

Monitoring PlanetLabMonitoring PlanetLab

• Keeping PlanetLab up and running 24-7 is a major
challenge

• Users (mostly researchers) need to know which nodes are
up, have disk space, are lightly loaded, responding
promptly, etc.

• CoMon [Pai & Park] is one of the major tools used to
monitor the health, performance and security of the
system

Persistent, Local Archive
(Raw Data)

CoMon System StructureCoMon System Structure

Fetching
Engine

Node-Centric Format

Slice-Centric Format
??

??

??
??

Queries

Alerts

Related Systems – AT&T Web HostingRelated Systems – AT&T Web Hosting

• An order of magnitude more complex than CoMon
• Many machines monitoring many AT&T servers

– programs executed on remote machines to extract information
– centralized archives, reports and alerts

• Extremely complex architecture
– scripts and C programs and information passed through

undocumented environment variables
– you’d better hope the wrong guy doesn’t get hit by a bus!

Related Systems – Coral CDN Related Systems – Coral CDN [Freedman][Freedman]

• 260 nodes worldwide
• periodic archiving for health, performance and research via

scripts, perl and C
• data volume causes many annoyances:

– too many files to use standard unix utilities

Related Systems – bioPixie Related Systems – bioPixie [Troyanskaya et al.][Troyanskaya et al.]

• An online service that pulls together information from a
variety of other genomics information repositories to
discover gene-gene interactions

• Sources include:
– micro-array data, gene expression data, transcription binding sites
– curated online data bases
– source characteristics range from: infrequent but large new data

dumps to modestly sized, regular (ie: monthly) dumps

• Most of the data acquisition is only partly automated

Related Systems – Cosmological DataRelated Systems – Cosmological Data

• Sloan Digital Sky Survey: mapping the entire visible
universe

• Data available: Images, spectra, “redshifts,” object lists,
photometric calibrations ... and other stuff I know even
less about

Research GoalsResearch Goals

To make acquiring, archiving, querying, transforming and
programming with distributed ad hoc data so easy a
caveman can do it.

Research GoalsResearch Goals
To support three levels of abstraction/user communities:

– the computational scientist:
• wants to study biology, physics; does not want to “program”
• uses off-the-shelf tools to collect data & take care of errors,

load a database, edit and convert to conventional formats like
XML and RSS

– the functional programmer:
• likes to map, fold, and filter (don’t we all?)
• wants programming with distributed data to be just about as

easy as declaring and programming with ordinary data
structures

– the tool developers:

• enjoys reading functional pearls about the ease of developing
apps using HOAS and tricked-out, type-directed combinators

• develop new generic tools for user communities

Language Support forLanguage Support for
Distributed Ad Hoc DataDistributed Ad Hoc Data

In Collaboration With:

Daniel S. Dantas, Kathleen Fisher, Limin Jia, Yitzhak Mandelbaum,
Vivek Pai, Kenny Q. Zhu

David Walker
Princeton University

ApproachApproach

• Provide a domain-specific language extension for specifying
properties of distributed data sources including:
– Location or access function or data generation procedure
– Availability (schedule of information availability)
– Format (uses PADS/ML as a sublanguage)
– Proprocessing information (decompression/decryption)
– Failure modes

• From these specifications, generate “feeds” with nice
interfaces for functional programmers and tool developers
– streams of meta-data * data pairs
– meta data includes schedule time, arrival time, location, network

and data error codes

Local Archive
(Raw Data)

System ArchitectureSystem Architecture

Fetching
Engine

Data Description

Archive
Config

RSS
Tool

DB
Tool

Alert
Tool

RSS
Config

DB
Config

Alert
Config

Custom
Tool

RSS
Feed

DB

Alert
File

Data Interface Generation
Custom Result

Managed by Naive User

Managed by Average Programmer

Managed by Tool Developer

Back to CoMon ...Back to CoMon ...

open Built_ins

ptype ‘a entry(name) = ...
ptype ‘a entry_list(name) = ...
ptype source = {
 date : pfloat64 entry("Date");
 vm_stat : pint entry_list("VMStat");
 cpu_use : pint entry_list("CPUUse");
 dns_fail : pfloat32 entry_list("DNSFail");
 rwfs : pint entry("RWFS");
 ...
}

Date: 1202486984.709880
VMStat: 10 14 64 22320 24424 409284 0 0 4891 796 1971 2399 61 59 0 17
CPUUse: 60 100
DNSFail: 0.0 -1.0 0.0 -1.0
RWFS: 221
...

