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Background: The BSV language (Bluespec SystemVerilog) 

is founded on composable Atomic Transactions (atomic 

rewrite rules).

This talk is about how we’re slowly finding the vocabulary, 

the voice, the story to sell the idea to the HW design 

community (it’s taken several years!).
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Arguments that go over like a ton of bricks

...they’re new; modern; 

cool; different

... they’re good 

for your soul

... it helps you 

reason about 

correctness 

using invariants

... they give compositional 

concurrency

... see how elegantly they solve the 

Dining Philosophers problem!

... see how elegantly they solve the 

Santa Claus problem!

Atomic Transactions 

are good because ...

... they give consistent access 

to your shared resources

Do I have a “soul”?Do I have a “soul”?

I don’t use “shared 

resources” (!!!)

I don’t use “shared 

resources” (!!!)

Cute! But I can’t see the 

relevance to what I do.

Cute! But I can’t see the 

relevance to what I do.

Thank you, but I 

don’t have the time

Thank you, but I 

don’t have the time

What do you mean by 

“reason”?  What’s an 

“invariant”?  What’s 

“compositional”?

What do you mean by 

“reason”?  What’s an 

“invariant”?  What’s 

“compositional”?

What’s “atomic”?What’s “atomic”?
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In summary ...

Atomic Transactions 

are good because ...

Ah! I see!Ah! I see!

And maybe you should also tell me about 

atomicity, reasoning, invariants, 

compositionality, shared resources!

And maybe you should also tell me about 

atomicity, reasoning, invariants, 

compositionality, shared resources!

... (summarizing slides that follow) they 

make your designs control-adaptive.  And 

here’s how that helps you in writing 

executable specs, in modeling, in refining 

models to designs, in reusable designs, and 

in maintainable and evolvable designs.

... and don’t forget about dining 

philosophers, Santa Claus and my soul!

... and don’t forget about dining 

philosophers, Santa Claus and my soul!
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module mkGCD (I_GCD);

Reg#(int) x <- mkRegU;

Reg#(int) y <- mkReg(0);

rule swap ((x > y) &&  (y != 0));

x <= y;  y <= x;

endrule

rule subtract ((x <= y) && (y != 0));

y <= y – x;

endrule

method Action start(int a, int b) if (y==0);

x <= a;  y <= b;

endmethod

method int result() if (y==0);

return x;

endmethod

endmodule

Internal

behavior

GCD in BSV

External
interface

State
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Generated Hardware

next state values

predicates

x_en y_en

x_en = 

y_en =

x y

> !(=0)

swap? subtract?

sub

a

b

�en

rdy

x

rdy

s
ta
rt

re
s
u
lt

swap?

swap? OR subtract?
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Generated Hardware Module

x_en y_en

x_en = swap?

y_en = swap? OR subtract?

x y

> !(=0)

swap? subtract?

sub

a

b

�en

rdy

x

rdy

s
ta
rt

re
s
u
lt

rdy =

start_en start_en

OR start_en

(y==0)

OR start_en

Control logic
(muxes, conditions on

muxes and enables)

on shared resources
(x and y)
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Generated Hardware Module

x_en y_en

When coding this in Verilog,

this control logic is explicit:

x y

> !(=0)

swap? subtract?

sub

a

b

�en

rdy

x

rdy

s
ta
rt

re
s
u
lt

start_en start_en

Control logic
(muxes, conditions on

muxes and enables)

on shared resources
(x and y)

always

@(posedge CLK)

if (start_en) x <= a;

else if (swap_en) x <= y;
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Summarizing, we have Point 1:

BSV’s Atomic Transactions (rules) are just another way of 

specifying control logic that you would have written anyway
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Fundamentally, we are scheduling three potentially concurrent 
atomic transactions that share resources.

Note that control of x is affected by a “non-adjacent” condition 
(cond2), because of atomicity of the intervening process 1. 
This is fundamentally what makes RTL so fragile!

