
Compiling from Higher Order Logic

Konrad Slind

School of Computing, University of Utah

June 17, 2008

Konrad Slind Compiling from Higher Order Logic

Acknowledgements

Anthony Fox, Mike Gordon, Guodong Li, Magnus Myreen, Scott
Owens

Konrad Slind Compiling from Higher Order Logic

FP in TP Choices

Deep embedding.
Datatype of programs + inductively defined evaluation,
typing, etc. relations.
PL is the principal object of study
Supported pretty well in various systems: Coq, HOL, Twelf,
Isabelle/HOL, PLT-Redex
Examples: µ-Java, RSR6, SML, OCaml-Light, C, C++, ...
But: proving properties of individual programs is hard

Shallow embedding.
Use built-in functions of the logic.
No single type of programs
Individual programs are the main objects of interest

Konrad Slind Compiling from Higher Order Logic

FP in TP Choices

Deep embedding.
Datatype of programs + inductively defined evaluation,
typing, etc. relations.
PL is the principal object of study
Supported pretty well in various systems: Coq, HOL, Twelf,
Isabelle/HOL, PLT-Redex
Examples: µ-Java, RSR6, SML, OCaml-Light, C, C++, ...
But: proving properties of individual programs is hard

Shallow embedding.
Use built-in functions of the logic.
No single type of programs
Individual programs are the main objects of interest

Konrad Slind Compiling from Higher Order Logic

HOL

HOL is essentially Church’s Simple Type Theory
HOL = simply typed λ-calculus + logic
ML-style types: bool, α→ β, α ∗ β, α list, algebraic
datatypes, lazy lists
But also R and lots of other incomputable stuff
Terms: variables, constants, applications, λ-abstractions
Classical logic defined on top.
Logic of total functions

Konrad Slind Compiling from Higher Order Logic

Recursion

Recursive functions can be defined with a ‘controlled’ recursion
combinator—WFREC≺:

Theorem (Wellfounded Recursion)

WF(≺)⇒ (WFREC≺ F) x = F ((WFREC≺ F) |{y |y≺x}) x

Systems like HOL and Isabelle/HOL manipulate input recursion
equations into a form where the WF recn. theorem can be
instantiated and massaged into a useful form.

Konrad Slind Compiling from Higher Order Logic

Example

Consider

variant x ` = if mem x ` then variant (x + 1) ` else x

Translate into functional (Augusstson’s pattern-matching
translation)
Instantiate F in theorem.
Extract termination conditions
Find termination relation ≺
Prove WF(≺)

Prove termination conditions

Much of this can be automated. Works for mutual, nested, and
higher-order recursions.

Konrad Slind Compiling from Higher Order Logic

Recursion Induction

Allows one to prove a property P of a function by assuming P
holds for each recursive call and then showing that P holds for
the entire function.

Theorem (variant-induction)

∀P. (∀x `. (mem x `⇒ P (x + 1) `)⇒ P x `)⇒ ∀x `. P x `

Automatically derived from recursion equations (using
termination).
Proving correctness of variant is much easier with
variant-induction than with N-induction.

Konrad Slind Compiling from Higher Order Logic

Upshot

Verification methodology for functional programs modelled with
the built-in functions of the logic:

Define program
The logic framework has thus taken care of lexing, parsing,
type inference, and overload resolution
Prove termination. (Obligation; can be deferred)
Recursion equations now usable
Apply custom induction theorem to prove properties

Konrad Slind Compiling from Higher Order Logic

Provocations

“I want to verify programs, not algorithms!”
–A. Tolmach

“WYSINWYG” –Tom Reps

Konrad Slind Compiling from Higher Order Logic

Compilation

Perhaps the most widely used tool in CS are compilers.

Since compilers are crucial infrastructure, compiler verification
is important.

There are at least three main themes in verifying compilation:

User sprinkles assertions throughout code; compiler
attempts to automatically prove them.
Formalize and verify a compiler
Translation validation

Konrad Slind Compiling from Higher Order Logic

Verified Compilation

Verified compiler: formalize source, target, and compilation
algorithm as function from source to target. Then verify.
Examples: McCarthy-Painter, ..., Klein-Nipkow, X. Leroy et
al, ...
Translation validation: run compiler; then prove that output
code is equivalent to input.
Examples: Pnueli, Siegel, and Singerman (TACAS’98),
Necula (PLDI 2000), Li, Owens, and Slind (ESOP’07)

