


Monitoring PlanetLabMonitoring PlanetLab

• Keeping PlanetLab up and running 24-7 is a major 
challenge

• Users (mostly researchers) need to know which nodes are 
up, have disk space, are lightly loaded, responding 
promptly, etc. 

• CoMon [Pai & Park] is one of the major tools used to 
monitor the health, performance and security of the 
system 
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Related Systems – AT&T Web HostingRelated Systems – AT&T Web Hosting

• An order of magnitude more complex than CoMon
• Many machines monitoring many AT&T servers

– programs executed on remote machines to extract information
– centralized archives, reports and alerts

• Extremely complex architecture
– scripts and C programs and information passed through 

undocumented environment variables
– you’d better hope the wrong guy doesn’t get hit by a bus!



Related Systems – Coral CDN Related Systems – Coral CDN [Freedman][Freedman]

• 260 nodes worldwide
• periodic archiving for health, performance and research via 

scripts, perl and C
• data volume causes many annoyances: 

– too many files to use standard unix utilities



Related Systems – bioPixie Related Systems – bioPixie [Troyanskaya et al.][Troyanskaya et al.]

• An online service that pulls together information from a 
variety of other genomics information repositories to 
discover gene-gene interactions

• Sources include:
– micro-array data, gene expression data, transcription binding sites
– curated online data bases
– source characteristics range from: infrequent but large new data 

dumps to modestly sized, regular (ie: monthly) dumps

• Most of the data acquisition is only partly automated



Related Systems – Cosmological DataRelated Systems – Cosmological Data

• Sloan Digital Sky Survey: mapping the entire visible 
universe

• Data available:  Images, spectra, “redshifts,” object lists, 
photometric calibrations ... and other stuff I know even 
less about



Research GoalsResearch Goals

To make acquiring, archiving, querying, transforming and 
programming with distributed ad hoc data so easy a 
caveman can do it.



Research GoalsResearch Goals
To support three levels of abstraction/user communities:

– the computational scientist:
• wants to study biology, physics; does not want to “program”
• uses off-the-shelf tools to collect data & take care of errors, 

load a database, edit and convert to conventional formats like 
XML and RSS

– the functional programmer:
• likes to map, fold, and filter (don’t we all?)
• wants programming with distributed data to be just about as 

easy as declaring and programming with ordinary data 
structures

 
– the tool developers: 

• enjoys reading functional pearls about the ease of developing 
apps using HOAS and tricked-out, type-directed combinators 

• develop new generic tools for user communities



 

Language Support forLanguage Support for
Distributed Ad Hoc DataDistributed Ad Hoc Data

In Collaboration With:

Daniel S. Dantas, Kathleen Fisher, Limin Jia, Yitzhak Mandelbaum, 
Vivek Pai, Kenny Q. Zhu

David Walker
Princeton University



ApproachApproach

• Provide a domain-specific language extension for specifying 
properties of distributed data sources including:
– Location or access function or data generation procedure
– Availability (schedule of information availability)
– Format (uses PADS/ML as a sublanguage)
– Proprocessing information (decompression/decryption)
– Failure modes

• From these specifications, generate “feeds” with nice 
interfaces for functional programmers and tool developers
– streams of meta-data * data pairs
– meta data includes schedule time, arrival time, location, network 

and data error codes
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Back to CoMon ...Back to CoMon ...

open Built_ins

ptype ‘a entry(name) = ...
ptype ‘a entry_list(name) = ...
ptype source = {
    date  : pfloat64 entry("Date");
    vm_stat : pint entry_list("VMStat");
    cpu_use : pint entry_list("CPUUse");
    dns_fail : pfloat32 entry_list("DNSFail");
    rwfs : pint entry("RWFS");
    ...
}

Date: 1202486984.709880
VMStat: 10 14 64 22320 24424 409284 0 0 4891 796 1971 2399 61 59 0 17 
CPUUse: 60 100
DNSFail: 0.0 -1.0 0.0 -1.0
RWFS: 221
...

Every node delivers
this data every 5 minutes

CoMonFormat.pml
[see Mandelbaum’s thesis]



ComonSimple.fmlComonSimple.fml
open Combinators

let sites = 
  [
    "http://planet-lab1.cs.princeton.edu:3121";
    “http://pl1.csl.utoronto.ca:3121";
    "http://plab1-c703.uibk.ac.at:3121";
  ]

feed comon =
  base {|

sources   = all sites;
schedule = Schedule.every 

                                      (~timeout: Time.seconds 60.)
         (~start: Time.now())

                                      (Time.seconds 300.);
         format     = CoMonFormat.Source;
            |}

useful libraries

declare
feed

primitive
feed

fetch from all sites in list

fetch every
5 minutes;
start now

parse data from site
using this pads/ml spec

timeout after 
1 minute



Tool ConfigsTool Configs

Tool archive
{
 arch_dir             = “temp/”;
 log_file_name    = “comon”;
 max_file_count  = 1; 
 compress_files  = true;
}

Tool rss
{
  title = “PlanetLab Disk Usage”;
  link = “http://comon.cs.princeton.edu”;
  desc = “This rss feed provides PlanetLab Disk usage info”;
  schedule = Some (Time.seconds 300.);
  path = comon.source.entries.diskusage ;
  rssfile = Some “rssdir/comon.rss”;
}

Tool accum
{
 minalert    = false;
 maxalert  = false;
 lesssig    = Some 3;
 moresig    = Some 3;
 useralert  = fn x -> x;
 slicesize   = Some 1000;
 slicefile    = Some “accumslice.xml”;
 totalfile    = Some “accum.xml”;
}

Tool rrd
{ ... }

Tool select
{ ... }

Tool print
{ ... }

tool name
parameters



Tool ResultsTool Results

temp/

comon_time_loc.zip

comon.log
archive:

rss_dir/

comon.rss

rssfeed:

rss reader

rrd:

accum:

<feed_accumulator> 
  <net_errors> 
    <error> 
      <errcode>1</errcode> 
      <errmsg>Misc HTTP error</errmsg> 
...



