

Monitoring PlanetLab

o Keeping PlanetLab up and running 24-7 is a major
challenge

o Users (mostly researchers) need to know which nodes are
up, have disk space, are lightly loaded, responding
promptly, etc.

 CoMon [Pai & Park] is one of the major tools used to
monitor the health, performance and security of the
system

CoMon System Structure

\ ‘ Fetching ‘

o~ Engine

Persistent, Local Archive
(Raw Data)

Queries

10 o

,\l‘SIice-Centric Format
I
-

Alerts

@ Node-Centric Format

s

Related Systems - AT&T Web Hosting

@ atat

Don’'t leave your website hosting to chance.

Get reliable and affordable web hosting from AT&T. i

e An order of magnitude more complex than CoMon

 Many machines monitoring many AT&T servers
- programs executed on remote machines to extract information
- centralized archives, reports and alerts

e Extremely complex architecture

- scripts and C programs and information passed through
undocumented environment variables

- you’d better hope the wrong guy doesn’t get hit by a bus!

Related Systems - Coral CDN [Freedman)]

e 260 nodes worldwide

e periodic archiving for health, performance and research via
scripts, perl and C

e data volume causes many annoyances:
- too many files to use standard unix utilities

Related Systems - bioPixie [Troyanskaya et al.]

* An online service that pulls together information from a
variety of other genomics information repositories to
discover gene-gene interactions

e Sources include:

- micro-array data, gene expression data, transcription binding sites
- curated online data bases

- source characteristics range from: infrequent but large new data
dumps to modestly sized, regular (ie: monthly) dumps

* Most of the data acquisition is only partly automated

Related Systems - Cosmological Data

Sloan Digital Sky Survey: mapping the entire visible
universe

Data available: Images, spectra, “redshifts,” object lists,

photometric calibrations ... and other stuff | know even
less about

Research Goals

To make acquiring, archiving, querying, transforming and
programming with distributed ad hoc data so easy a
caveman can do it.

Research Goals

To support three levels of abstraction/user communities:

- the computational scientist:
e wants to study biology, physics; does not want to “program”

e uses off-the-shelf tools to collect data & take care of errors,
load a database, edit and convert to conventional formats like

XML and RSS

- the functional programmer:
* likes to map, fold, and filter (don’t we all?)

e wants programming with distributed data to be just about as
easy as declaring and programming with ordinary data
structures

- the tool developers:

» enjoys reading functional pearls about the ease of developing
apps using HOAS and tricked-out, type-directed combinators

e develop new generic tools for user communities

Language Support for
Distributed Ad Hoc Data

guﬁ
s

David Walker
Princeton University

In Collaboration With:

Daniel S. Dantas, Kathleen Fisher, Limin Jia, Yitzhak Mandelbaum,
Vivek Pai, Kenny Q. Zhu

Approach

* Provide a domain-specific language extension for specifying
properties of distributed data sources including:
- Location or access function or data generation procedure
- Availability (schedule of information availability)
- Format (uses PADS/ML as a sublanguage)
- Proprocessing information (decompression/decryption)
- Failure modes

 From these specifications, generate “feeds” with nice
interfaces for functional programmers and tool developers
- streams of meta-data * data pairs

- meta data includes schedule time, arrival time, location, network
and data error codes

System Architecture || 'anasedbyNaive User

Managed by Average Programmer

[Data Description] D Managed by Tool Developer

—'l

Fetching Archive
Engine Config

RSS RSS
Tool Feed
Local Archive
? (Raw Data) DB
b Tool

Alert N—" Alert
Tool File
Custom

Tool ' =~~——» Custom Result

Data Interface Generation

Every node delivers
BaCK to COMon it / this data every 5 minutes

Date: 1202486984.709880

VMStat: 10 14 64 22320 24424 409284 0 0 4891 796 1971 239961 59 0 17
CPUUse: 60 100