Konrad Slind Compiling from Higher Order Logic

Verified Compilation

Verified compiler: formalize source, target, and compilation
algorithm as function from source to target. Then verify.
Examples: McCarthy-Painter, ..., Klein-Nipkow, X. Leroy et
al, ...
Translation validation: run compiler; then prove that output
code is equivalent to input.
Examples: Pnueli, Siegel, and Singerman (TACAS’98),
Necula (PLDI 2000), Li, Owens, and Slind (ESOP’07)

Konrad Slind Compiling from Higher Order Logic

Compilers in theorem provers

Hickey and Nogin (HOUFL to x86)
Higher-order rewrite rules in Meta-PRL basis for
compilation.
Rules not verified

Leroy (Clight to PPC)
Clight compiler as Coq function
Big-step operational semantics of subset of C
Formalized compiler in Coq and proved it correct

Iyoda, Gordon, and Slind (subset of HOL to hardware)
Li, Owens, Myreen, Fox, Slind (same subset to software)

Konrad Slind Compiling from Higher Order Logic

Example

Accumulator-style 32-bit factorial:

` fac32(n, acc) =
if n = 0w then acc else fac32(n − 1w , acc ∗ n)

Compiler returns a theorem:

|- ARM_PROG
(R 0w r0 * R 1w r1 * ~S * R30 14w lr)

L0: CMP r0, #0
L1: MULNE r1, r0, r1
L2: SUBNE r0, r0, #1
L3: BNE L0
L4: MOV pc, lr

(~R 14w * ~S * ~R 0w * R 1w (fac32(r0,r1)) ...)

Konrad Slind Compiling from Higher Order Logic

Discussion

` ARM_PROG (pre) ARMcode (post)

is a theorem in the HOL logic, automatically proved.

Based on following formal theories
ARM µ-architecture (Fox)
ARM ISA (Fox)
µ-arch. implements ISA (Fox)
Hoare Logic (with separating conjunction) for ARM
(Myreen)

Konrad Slind Compiling from Higher Order Logic

Proposed methodology

Specify functional programs as logic functions
Prove correctness properties (no operational semantics!)
Translate to low-level executable format (h/w, assembly) by
proof
Thus execution returns answers meeting the correctness
properties

Konrad Slind Compiling from Higher Order Logic

Compiling Logic?

Instead of compiling programs, we compile logic definitions
(mathematical functions).

In other words, the source language is a subset of the functions
expressible in the proof assistant (HOL-4).

This is unusual, since such functions

have no ASTs visible in the logic (shallow embedding)
have no operational semantics

What’s a compiler writer to do?

Konrad Slind Compiling from Higher Order Logic

Compiler

It turns out that things don’t change very much: one of the
themes of TV is that one can use standard algorithms and ‘just’
check the results.

Start with a (recursive) function already defined in HOL-4.
Now we try to do as much as possible by source-to-source
translation.
These translations are semantic versions of the standard
syntax manipulations
Theme: maintenance of equality, by proof, from starting
program

Konrad Slind Compiling from Higher Order Logic

Source Language

First order tail recursive functions over nested tuples of base
types (nat and word32).

For example, the TEA block cipher can be defined in this syntax
(all variables have type word32):

ShiftXor (x , s, k0, k1) = (x � 4 + k0)⊕ (x + s)⊕ (x � 5 + k1)

Rounds (n, (y , z), (k0, k1, k2, k3), s) =
if n = 0w then ((y , z), (k0, k1, k2, k3), s) else
Rounds (n − 1w ,

let s′ = s + 2654435769w in
let y ′ = y + ShiftXor(z, s′, k0, k1)
in ((y ′, z + ShiftXor(y ′, s′, k2, k3)), (k0, k1, k2, k3), s′)

Encrypt(keys, txt) =
let (ctxt , keys, sum) = Rounds(32w , (txt , keys, 0w))
in ctxt

Konrad Slind Compiling from Higher Order Logic

Source Language

First order tail recursive functions over nested tuples of base
types (nat and word32).