0 1 2

x y

+1 -1 +1 -1 Process priority: 2 > 1 > 0

cond0              cond1              cond2

always @(posedge CLK) begin

if (cond2)

y <= y – 1;

else if (cond1) begin

y <= y + 1; x <= x – 1;

end

if (cond0 && !cond1)

x <= x + 1;

end

* There are other ways to write this RTL, but all suffer from same analysis

Resource-access 
scheduling logic 
i.e., control logic

always @(posedge CLK) begin

if (cond2)

y <= y – 1;

else if (cond1) begin

y <= y + 1; x <= x – 1;

end

if (cond0 && (!cond1 || cond2) )

x <= x + 1;

end

Better scheduling
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In BSV

rule proc0 (cond0);

x <= x + 1;

endrule

rule proc1 (cond1);

y <= y + 1;

x <= x – 1;

endrule

rule proc2 (cond2);

y <= y – 1;

endrule

(* descending_urgency = “proc2, proc1, proc0” *)

0 1 2

x y

+1 -1 +1 -1

Process priority: 2 > 1 > 0

cond0              cond1              cond2
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Now, let’s make a small change: add 
a new process and insert its priority

0

1

2

x y

+1

-1 +1

-1

Process priority: 2 > 3 > 1 > 0

cond0              cond1              cond2

3+2 -2

cond3
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Process priority: 2 > 3 > 1 > 0

Changing the BSV design

0

1

2

x y

+1

-1 +1

-1

cond0              cond1              cond2

3+2 -2

cond3

(* descending_urgency = “proc2, proc1, proc0” *)

rule proc0 (cond0);

x <= x + 1;

endrule

rule proc1 (cond1);

y <= y + 1;

x <= x – 1;

endrule

rule proc2 (cond2);

y <= y – 1;

endrule

(* descending_urgency = "proc2, proc3, proc1, proc0" *)

rule proc0 (cond0);

x <= x + 1;

endrule

rule proc1 (cond1);

y <= y + 1;

x <= x - 1;

endrule

rule proc2 (cond2);

y <= y - 1;

x <= x + 1;

endrule

rule proc3 (cond3);

y <= y - 2;

x <= x + 2;

endrule

Pre-Change

?
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Process priority: 2 > 3 > 1 > 0

Changing the Verilog design

0

1

2

x y

+1

-1 +1

-1

cond0              cond1              cond2

3+2 -2

cond3

always @(posedge CLK) begin

if (!cond2 && cond1)

x <= x – 1;

else if (cond0)

x <= x + 1;

if (cond2)

y <= y – 1;

else if (cond1)

y <= y + 1;

end

always @(posedge CLK) begin

if ((cond2 && cond0) || (cond0 && !cond1 && !cond3))

x <= x + 1;

else if (cond3 && !cond2)

x <= x + 2;

else if (cond1 && !cond2)

x <= x - 1

if (cond2) 

y <= y - 1;

else if (cond3)

y <= y - 2;

else if (cond1)

y <= y + 1;

end

Pre-Change

?
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A software analogy

f(...)

g(x,y)

calls decide calling convention,

decide register allocation

... decide register allocation,

In assembler, ....

related!

In C ....

The compiler does 

all the work
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A software analogy

f(...)

g(x,y,z)

calls decide calling convention,

decide register allocation

... decide register allocation,

In assembler, ....

related!

In C ....

all over again (groan!)

The compiler 

redoes all the work



9

17

In HW design

module f

module g

commu-

nicates

with

decide communications

decide control logic

... decide control logic,

In Verilog, ....

related!

In BSV ....

The compiler does 

all the work
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In HW design

In BSV ....

all over again (groan!)

The compiler 

redoes all the work

module f’

module g’

commu-

nicates

with

decide communications

decide control logic

... decide control logic,

In Verilog, ....

related!
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Summarizing, we have Point 2:

In RTL, control logic can be complex to write first time, and 

complex to change/maintain, because one needs to 

consider and reconsider non-local influences (even across 

module boundaries).

BSV, on the other hand, is “control adaptive” because it 

automatically computes and recomputes the control logic 

as you write/change the design.
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MEMOCODE 2008 codesign contest

Goal: Speed up a software 

reference application running on 

the PowerPC on Xilinx XUP 

reference board using SW/HW 

codesign

Application:

decrypt,

sort,

re-encrypt

db of records in external memory

Time allotted: 4 weeks

Xilinx XUP

http://rijndael.ece.vt.edu/memocontest08/
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The winning architecture

The “merger” has to be used 
repeatedly in order to 
mergesort the db

A control issue: address 
generation and sequencing of 
memory reads and writes

Observation: throughput in 
merger is limited by apex, so 
at each lower level, a single 
comparator can be shared

