameters by composing

rules.

Representation and Computation

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

10 / 41

There are two different function spaces in play here!

1. Representational: A⇒ B (aka B ⇐ A).

2. Computational: A→ B (aka B ← A).

Representational functions:

• Adequate for syntax, rules, proofs.
• Closed-ended: schemas built from parameters by composing

rules.

Computational functions:

Representation and Computation

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

10 / 41

There are two different function spaces in play here!

1. Representational: A⇒ B (aka B ⇐ A).

2. Computational: A→ B (aka B ← A).

Representational functions:

• Adequate for syntax, rules, proofs.
• Closed-ended: schemas built from parameters by composing

rules.

Computational functions:

• Compute by pattern matching.

Representation and Computation

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

10 / 41

There are two different function spaces in play here!

1. Representational: A⇒ B (aka B ⇐ A).

2. Computational: A→ B (aka B ← A).

Representational functions:

• Adequate for syntax, rules, proofs.
• Closed-ended: schemas built from parameters by composing

rules.

Computational functions:

• Compute by pattern matching.

• Open-ended: any form of computation allowable.

Derivability and Admissibility

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

11 / 41

Representational functions witness derivabilities, J1 ⊢ J2.

Derivability and Admissibility

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

11 / 41

Representational functions witness derivabilities, J1 ⊢ J2.

• J2 is derivable, taking J1 as a fresh axiom.

• Evidence is uniform: λx:J1.M : J1 ⇒ J2.

Derivability and Admissibility

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

11 / 41

Representational functions witness derivabilities, J1 ⊢ J2.

• J2 is derivable, taking J1 as a fresh axiom.

• Evidence is uniform: λx:J1.M : J1 ⇒ J2.

Computational functions witness admissibilities, J1 |= J2.

Derivability and Admissibility

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

11 / 41

Representational functions witness derivabilities, J1 ⊢ J2.

• J2 is derivable, taking J1 as a fresh axiom.

• Evidence is uniform: λx:J1.M : J1 ⇒ J2.

Computational functions witness admissibilities, J1 |= J2.

• Derivability of J1 implies derivability of J2.
• Evidence is non-uniform: any function mapping derivations of J1

to derivations of J2.

Derivability and Admissibility

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

11 / 41

Representational functions witness derivabilities, J1 ⊢ J2.

• J2 is derivable, taking J1 as a fresh axiom.

• Evidence is uniform: λx:J1.M : J1 ⇒ J2.

Computational functions witness admissibilities, J1 |= J2.

• Derivability of J1 implies derivability of J2.
• Evidence is non-uniform: any function mapping derivations of J1

to derivations of J2.

Side conditions correspond to rules that mix both forms:

¬(l ∈ dom(M))

(M, l) ⇑ i.e.

l ∈ dom(M) |=⊥

(M, l) ⇑

Representation and Computation

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

12 / 41

Representational functions are

Representation and Computation

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

12 / 41

Representational functions are

• Introduced by composing rules from parameters.

Representation and Computation

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

12 / 41

Representational functions are

• Introduced by composing rules from parameters.

• Eliminated by pattern matching / structural analysis.

Representation and Computation

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

12 / 41

Representational functions are

• Introduced by composing rules from parameters.

• Eliminated by pattern matching / structural analysis.

Computational functions are

Representation and Computation

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

12 / 41

Representational functions are

• Introduced by composing rules from parameters.

• Eliminated by pattern matching / structural analysis.

Computational functions are

• Introduced by pattern matching / structural analysis.

Representation and Computation

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

12 / 41

Representational functions are

• Introduced by composing rules from parameters.

• Eliminated by pattern matching / structural analysis.

Computational functions are

• Introduced by pattern matching / structural analysis.
• Eliminated by application to an argument.

Representation and Computation

The Payload

Motivation
• Representation and
Computation
• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Example:
Domain-Specific Logics

• Representation and
Computation

• Derivability and
Admissibility

• Representation and
Computation

Focusing

Generalized Datatypes

Conclusion

12 / 41

Representational functions are

• Introduced by composing rules from parameters.

• Eliminated by pattern matching / structural analysis.

Computational functions are

• Introduced by pattern matching / structural analysis.
• Eliminated by application to an argument.

Focusing provides a general framework for such dualities!

