
Functional Reactive Python
On Introducing CS to High School

Students
John Peterson

Western State College: Gunnison, CO

jpeterson@western.edu

http://www.western.edu/

Western State College?

Danger!

There will be no:

• Type rules

• Proofs

• Significant results

• Greek letters

All programs here are meant to

be understandable to arbitrary

high school students!

I’ll be glad to go faster or get

gonged.

Goals

• Get high school students excited about
CS with a 1 week summer camp

• Bring them to Gunnison in the summer
(last winter got to -42F)

• Use virtual worlds as the bait

• Lots of outdoor activity (as in WG2.8!)

• Integrate CS with STEM education

Why Your Kid Should Come!

Recreation + CS: Endorsed by SPJ

Objectives

• Teach basic principles in many subjects
– try to go to “first principles” when
possible.

• Avoid big chunks of code – no time to
teach software engineering

• Lots of small projects rather than one
big one

• Don‟t hide from basic math / physics
(STEM)

• Use freely available software

Declarative Language Research

High school students are a great way to
evaluate your declarative language ideas!

• No pre-conceived notions about how to
program

• Eager to learn
• Will tell you what they think
• STEM integration makes a lot of sense

here – an excuse to expose HS students
to good CS practices

The Game Engine

This implementation of FRP is built around
the Panda 3-D game engine (could also be
used with a standard GUI library)

• Good support from CMU
• Runs everywhere (not just Windows)
• Python is an OK first language
• All game engine features we needed were

available in Panda
• Python is “functional enough” – with much

fiddling I could recreate FRP on top of it.

History of FRP

FRP has been around for a long time now –
why hasn‟t it caught on?

• Incomplete / obsolete / poorly documented
implementations

• Not integrated to useful domains
• Lingering implementation issues
• Tends to swallow entire programs – an all

or nothing proposition
• Doesn‟t always simplify things.

The Goal

The big question is whether the examples
are easily understood – I‟ve “cut
corners” on some semantic issues but
I‟ve tried to remain mostly faithful to
FRP / Haskell.

Think of assignment as definition and an
implicit monad around the non-reactive
code.

Models

The objects in our system are “models” used by the
game engine

• Models are built on an interesting declarative
language (not described here!)

• Separated into geometry and texture (skin)
• Geometry is parameterized – we can adjust joints

(bones) within the model
• The model authoring system is Blender
• Models (geometric objects) can be created

dynamically
• Issues of default size, position, and orientation
• Nice connection to O-O programming

FRP Implementation Basics

• Two “modes” of code: reactive (signals) and non-
reactive (ordinary Python here) (lifted vs nonlifted)

• Signal expressions are “factories” – these are
bound to initial times to produce running signals

• Time uniqueness: each signal has just one value at a
time step (share single values)

• Signal uniqueness: if you initiate equal signals at the
same time you get equal running signals (share
entire signals)

• Time leak avoidance: make sure you pull on every
active signal at each time step to avoid leaking
computation or remember old signal values (see the
RT-FRP paper)

Example: Signal Factory

x is a “factory”, red code is reactive

x = localTime*localTime

panda = pandaBear()

panda.position = P3(x, 0, 0)

def reset(m, v):

m.position = P3(x, 0, 0)

panda.react(key(„a‟), reset)

Example: Signal Factory

move right and up, reset up on „a‟

panda = pandaBear()

panda.temp = localTime

panda.position = P3(localTime, 0,
panda.temp)

def reset(m, v):

m.temp = localTime

panda.react(key(„a‟), reset)

Example: Shared Signal /
Value

p = pandaBear()

x = sin(time)

p.position = P3(x, x, x)

O-O FRP

We started trying to recreate “classic” FRP
in Python – this didn‟t work well:

• Need to describe the “world” (set of
models) – to do this in FRP we would need
some very nasty combinators (see “The
Yampa Arcade”)

• Signal level switching constructs are very
awkward

• No notion of object identity inside FRP
• Hard to connect reactive and non-reactive

code (code that executes continuously vs
code that services an event)

Objects and FRP

• FRP is the basis for purely function GUIs
(Antony Courtney & Conal)

• Didn‟t do a good job of making GUIs easier
to express: complex objects with many
attributes and a dynamic collection of
objects.