Every node delivers
this data every 5 minutes

CoMonFormat.pml
[see Mandelbaum’s thesis]

ComonSimple.fmlComonSimple.fml
open Combinators

let sites =
 [
 "http://planet-lab1.cs.princeton.edu:3121";
 “http://pl1.csl.utoronto.ca:3121";
 "http://plab1-c703.uibk.ac.at:3121";
]

feed comon =
 base {|

sources = all sites;
schedule = Schedule.every

 (~timeout: Time.seconds 60.)
 (~start: Time.now())

 (Time.seconds 300.);
 format = CoMonFormat.Source;
 |}

useful libraries

declare
feed

primitive
feed

fetch from all sites in list

fetch every
5 minutes;
start now

parse data from site
using this pads/ml spec

timeout after
1 minute

Tool ConfigsTool Configs

Tool archive
{
 arch_dir = “temp/”;
 log_file_name = “comon”;
 max_file_count = 1;
 compress_files = true;
}

Tool rss
{
 title = “PlanetLab Disk Usage”;
 link = “http://comon.cs.princeton.edu”;
 desc = “This rss feed provides PlanetLab Disk usage info”;
 schedule = Some (Time.seconds 300.);
 path = comon.source.entries.diskusage ;
 rssfile = Some “rssdir/comon.rss”;
}

Tool accum
{
 minalert = false;
 maxalert = false;
 lesssig = Some 3;
 moresig = Some 3;
 useralert = fn x -> x;
 slicesize = Some 1000;
 slicefile = Some “accumslice.xml”;
 totalfile = Some “accum.xml”;
}

Tool rrd
{ ... }

Tool select
{ ... }

Tool print
{ ... }

tool name
parameters

Tool ResultsTool Results

temp/

comon_time_loc.zip

comon.log
archive:

rss_dir/

comon.rss

rssfeed:

rss reader

rrd:

accum:

<feed_accumulator>
 <net_errors>
 <error>
 <errcode>1</errcode>
 <errmsg>Misc HTTP error</errmsg>
...

A More Advanced Example: CoMon.fmlA More Advanced Example: CoMon.fml

Nodelist.pml

CoMonFormat.pml

Nodelist.txt

CoMon.fml

comon/

Format DescriptionsFormat Descriptions

open Built_ins

ptype nodeitem =
 Comment of '#' * pstring_SE(peor)
| Data of pstring_SE(peor)

ptype source = nodeitem precord plist (No_sep, No_term)

plab1-c703.uibk.ac.at
plab2-c703.uibk.ac.at
#planck227.test.ibbt.be
#pl1.csl.utoronto.ca
#pl2.csl.utoronto.ca
#plnode01.cs.mu.oz.au
#plnode02.cs.mu.oz.au...

Nodelist.txt:

Nodelist.pml:

open Built_ins

ptype ‘a entry(name) = ...
ptype ‘a entry_list(name) = ...
ptype source = {
 date : pfloat64 entry("Date");
 vm_stat : pint entry_list("VMStat");
...
}

CoMonFormat.pml (as before):

let isNode item = match item with Hosts.Data s -> true | _ -> false

let makeURL (Nodelist.Data s) = "http://" ^ s ^ ":3121"

feed nodelists = base {|
 sources = all ["file:///" ^ Sys.getcwd () ^ "/nodelist"];
 schedule = Schedule.every (Time.hours 24.);
 format = Nodelist.Source;
|}

feed comon =
 foreach nodelist in nodelists create
 base {|

 sources = all (List.map makeURL (List.filter isNode nodelist));
 schedule = Schedule.every (~start:Time.now())