Focusing

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

13 / 41

Intro vs. Elim

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

14 / 41

Sums A⊕ B :

Intro vs. Elim

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

14 / 41

Sums A⊕ B :

• Introduced by choosing inl or inr

Intro vs. Elim

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

14 / 41

Sums A⊕ B :

• Introduced by choosing inl or inr

• Eliminated by pattern-matching

Intro vs. Elim

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

14 / 41

Sums A⊕ B :

• Introduced by choosing inl or inr

• Eliminated by pattern-matching

Computational functions A→ B :

Intro vs. Elim

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

14 / 41

Sums A⊕ B :

• Introduced by choosing inl or inr

• Eliminated by pattern-matching

Computational functions A→ B :

• Introduced by pattern-matching on A

Intro vs. Elim

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

14 / 41

Sums A⊕ B :

• Introduced by choosing inl or inr

• Eliminated by pattern-matching

Computational functions A→ B :

• Introduced by pattern-matching on A

• Eliminated by choosing an A to apply it to

Positive vs. Negative Polarity

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

15 / 41

Sums A⊕ B are positive:

• Introduced by choosing inl or inr

• Eliminated by pattern-matching

Computational functions A→ B are negative:

• Introduced by pattern-matching on A

• Eliminated by choosing an A to apply it to

Positive vs. Negative Polarity

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

15 / 41

Sums A⊕ B are positive:

• Introduced by choosing inl or inr

• Eliminated by pattern-matching

Computational functions A→ B are negative:

• Introduced by pattern-matching on A

• Eliminated by choosing an A to apply it to

Operationally: positive = eager, negative = lazy

Focus vs. Inversion

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

16 / 41

Sums A⊕ B are positive:

• Introduced by choosing inl or inr

• Eliminated by pattern-matching

Computational functions A→ B are negative:

• Introduced by pattern-matching on A

• Eliminated by choosing an A to apply it to

Focus vs. Inversion

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

16 / 41

Sums A⊕ B are positive:

• Introduced by choosing inl or inr

• Eliminated by pattern-matching

Computational functions A→ B are negative:

• Introduced by pattern-matching on A

• Eliminated by choosing an A to apply it to

Focus = make choices

Focus vs. Inversion

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

17 / 41

Sums A⊕ B are positive:

• Introduced by choosing inl or inr

• Eliminated by pattern-matching

Computational functions A→ B are negative:

• Introduced by pattern-matching on A

• Eliminated by choosing an A to apply it to

Focus vs. Inversion

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

17 / 41

Sums A⊕ B are positive:

• Introduced by choosing inl or inr

• Eliminated by pattern-matching

Computational functions A→ B are negative:

• Introduced by pattern-matching on A

• Eliminated by choosing an A to apply it to

Inversion = respond to all possible choices

Polarity and Focusing

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

18 / 41

Positive type Negative type

Intro Focus Inversion

Elim Inversion Focus

Higher-order Focusing

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

19 / 41

A concise way to define a language:

• Specify a type by its focused behavior

• Derive the inversion phase generically

Polarized Type Theory

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

20 / 41

A concise way to define a language:

• Specify a type by its focused behavior

◦ Choices = patterns

• Derive the inversion phase generically

◦ Response = pattern matching

Patterns for Positive Types

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

21 / 41

A+ ::= A+ ⊕ B + | A+ ⊗ B + | ↓A-

A- ::= A+ → B - | . . .

∆
 p :: A+

∆
 inl p :: A+ ⊕ B +

∆
 p :: B +

∆
 inr p :: A+ ⊕ B +

Patterns for Positive Types

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

21 / 41

A+ ::= A+ ⊕ B + | A+ ⊗ B + | ↓A-

A- ::= A+ → B - | . . .

∆
 p :: A+

∆
 inl p :: A+ ⊕ B +

∆
 p :: B +

∆
 inr p :: A+ ⊕ B +

∆1
 p1 :: A+ ∆2
 p2 :: B +

∆1, ∆2
 (p1 , p2) :: A+ ⊗ B +

Patterns for Positive Types

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

21 / 41

A+ ::= A+ ⊕ B + | A+ ⊗ B + | ↓A-

A- ::= A+ → B - | . . .

∆
 p :: A+

∆
 inl p :: A+ ⊕ B +

∆
 p :: B +

∆
 inr p :: A+ ⊕ B +

∆1
 p1 :: A+ ∆2
 p2 :: B +

∆1, ∆2
 (p1 , p2) :: A+ ⊗ B +

x :A-

 x :: ↓A-

Positive Focus

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

22 / 41

• positive value is pattern p with substitution σ
• σ substitutes negative values v -/x for x :A- ∈ ∆

∆
 p :: C + Γ ⊢ σ : ∆

Γ ⊢ p [σ] :: C +

Positive Inversion

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

23 / 41

• positive continuation is a case-analysis

• specified by meta-level function φ = {p 7→ e, . . .}
from patterns to expressions

∀(∆
 p :: C +). Γ, ∆ ⊢ φ(p) : D +

Γ ⊢ val+(φ) : C+ > D +

Example

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

24 / 41

Define

and* (true , true) = true[·]
and* (true , false) = false[·]
and* (false , true) = false[·]
and* (false , false) = false[·]