DNSFail: 0.0-1.00.0-1.0

RWEFS: 221

open Built_ins

ptype ‘a entry(name) = ...
ptype ‘a entry_list(hame) = ...
ptype source = {

date . pfloat64 entry("Date");

vm_stat . pint entry_list("VMStat");

cpu_use . pint entry_list("CPUUse");

dns_falil . pfloat32 entry_list("DNSFail");

rwfs - pint entry("RWFS"); CoMonFormat.pml

[see Mandelbaum'’s thesis]

ComonSimple.fml useful liraries

declare
feed

primitive
feed

open Combinators //

let sites =
[
"http://planet-lab1.cs.princeton.edu:3121";
“http://pl1.csl.utoronto.ca:3121";
"http://plab1-c703.uibk.ac.at:3121",

]

feed comon = fetch from all sites in list
LaSChi _ - timeout after
sources = all sites; 1 minute
schedule = Schedule.every ‘b/
(~timeout: Time.seconds 60.)
(~start: Time.now()) fetch every
(Time.seconds 300.);\ 5 minutes;
format = CoMonFormat.Source; start now

) T~

parse data from site
using this pads/ml spec

Tool Configs Tool accum
parameters tool name {minalert = false;
/ maxalert = false;
Tool archive lesssig = Some 3;
{ moresig = Some 3;
arch_dir = “temp/”; useralert =fn x -> x;
log_file_name = “comon’; slicesize = Some 1000;
max_file count = 1; slicefile = Some “accumslice.xml’;
compress_files = true; totalfile = Some “accum.xml’;
} }
Tool rss Tool rrd ‘
{ “ | ” {..}
title = “PlanetLab Disk Usage’;
link = “http://comon.cs.princeton.edu’; _
desc = “This rss feed provides PlanetLab Disk usage info”; Tool print
schedule = Some (Time.seconds 300.); {.}
path = comon.source.entries.diskusage ;
rssfile = Some “rssdir/comon.rss”; Tool select
} {..}

Tool Results

archive:

temp/

comon.log

[

1

[]

comon_time loc.zip

daccum.

rssfeed:

rss dir/ rss reader

i

~ comon.rss

<feed_accumulator>
<net_errors>
<error>
<errcode>1</errcode>
<errmsg>Misc HTTP error</errmsg>

100

=10

rrd:

Resp Time

43HILA0 T30l & 1001044

18100

aa: ao

Qg 0o

1200 18100 aa: ao Qg 0o

A More Advanced Example: CoMon.fml

comon/

o

CoMonFormat.pml

_

12 []~

Nodelist.txt Nodelist.pml

iy

|]

CoMon.fml

Format Descriptions

Nodelist.txt: CoMonFormat.pml (as before):

plab1-c703.uibk.ac.at open Built_ins

plab2-c703.uibk.ac.at

#planck227 .test.ibbt.be ptype ‘a entry(name) = ...

#pl1.csl.utoronto.ca ptype ‘a entry_list(hame) = ...

#pl2.csl.utoronto.ca ptype source = {

#plnode01.cs.mu.oz.au date . pfloat64 entry("Date");

#plnode02.cs.mu.oz.au... vm_stat : pint entry_list("VMStat");
}

Nodelist.pml:

open Built_ins

ptype nodeitem =
Comment of '#' * pstring_SE(peor)
| Data of pstring_SE(peor)

ptype source = nodeitem precord plist (No_sep, No_term)