A More Advanced Example: CoMon.fmlA More Advanced Example: CoMon.fml

Nodelist.pml

CoMonFormat.pml

Nodelist.txt

CoMon.fml

comon/



Format DescriptionsFormat Descriptions

open Built_ins

ptype nodeitem =
  Comment of '#' * pstring_SE(peor)
| Data of pstring_SE(peor)

ptype source = nodeitem precord plist (No_sep, No_term)

plab1-c703.uibk.ac.at
plab2-c703.uibk.ac.at
#planck227.test.ibbt.be
#pl1.csl.utoronto.ca
#pl2.csl.utoronto.ca
#plnode01.cs.mu.oz.au
#plnode02.cs.mu.oz.au...

Nodelist.txt:

Nodelist.pml:

open Built_ins

ptype ‘a entry(name) = ...
ptype ‘a entry_list(name) = ...
ptype source = {
    date       : pfloat64 entry("Date");
    vm_stat   : pint entry_list("VMStat");
...
}

CoMonFormat.pml (as before):



let isNode item = match item with Hosts.Data s -> true | _ -> false

let makeURL (Nodelist.Data s) = "http://" ^ s ^ ":3121"

feed nodelists =  base {|
   sources       = all ["file:///" ^ Sys.getcwd ()  ^ "/nodelist"];
   schedule     = Schedule.every (Time.hours 24.);
   format          = Nodelist.Source;
|}

feed comon =
  foreach nodelist in nodelists create
    base {|

 sources   = all (List.map makeURL (List.filter isNode nodelist));
 schedule = Schedule.every (~start:Time.now()) 

                                                             (~duration:Time.hours 24.)
                                                             (Time.minutes 5.);
                format     = CoMonFormat.Source;
    |}

CoMon.fml:

find local 
nodelist

filter out comment lines
construct URL syntax

repeatedly get current nodelist

grab it every day

fetch every 5 min
all day long



AT&T Web HostingAT&T Web Hosting

Nodelist.pml

Ping.pml

Nodelist.txt

Pulse.fml

comon/

Uptime.pml

uptime()

ping()



let isNode item = match item with Hosts.Data s -> true | _ -> false
let mk_host (Hosts.Data h) = h

feed hostList =  base {|
   sources   = all ["file:///" ^ Sys.getcwd ()  ^ "/machine_list"];
   schedule = Schedule.every (~start:(Time.now())) (Time.hours 24.);
   format     = Hosts.Source;
|}

feed hosts = {| mk_host n | n <- (flatten hostList), isNode n |}

feed stats = 
  foreach h in hosts create
  let s = Schedule.once (~timeout: Time.seconds 60.) () in 
  ( base {| sources   = proc ("ping -c 2 " ^ h);   
                 format     = Ping.Source;  
                 schedule = s; |},

    base {| sources   = proc ("ssh " ^ h ^ " uptime");  
                 format     = Uptime.Lines;  

  schedule  = s; |}
  )

Pulse.fml:

get
hostlists

create
intermediate
feed of hosts

execute ping

format Ping.Source

execute uptime

pair results in feed



Formal SemanticsFormal Semantics

Feed Typing Rules:      G |- F : t feed

Denotational Semantics:

[[ F ]] : universe -> environment -> (meta * value) set

   where

      type universe = location * time -> value * time
      type environment = variable -> value
      type meta = time * ...
                  



Questions I haveQuestions I have

• What are the essential language constructs/combinators?
• What are the essential tools we need to provide to our 

naive users?
• What are the canonical interfaces we should be providing?

• How would I implement this in Haskell or Clean or F#?



ConclusionConclusion

• PADS/D is (will be!) a high-level, declarative language 
designed to make it easy to specify:
– where your data is located
– how your data is generated
– when your data is available
– what preprocessing needs to be done
– how to handle failure conditions

• And generate useful processing tools:
– archiver, rss feeds, database, error profiler, debugging printer, ...

• And facilitate functional programming with distributed data





Example programExample program
open Feedmain
open ComonSimple

let myspec = comon
 
let emptyT () = Hashtbl.create 800 
let addT t idata =
  let (meta, data) = (IData.get_meta idata, IData.get_contents idata) in ...
let printT t = ...
let getload idata = match (IData.get_contents i) with
  None -> None | Some d -> List.hd (d.loads.2)

(* every 600 seconds output the 10 locations with the least load *)
let rec findnodes f = 
  let (slice, rest) = sliceuntil (later_than (Time.now() +. 600.)) f in
  let loads = mapi getload slice in
  let loadT = foldi addT emptyT loads in
  let _ = printT loadT in
  findnodes rest 

findnodes (to_feed myspec)



Formal TypingFormal Typing

Feed Typing Rules:

G |- F : t feed

Example Rules:

G |- F1 : t1 feed       G |- F2 : t2 feed
----------------------------------------------
G |- (F1,F2) : t1 * t2 feed

G |- F1 : t1 feed       G,x:t1 |- F2 : t2 feed

-----------------------------------------------------
G |- foreach x in F1 create F2 : t2 feed
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