� can fit a deeper merger 
into available space

AES

Cores (2)

xor

xor
Memory Write

Logic

Read 

Memory

Logic

Record Input

Record Output

Sort 

Tree

merger
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Merger: each level

<

Loop:

1.Choose non-
empty input pair 
corresponding to 
output fifo with 
room (scheduling)
2.Compare the fifo
heads
3.Dequeue the 
smaller one and put 
it on output fifo
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Scheduler as a Module Parameter

Level 1 merger: must check 2 input FIFOs

� Scheduler can be combinational

Level 6 merger: must check 64 input FIFOs

� Scheduler must be pipelined

� scheduler is a parameter of level merger

24

MEMOCODE 2008 codesign contest

Contest Results

C + 

Impulse C

C + 

HDL

C Bluespec

Reference:  http://rijndael.ece.vt.edu/memocontest08/everybodywins/ 11X
of runner-up

(5x in 2007)

(3 people, 3 weeks, 

direct to FPGA)

27 teams started the four week contest.  

8 teams delivered 9 solutions.



13

25

Summarizing, we have Point 3:

Some control logic is too difficult even to contemplate 

without the support of atomic transactions
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Another application of control adaptivity: 
parameterizing an 802.11a Transmitter

Controller Scrambler Encoder

Interleaver Mapper

IFFT
Cyclic
Extend

headers

data

accounts for 85% area

24 
Uncoded
bits
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Combinational IFFT

in0

…

in1

in2

in63

in3

in4

Bfly4

Bfly4

Bfly4

x16

Bfly4

Bfly4

Bfly4

…

Bfly4

Bfly4

Bfly4

…

out0

…

out1

out2

out63

out3

out4

P
e
rm
u
te

P
e
rm
u
te

P
e
rm
u
te

All numbers are complex 
and represented as two 
sixteen bit quantities. 
Fixed-point arithmetic is 
used to reduce area, 
power, ...

*

*

*

*

+

-

-

+

+

-

-

+

*j

t2

t0

t3

t1
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Pipelined IFFT

in0

…

in1

in2

in63

in3

in4

Bfly4

Bfly4

Bfly4

x16

Bfly4

Bfly4

Bfly4

…

Bfly4

Bfly4

Bfly4

…

out0

…

out1

out2

out63

out3

out4

P
e
rm
u
te

P
e
rm
u
te

P
e
rm
u
te



15

29

Circular pipeline: Reusing the 
Pipeline Stage

in0

…

in1

in2

in63

in3

in4

out0

…

out1

out2

out63

out3

out4

…

Bfly4

Bfly4

P
e
rm
u
te

Stage 
Counter
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Superfolded circular pipeline: Just 
one Bfly-4 node!

in0

…

in1

in2

in63

in3

in4

out0

…

out1

out2

out63

out3

out4

Bfly4

P
e
rm
u
te

Index == 15?

Index: 

0 to 15

6
4
, 2
-w
a
y
 

M
u
x
e
s

4
, 1
6
-w
a
y
 

M
u
x
e
s

4
, 1
6
-w
a
y
 

D
e
M
u
x
e
s

Stage 

0 to 2

These different micro-architectures will have different (area, speed, 

power).  Each may be the “best” for different target chips.
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IP Reuse via parameterized modules
Example: OFDM based protocols (OFDM multi-radio)

MAC

MAC

standard specific

potential reuse

Scrambler
FEC

Encoder
Interleaver Mapper

Pilot &
Guard

Insertion

IFFT
CP

Insertion

De-
Scrambler

FEC
Decoder

De-
Interleaver

De-
Mapper

Channel
Estimater

FFT Synchronizer

TX
Controller

RX
Controller

S/P

D/A

A/D

� Different algorithms

� Different throughput requirements

� Reusable algorithm with different 
parameter settings

WiFi: 64pt @ 0.25MHz

WiMAX: 256pt @ 0.03MHz

WUSB: 128pt 8MHz

85% reusable code between WiFi and WiMAX

From WiFi to WiMAX in 4 weeks

�(Alfred) Man Chuek Ng, …

WiFi:x7+x4+1

WiMAX:x15+x14+1

WUSB:x15+x14+1

Convolutional

Reed-Solomon

Turbo
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Summarizing, we have Point 4:

Parameterized architectures can deliver tremendous 

succinctness and reuse ...

... but each instance of a parameterized architecture has 

different resource contentions � needs different control 

logic.