For example, the TEA block cipher can be defined in this syntax
(all variables have type word32):

ShiftXor (x , s, k0, k1) = (x � 4 + k0)⊕ (x + s)⊕ (x � 5 + k1)

Rounds (n, (y , z), (k0, k1, k2, k3), s) =
if n = 0w then ((y , z), (k0, k1, k2, k3), s) else
Rounds (n − 1w ,

let s′ = s + 2654435769w in
let y ′ = y + ShiftXor(z, s′, k0, k1)
in ((y ′, z + ShiftXor(y ′, s′, k2, k3)), (k0, k1, k2, k3), s′)

Encrypt(keys, txt) =
let (ctxt , keys, sum) = Rounds(32w , (txt , keys, 0w))
in ctxt

Konrad Slind Compiling from Higher Order Logic

Compiler passes

Flattening
Unique naming
Inlining
Register allocation

Konrad Slind Compiling from Higher Order Logic

Flattening

A uniform way to achieve this is with the CPS transformation.
Although usually understood syntactically, it can also be
defined as a higher order function:

C e f = f (e)

Resulting rewrite rules:

[C_intro] e ←→ C e (λx .x)
[C_binop] C (e1 opb e2) k ←→ C e1 (λx . C e2 (λy . C (x opb y) k))
[C_pair] C (e1, e2) k ←→ C e1 (λx . C e2 (λy . C (x , y) k))
[C_let_ANF] C (let v = e in f v) k ←→ C e (λx . C (f x) (λy . k y))
[C_abs] C (λv . f v) k ←→ C (λv . (C (f v) (λx . x))) k
[C_app] C (f e) k ←→ C f (λg. C e (λx . C (g x) (λy . k y)))

Konrad Slind Compiling from Higher Order Logic

Flattening

Let’s look at C_binop:

C (e1 op e2) k ←→ C e1 (λx . C e2 (λy . C (x op y) k))

Its effect as a rewrite rule is to push occurrences of C deeper
into the compound expression, building up an
incomprehensible linear structure.

Eventually, rewriting stops and we introduce lets :

C e k ←→ let x = e in k x

Konrad Slind Compiling from Higher Order Logic

Flattening

Let’s look at C_binop:

C (e1 op e2) k ←→ C e1 (λx . C e2 (λy . C (x op y) k))

Its effect as a rewrite rule is to push occurrences of C deeper
into the compound expression, building up an
incomprehensible linear structure.

Eventually, rewriting stops and we introduce lets :

C e k ←→ let x = e in k x

Konrad Slind Compiling from Higher Order Logic

Flattening

Let’s look at C_binop:

C (e1 op e2) k ←→ C e1 (λx . C e2 (λy . C (x op y) k))

Its effect as a rewrite rule is to push occurrences of C deeper
into the compound expression, building up an
incomprehensible linear structure.

Eventually, rewriting stops and we introduce lets :

C e k ←→ let x = e in k x

Konrad Slind Compiling from Higher Order Logic

Example

Recall ShiftXor:

` ShiftXor (x , s, k0, k1) = (x � 4 + k0)⊕ (x + s)⊕ (x � 5 + k1)

which our compiler flattens to the equal form

` ShiftXor(v1, v2, v3, v4) =
let v5 = v1 � 4 in
let v6 = v5 + v3 in
let v7 = v1 + v2 in
let v8 = v6 ⊕ v7 in
let v9 = v1 � 5 in
let v10 = v9 + v4 in
let v11 = v8 ⊕ v10
in v11

Konrad Slind Compiling from Higher Order Logic

Variable handling

The underlying deductive machinery of HOL-4 ensures that
variables are automatically renamed, as needed to avoid name
capture.

We also remove spurious bindings (var-var) and useless
bindings with

let x = v in e[x] ←→ e[v]
let x = e1 in e2 ←→ e2

We also uniquely name each introduced let variable. This is
just an α-conversion, and so preserves equality.

Konrad Slind Compiling from Higher Order Logic

Variable handling

The underlying deductive machinery of HOL-4 ensures that
variables are automatically renamed, as needed to avoid name
capture.

We also remove spurious bindings (var-var) and useless
bindings with

let x = v in e[x] ←→ e[v]
let x = e1 in e2 ←→ e2

We also uniquely name each introduced let variable. This is
just an α-conversion, and so preserves equality.

Konrad Slind Compiling from Higher Order Logic

Variable handling

The underlying deductive machinery of HOL-4 ensures that
variables are automatically renamed, as needed to avoid name
capture.

We also remove spurious bindings (var-var) and useless
bindings with

let x = v in e[x] ←→ e[v]
let x = e1 in e2 ←→ e2

We also uniquely name each introduced let variable. This is
just an α-conversion, and so preserves equality.

Konrad Slind Compiling from Higher Order Logic

Inlining

This is just expansion of definitions, so trivially preserves
equality. Framework automatically takes care of avoiding name
clashes.

‘Small’ functions are inlined.