 (~duration:Time.hours 24.)
 (Time.minutes 5.);
 format = CoMonFormat.Source;
 |}

CoMon.fml:

find local
nodelist

filter out comment lines
construct URL syntax

repeatedly get current nodelist

grab it every day

fetch every 5 min
all day long

AT&T Web HostingAT&T Web Hosting

Nodelist.pml

Ping.pml

Nodelist.txt

Pulse.fml

comon/

Uptime.pml

uptime()

ping()

let isNode item = match item with Hosts.Data s -> true | _ -> false
let mk_host (Hosts.Data h) = h

feed hostList = base {|
 sources = all ["file:///" ^ Sys.getcwd () ^ "/machine_list"];
 schedule = Schedule.every (~start:(Time.now())) (Time.hours 24.);
 format = Hosts.Source;
|}

feed hosts = {| mk_host n | n <- (flatten hostList), isNode n |}

feed stats =
 foreach h in hosts create
 let s = Schedule.once (~timeout: Time.seconds 60.) () in
 (base {| sources = proc ("ping -c 2 " ^ h);
 format = Ping.Source;
 schedule = s; |},

 base {| sources = proc ("ssh " ^ h ^ " uptime");
 format = Uptime.Lines;

 schedule = s; |}
)

Pulse.fml:

get
hostlists

create
intermediate
feed of hosts

execute ping

format Ping.Source

execute uptime

pair results in feed

Formal SemanticsFormal Semantics

Feed Typing Rules: G |- F : t feed

Denotational Semantics:

[[F]] : universe -> environment -> (meta * value) set

 where

 type universe = location * time -> value * time
 type environment = variable -> value
 type meta = time * ...

Questions I haveQuestions I have

• What are the essential language constructs/combinators?
• What are the essential tools we need to provide to our

naive users?
• What are the canonical interfaces we should be providing?

• How would I implement this in Haskell or Clean or F#?

ConclusionConclusion

• PADS/D is (will be!) a high-level, declarative language
designed to make it easy to specify:
– where your data is located
– how your data is generated
– when your data is available
– what preprocessing needs to be done
– how to handle failure conditions

• And generate useful processing tools:
– archiver, rss feeds, database, error profiler, debugging printer, ...

• And facilitate functional programming with distributed data

Example programExample program
open Feedmain
open ComonSimple

let myspec = comon

let emptyT () = Hashtbl.create 800
let addT t idata =
 let (meta, data) = (IData.get_meta idata, IData.get_contents idata) in ...
let printT t = ...
let getload idata = match (IData.get_contents i) with
 None -> None | Some d -> List.hd (d.loads.2)

(* every 600 seconds output the 10 locations with the least load *)
let rec findnodes f =
 let (slice, rest) = sliceuntil (later_than (Time.now() +. 600.)) f in
 let loads = mapi getload slice in
 let loadT = foldi addT emptyT loads in
 let _ = printT loadT in
 findnodes rest

findnodes (to_feed myspec)

Formal TypingFormal Typing

Feed Typing Rules:

G |- F : t feed

Example Rules:

G |- F1 : t1 feed G |- F2 : t2 feed
--
G |- (F1,F2) : t1 * t2 feed

G |- F1 : t1 feed G,x:t1 |- F2 : t2 feed

G |- foreach x in F1 create F2 : t2 feed

	Slide 1
	Monitoring PlanetLab
	CoMon System Structure
	Related Systems – AT&T Web Hosting
	Related Systems – Coral CDN [Freedman]
	Related Systems – bioPixie [Troyanskaya et al.]
	Related Systems – Cosmological Data
	Research Goals
	Folie 9
	Language Support for Distributed Ad Hoc Data
	Approach
	System Architecture
	Back to CoMon ...
	ComonSimple.fml
	Tool Configs
	Tool Results
	A More Advanced Example: CoMon.fml
	Format Descriptions
	Slide 19
	AT&T Web Hosting
	Slide 21
	Formal Semantics
	Questions I have
	Conclusion
	Slide 25
	Example program
	Formal Typing