CoMon.fml:

let isNode item = match item with Hosts.Data s -> true | _ -> false

let makeURL (Nodelist.Data s) = "http://" * s * ":3121"

find local
feed nodelists = base {]| nodelist
sources = all ["file://[" » Sys.getcwd () * "/nodelist"]; /
schedule = Schedule.every (Time.hours 24.);
format = Nodelist.Source; \
1} grab it every day
_ construct URL syntax
feed comon L : filter out comment lines
foreach nodelist in nodelists create /
base {| ~

sources = all (List.map makeURL (List.filter isNode nodelist));

schedule = Schedule.every (~start:Time.now())
(~duration:Time.hours 24.)
(Time.minutes 3.);

format = CoMonFormat.Source; fetch every 5 min
1} L day lon

repeatedly get current nodelist

AT&T Web Hosting

comon/

12 []~

Nodelist.txt Nodelist.pml
Ping.pml

o
. E
Uptimy
\

Pulse.fml

Pulse.fml:

let isNode item = match item with Hosts.Data s -> true | _ -> false
let mk_host (Hosts.Data h) = h

get
feed hostList = base {| hostlists
sources = all [*file://[" * Sys.getcwd () * "/machine_list"];
schedule = Schedule.every (~start:(Time.now())) (Time.hours 24.);
format = Hosts.Source;
1}
create

intermediate

feed hosts = {| mk_host n | n <- (flatten hostList), isNode n [}
feed of hosts

feed stats =
foreach h in hosts create
let s = Schedule.once (~timeout: Time.seconds 60.) () in

(base {| sources = proc ("ping-c2"*h);
) -

format = Ping.Source; |
schedule = s; |}, \ . execute ping

format Ping.Source

base {| sources = proc ("ssh"” h*" uptime");

format = Uptime.Lines; D
schedule =s; |}

) < pair results in feed

- execute uptime

Formal Semantics

Feed Typing Rules: G |-F:tfeed
Denotational Semantics:
[[F]] : universe -> environment -> (meta * value) set
where
type universe = location * time -> value * time

type environment = variable -> value
type meta = time * ...

Questions | have

 What are the essential language constructs/combinators?

 What are the essential tools we need to provide to our
naive users?

 What are the canonical interfaces we should be providing?

 How would | implement this in Haskell or Clean or F#?

Conclusion

« PADS/D is (will be!) a high-level, declarative language
desighed to make it easy to specify:
- where your data is located
- how your data is generated
- when your data is available
- what preprocessing needs to be done
- how to handle failure conditions

* And generate useful processing tools:
- archiver, rss feeds, database, error profiler, debugging printer, ...

* And facilitate functional programming with distributed data

Example program

open Feedmain
open ComonSimple

let myspec = comon

let emptyT () = Hashtbl.create 800
let addT t idata =

let (meta, data) = (IData.get_meta idata, |IData.get _contents idata) in ...

let printT t = ...
let getload idata = match (IData.get_contents i) with
None -> None | Some d -> List.hd (d.loads.2)

(* every 600 seconds output the 10 locations with the least load *)
let rec findnodes f =
let (slice, rest) = sliceuntil (later_than (Time.now() +. 600.)) f in
let loads = mapi getload slice in
let loadT = foldi addT emptyT loads in
let = printT loadT in
findnodes rest

findnodes (to feed myspec)

Formal Typing

Feed Typing Rules:
G |-F:tfeed
Example Rules:

G |-F1:t1feed G |-F2:t2feed

G |- (F1,F2) : t1 * t2 feed

G |- F1:t1feed G,x:t1 |- F2 : t2 feed

G |- foreach x in F1 create F2 : t2 feed

	Slide 1
	Monitoring PlanetLab
	CoMon System Structure
	Related Systems – AT&T Web Hosting
	Related Systems – Coral CDN [Freedman]
	Related Systems – bioPixie [Troyanskaya et al.]
	Related Systems – Cosmological Data
	Research Goals
	Folie 9
	Language Support for Distributed Ad Hoc Data
	Approach
	System Architecture
	Back to CoMon ...
	ComonSimple.fml
	Tool Configs
	Tool Results
	A More Advanced Example: CoMon.fml
	Format Descriptions
	Slide 19
	AT&T Web Hosting
	Slide 21
	Formal Semantics
	Questions I have
	Conclusion
	Slide 25
	Example program
	Formal Typing