• Father Time did a better job but I‟m not
sure exactly what the semantics are

• Objects are a good abstraction in this
domain

Objects and FRP

Basic ideas:
• All signals belong to objects (top level

signals belong to “world”)
• Each signal is named: Use “object.name” to

access signals
• Some signals control the object (position,

HPR, …), others are just local variables to
the object

• Solve the “running in” problem by allowing
different start times in different objects

Objects and FRP

Basic ideas:
• Access signals in non-reactive code using

.now() to get current value
• Place reaction at the object level rather

than the signal level
• Allow redefinition of signals
• Manage an implicit “World” which

encompasses all objects on the screen
(hide the collection combinators, use only
one collection, unlike Yampa Arcade)

GUI Example

Note the use of object contructors
(hangglider, Text, Slider) and named
signals.

h = hangglider()

Text("Use slider to adjust heading")

s = Slider(max = 2*pi)

Text(s.value)

h.position = P3(sin(time), 3, cos(time))

h.HPR = P3(s.value, 0, 0)

world.cameraPos = P3(0,-5,0)

Non-reactive example
lim = 3

m = world.mouse()

for x in range(-lim,lim+1):

for y in range(-lim,lim+1):

for z in range(-lim,lim+1):

if (x + y + z) % 2 == 0:

soccerBall(position=P3(x,y,z), color=red,
scale=.1, HPR = P3(time, 0, 0))

else:

soccerBall(position=P3(x,y,z), color=blue,
scale=.2)

world.cameraPos = P3(4*getX(m), -4, 4*getY(m))

FRP Is Still There

pos = accum(0,

key("a", add(1)) +

key("s",sub(1)) +

key('d', times(2)) +

key('f', const(1)))

Note that + is event merging.

Sadly we have no sections in Python!

Adding Reactions

c = alarm(start = 0, step = 2)

def launch(x):

pandaBear(
position = P3(2*localTime-4, 0, 0),
HPR = P3(time.now()/3, 0, 0))

react(c, launch)

Bouncing Balls

def addReflect(b):

b.when(getZ(b.position) < floor, reflectFloor)

b.when(getX(b.position) > wallRight, reflectRight)

b.when(getX(b.position) < wallLeft, reflectLeft)

def launch(b, p0, v0):

setType(b.velocity, P3Type) # For forward reference

b.velocity = v0 + integral(a)

b.position = p0 + integral(b.velocity)

Bouncing Balls

ball = soccerBall()

launch(ball, ballp0, ballv0)

def reflectLeft(b):

p1 = b.position.now()

v1 = b.velocity.now()

p0 = P3(2*wallLeft-p1.x, p1.y, p1.z)

v0 = P3(-v1.x, v1.y, v1.z)

print "Reflecting left"

launch(b, p0, v0)

Other Gizmos

We won‟t talk about these:
• Pose: a record that maps joints to angles
• Script: a mapping from time to events,

signals, or poses. Interpolate for
intermediate times.

• Interpolator: a way of building scripts on
the fly

We use simple file formats to allow students
to understand what‟s under the hood

Signal bundling is very important!

Programming Language Issues

Making time flow implicit is a big win.
Laziness is crucial. We spent way to much time

having to re-invent lazy evaluation. Forward
reference was a big problem

Python‟s O-O system kept getting in the way
Python lacks the syntactic flexibility that we

really needed
Implicit lifting is a big win – avoids much clutter
Good type systems make things a LOT easier.

We did some “load time” type checking but
didn‟t get full H-M. Students didn‟t
understand the debugger.

Multi-Disciplinary Education

Integrating the math and physics into our
curriculum broadens the appeal and sends a
message to future CS students

The creative side of CS is often hidden in CS1 –
the game engine gives us a chance to work in a
more creative environment

We were able to cover a wide range of math –
not just one specific topic. The visual nature
of the system helps a lot.

The “Killer App”

What is it that will get HS students
interested in computing?

• Video games?

• Board games?

• Good software that addresses STEM
issues?

• ???

The “Killer App”

My observation: music videos!

Creating things that move to music seems
to be endlessly fascinating.

Not as good as gaming in terms of
teaching programming logic though.

Conclusions

Embedded languages are a pain in the ass – lots of minor
frustrations with Python

Static typing would eliminate much frustration
O-O programming is sometimes the answer!
We need to bring good languages to students as early as

possible
STEM education is a perfect place to experiment with

languages and can motivate language features
The high level language stuff that we do is highly

relevant to this task (witness all the bad educational
languages!)

The Last Conclusion

A good recreational program will make
students forget the frustration of
software development.