Recursive functions when inlined, are unrolled a small number
of times.

Inlining opens up possibilities for constant folding and removing
trivial bindings.

Upshot: what Norman Ramsey said.

Konrad Slind Compiling from Higher Order Logic

Register allocation

Now the function has been translated to a form close to being
processable by a machine.

Each let binding can be regarded as performing a machine
operation or subroutine call and storing the result in a register.

But we have the unrealistic assumption that there are an
unbounded number of registers. Enter register allocation.

Big advantage of TV: can use off-the-shelf register allocation
algorithms and just verify the results of the allocation.

In previous work, we used a standard graph-colouring
algorithm.

Konrad Slind Compiling from Higher Order Logic

Register allocation

The gap between an unbounded number of virtual registers and
a fixed number of real registers is bridged by use of memory.

Nice trick from Jason Hickey: use a naming convention on
variables to say which are really registers and which are
memory locations.

vi is a variable waiting to be allocated
rj is a register
mk is a memory location

Konrad Slind Compiling from Higher Order Logic

Round definition

Round ((y,z),(k0,k1,k2,k3),s) =
let s’ = s + DELTA in
let y’ = y + ShiftXor (z,s’,k0,k1)
in
((y’,z + ShiftXor (y’,s’,k2,k3)),(k0,k1,k2,k3),s’)

Konrad Slind Compiling from Higher Order Logic

Before register allocation

|- Round ((v1,v2),(v3,v4,v5,v6),v7) =
let v8 = v7 + DELTA in
let v9 = ShiftXor (v2,v8,v3,v4) in
let v10 = v1 + v9 in
let v11 = ShiftXor (v10,v8,v5,v6) in
let v12 = v2 + v11
in
((v10,v12),(v3,v4,v5,v6),v8)

Konrad Slind Compiling from Higher Order Logic

After register allocation

Four available registers:

|- Round ((r0,r1),(r2,r3,m1,m2),m3) =
let m4 = r2 in
let r2 = m3 in
let r2 = r2 + DELTA in
let m3 = r3 in
let r3 = ShiftXor (r1,r2,m4,m3) in
let r0 = r0 + r3 in
let r3 = ShiftXor (r0,r2,m1,m2) in
let r1 = r1 + r3
in

((r0,r1),(m4,m3,m1,m2),r2)

Konrad Slind Compiling from Higher Order Logic

Lessons

Most compilation steps can be expressed as rewrite rules (local
transformations).

Some transformations require proofs that pi = pi+1, where pi is
the whole program.

Konrad Slind Compiling from Higher Order Logic

What then?

Have extended input language to

polymorphism
higher order functions
user datatypes; complex pattern-matching

(See paper in TACAS 2008)

But also need to deal with generating code and embrace
(finally) the operational semantics of the underlying machine.

Konrad Slind Compiling from Higher Order Logic

Dealing with the machine

Arcane amount of detail, dealt with by proof automation for
Hoare/Separation Logic

generate code blindly following post-register allocated
function
apply Hoare rules following structure of the HOL function

sequential composition
conditional branches
loops (use induction theorem(s) for recursive functions to
prove loop equal to recursion)
subroutines

Konrad Slind Compiling from Higher Order Logic

Decompiling to Logic

Suppose you have to verify some assembly A.

Wouldn’t it be nice to automatically map A to a logic function f
such that

` ∀x . P (f x)

would formally imply that P holds of any evaluation of A.

Myreen has implemented decompilers from ARM, IA-32, and
PPC to HOL. Has applied this in proof of correctness of a
Cheney-style garbage collector, written in ARM.

See his webpage for details.

Konrad Slind Compiling from Higher Order Logic

Future Work

Still a bit of work to do to get an end-to-end compiler.
Reduce the various types in the final program to a uniform
encoding.
Front end handles recursive datastructures, but back end
needs a (verified) runtime system.
Possibly utilize work of Myreen on verified g.c. and lisp
interpreter
Find interesting applications

Konrad Slind Compiling from Higher Order Logic

Summary

People have been writing and proving correctness of
functional programs in theorem provers for quite a while.
Compiling such functions by proof offers new opportunities
in verified compilation.
A theorem prover can be a good environment for writing a
compiler, especially if proofs are important.
Brings together kinds of verification: recursion/induction,
Separation Logic.
Delaying entry into world of operational semantics may
have benefits.

Konrad Slind Compiling from Higher Order Logic

THE END

Konrad Slind Compiling from Higher Order Logic