Then · ⊢ val+(and*) : (bool⊗ bool) > bool

Negative Focus and Inversion is Dual

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

25 / 41

• Continuation specified by destructor pattern (focus)

• Value defined by pattern-matching φ (inversion)

Negative Focus and Inversion is Dual

The Payload

Motivation

Focusing

• Intro vs. Elim
• Positive vs. Negative
Polarity

• Focus vs. Inversion

• Focus vs. Inversion

• Polarity and Focusing

• Higher-order
Focusing

• Polarized Type
Theory

• Patterns for Positive
Types

• Positive Focus

• Positive Inversion

• Example

• Negative Focus and
Inversion is Dual

Generalized Datatypes

Conclusion

25 / 41

• Continuation specified by destructor pattern (focus)

• Value defined by pattern-matching φ (inversion)

Simplification for this talk:

• Equate Γ ⊢ v - : A+ → B + with Γ ⊢ k + : A+ > B +

e.g. · ⊢ add* : (bool⊗ bool)→ bool

• Eliminated by choosing a value to apply it to

Generalized Datatypes

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

26 / 41

Datatypes

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

27 / 41

• Class of datatypes P
• Datatype constructors u specified by signature

Ψ = . . . , u :R, . . .
• Rules R have the form P ⇐ A+

1
· · · ⇐ A+

n

(construct P from A+
1, . . . , A

+
n)

Natural numbers:

Ψnat = zero : nat, succ : nat⇐ nat

Datatype Patterns

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

28 / 41

Add signature to pattern judgement: ∆ ; Ψ
 p :: A+

u :P ⇐ A+
1
· · · ⇐ A+

n ∈ Ψ
∆1 ; Ψ
 p1 :: A+

1

...

∆n ; Ψ
 pn :: A+
n

∆1, . . . , ∆n ; Ψ
 u p1 . . . pn :: P

Datatype Continuations

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

29 / 41

Meta-functions φ now require infinitely many cases:

Ψnat = zero : nat, succ : nat⇐ nat

To prove
Ψnat; · ⊢ val+(double*) : nat > nat

STS

∀(∆ ; Ψnat
 p :: nat). Ψnat; ∆ ⊢ double*(p) : nat

Datatype Continuations

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

30 / 41

∀(∆ ; Ψnat
 p :: nat). Ψnat; ∆ ⊢ double*(p) : nat

double* 0 = 0

double* 1 = 2

double* 2 = 4

...

Open-endedness:

compatible with any concrete presentation of φ

Contextual Hypotheses

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

31 / 41

Make hypotheses contextual:

∆ ::= · | ∆, x : 〈Ψ〉A-

x : 〈Ψ〉A- ; Ψ
 x :: ↓A-

Rule from before:

x :A-

 x :: ↓A-

Contextual Continuations

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

32 / 41

Make continuations transform contextualized types:

∀(∆ ; Ψ
 p :: A+). Γ, ∆ ⊢ φ(p) : 〈Ψ1〉A
+
1

Γ ⊢ val+(φ) : 〈Ψ〉A+ > 〈Ψ1〉A
+
1

Rule from before:

∀(∆
 p :: C +). Γ, ∆ ⊢ φ(p) : D +

Γ ⊢ val+(φ) : C+ > D +

Contextual Continuations

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

32 / 41

Make continuations transform contextualized types:

∀(∆ ; Ψ
 p :: A+). Γ, ∆ ⊢ φ(p) : 〈Ψ1〉A
+
1

Γ ⊢ val+(φ) : 〈Ψ〉A+ > 〈Ψ1〉A
+
1

Rule from before:

∀(∆
 p :: C +). Γ, ∆ ⊢ φ(p) : D +

Γ ⊢ val+(φ) : C+ > D +

Allows for types that manipulate Ψ . . .

Representational Functions

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

33 / 41

Represent binding with a positive function space:

∆ ; Ψ, u :R
 p :: A+

∆ ; Ψ
 λ u. p :: R ⇒ A+

• Representational arrow R ⇒ A+ binds a

scoped datatype constructor

• Pattern-matching gives induction over HOAS

Example

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

34 / 41

e ::= num[k] | e1 ⊙f e2 | let x = e1 in e2

Represent with a datatype ari:

zero : nat, succ : nat⇐ nat,
num : ari⇐ nat

binop : ari⇐ ari⇐ (nat⊗ nat→ nat)⇐ ari

let : ari⇐ ari⇐ (ari⇒ ari)

Example

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

35 / 41

Evaluator:

· ⊢ fix(ev .ev∗) : 〈Ψari〉 (ari→ nat)

STS:

∀(∆
 p :: 〈Ψari〉 ari).
(ev : 〈Ψari〉 ari→ nat, ∆) ⊢ (ev∗ p) : 〈Ψari〉 nat

Example

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

36 / 41

∀(∆
 p :: 〈Ψari〉 ari).
(ev : 〈Ψari〉 ari→ nat, ∆) ⊢ (ev∗ p) : 〈Ψari〉 nat

ev∗ (num p) 7→ p
ev∗ (binop p1 f p2) 7→ f (ev p1) (ev p2)
ev∗ (let p0 (λ u. p)) 7→ ev (apply (λ u. p, p0))

Example

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

36 / 41

∀(∆
 p :: 〈Ψari〉 ari).
(ev : 〈Ψari〉 ari→ nat, ∆) ⊢ (ev∗ p) : 〈Ψari〉 nat

ev∗ (num p) 7→ p
ev∗ (binop p1 f p2) 7→ f (ev p1) (ev p2)
ev∗ (let p0 (λ u. p)) 7→ ev (apply (λ u. p, p0))

What is apply?

Substitution

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

37 / 41

apply : 〈Ψ〉 ((P ⇒ A)⊗ P)→ A

• Just a program: not forced by the type theory

• Should it always be defined?

Substitution

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

37 / 41

apply : 〈Ψ〉 ((P ⇒ A)⊗ P)→ A

• Just a program: not forced by the type theory

• Should it always be defined?

Substitution requires weakening. . .

Weakening

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

38 / 41

weaken : 〈Ψ〉A→ (P ⇒ A)

Can you weaken

• . . . an ari to ari⇒ ari?

Weakening

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

38 / 41

weaken : 〈Ψ〉A→ (P ⇒ A)

Can you weaken

• . . . an ari to ari⇒ ari?

Hint: let : ari⇐ ari⇐ (ari⇒ ari)

Weakening

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

38 / 41

weaken : 〈Ψ〉A→ (P ⇒ A)

Can you weaken

• . . . an ari to ari⇒ ari?

Hint: let : ari⇐ ari⇐ (ari⇒ ari)

• . . . a nat to ari⇒ nat?

Weakening

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

38 / 41

weaken : 〈Ψ〉A→ (P ⇒ A)

Can you weaken

• . . . an ari to ari⇒ ari?

Hint: let : ari⇐ ari⇐ (ari⇒ ari)

• . . . a nat to ari⇒ nat?

• . . . an ari to nat⇒ ari?

Weakening

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

38 / 41

weaken : 〈Ψ〉A→ (P ⇒ A)

Can you weaken

• . . . an ari to ari⇒ ari?

Hint: let : ari⇐ ari⇐ (ari⇒ ari)

• . . . a nat to ari⇒ nat?

• . . . an ari to nat⇒ ari?

Hint: binop : ari⇐ ari⇐ (nat⊗ nat→ nat)⇐ ari

Structural Properties

The Payload

Motivation

Focusing

Generalized Datatypes

• Datatypes

• Datatype Patterns
• Datatype
Continuations
• Datatype
Continuations
• Contextual
Hypotheses

• Contextual
Continuations
• Representational
Functions

• Example

• Example

• Example

• Substitution

• Weakening

• Structural Properties

Conclusion

39 / 41

• Structural properties hold when types are not circumscribed

(includes all LF rule systems)

• Exploiting open-endedness, implement

apply, weaken, . . . once as datatype-generic programs at the

meta-level

Conclusion

The Payload

Motivation

Focusing

Generalized Datatypes

Conclusion

• Conclusion

40 / 41

Conclusion

The Payload

Motivation

Focusing

Generalized Datatypes

Conclusion

• Conclusion

41 / 41

• Logical framework for rules that mix⇒ and→

◦ Representation is positive

◦ Computation is negative

• Get structural properties “for free” under conditions

Otherwise you have to implement them, if they’re even true

• Lots more to the story. . . (see LICS’08 paper and follow-ups).

	The Payload
	Main Results and Ideas
	Main Results and Ideas

	Motivation
	Representation and Computation
	Example: Domain-Specific Logics
	Example: Domain-Specific Logics
	Example: Domain-Specific Logics
	Representation and Computation
	Derivability and Admissibility
	Representation and Computation

	Focusing
	Intro vs. Elim
	Positive vs. Negative Polarity
	Focus vs. Inversion
	Focus vs. Inversion
	Polarity and Focusing
	Higher-order Focusing
	Polarized Type Theory
	Patterns for Positive Types
	Positive Focus
	Positive Inversion
	Example
	Negative Focus and Inversion is Dual

	Generalized Datatypes
	Datatypes
	Datatype Patterns
	Datatype Continuations
	Datatype Continuations
	Contextual Hypotheses
	Contextual Continuations
	Representational Functions
	Example
	Example
	Example
	Substitution
	Weakening
	Structural Properties

	Conclusion
	Conclusion