Consider the effort to redesign the control logic for each 

instance (RTL), vs. using regenerating it automatically due 

to control-adaptivity.
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Control-adaptivity has a profound 
effect on design methodology

High-level

Transactional

I/F

Design IP/SystemVerification IPSoftware

void

TestBench::

Result( void* tbPointer

)

{

TestBench* tb = reint erpret_cast< TestBench* >( tbPoint er );

unsigned data[4];

doResp( tb->drv0, &(tb->out[0]), data );

Initial Testbench

(approx)

Initial IP

(approx)

Add

Functionality

Final Bus/
Interconnect

I/F

void
TestBench::

Result( void* tbPointer

)

{

TestBench* tb = reint erpret_cast< TestBench* >( tbPoint er );

unsigned data[4];

doResp( tb->drv0, &(tb->out[0]), data );

cout << "dat a is: " << hex << data[ 0] << data[1] << dat a[2] << 

data[3] << endl;

Tcl_Obj* cmd = Tcl_NewStringObj( "reportResults ",  -1 );

for( int i=0; i<4; i++ )

void

TestBench::

Result( void* tbPointer

)
{

TestBench* tb = reint erpret_cast< TestBench* >( tbPoint er );

unsigned data[4];

doResp( tb->drv0, &(tb->out[0]), data );

cout << "dat a is: " << hex << data[ 0] << data[1] << dat a[2] << 

data[3] << endl;

Tcl_Obj* cmd = Tcl_NewStringObj( "reportResults ",  -1 );

for( int i=0; i<4; i++ )

void

TestBench::

Result( void* tbPointer
)

{

TestBench* tb = reint erpret_cast< TestBench* >( tbPoint er );

unsigned data[4];

doResp( tb->drv0, &(tb->out[0]), data );

cout << "dat a is: " << hex << data[ 0] << data[1] << dat a[2] << 

data[3] << endl;

Tcl_Obj* cmd = Tcl_NewStringObj( "reportResults ",  -1 );

for( int i=0; i<4; i++ )

Add 

Functionality

Add 

Architectural 

Detail

Final Testbench

Explore

Architecture

Final IP

Add

Functionality

Refine/

Replace

Early,fast SW platform

Executable spec

Synthesis & 

Execution at 

every step

Verify/

Analyze/

Debug

Bluespec Tools

FPGA/Emulation
(>>100X speed)

Bluesim
(10X speed)

RTL simulation
(1X speed)

Bluespec
Synthesis

or

or

RTL
synthesis

Power
Estimation

Verilog

Synthesizable testbenches,

for fast verification
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Gradually expanding ways in which 
BSV is used

Modeling for early SW development
� Denali

� Cycle-accurate LPDDR controller

Modeling for architecture exploration
� Intel, IBM, UT Austin, CMU

� x86 and Power multi-thread/multi-core design

Verification
� Qualcomm

� Testbenches, transactors

and, of course, IP creation (original use)
� TI, ST, Nokia, Mercury, MIT

� DMAs, LCD controllers, Wireless modems, Video, ...
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In summary ...

Atomic Transactions 

are good because ...

Ah! I see!Ah! I see!

What about Santa Claus* and my soul?What about Santa Claus* and my soul?

... (summarizing) they make your designs 

control-adaptive.  And this helps you in 

writing executable specs, in modeling, in 

refining models to designs, in creating 

complex, reusable designs, maintainable 

and evolvable designs.

* ask me if you want to see the Bluespec solution

36

Extra slides
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Example: IP verification
(AXI demo on FPGA @ Bluespec)

4,723 (10% utilization)Virtex-4 FX100 slices:

125KASIC gates:

2,000 (including comments)Bluespec lines of code:

22 day Verilog sim → 1 day Bluesim → 53 sec on FPGA

Verilog 1X (1.4K cycles/sec)

Bluesim 22X (31K cycles/sec)

Emulation 35,714X (50M cycles/sec)

C/SystemC/
Bluesim

Verilog 
Simulation

C/SystemC/
Bluesim

Bluesim 
Simulation

C/SystemC/
Bluesim

FPGA 
Emulation
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Workstation

Avnet $3.5K 
FPGA board

USB cable

Example: IP verification
(AXI demo on FPGA @ Bluespec)

W
hy BSV?

•
Inexpensive em

ulation platform
 (low cost FPGA 

board)
•

Easy setup (BSV transactors)

•
Quick availabilty (synthesizability of early 

approxim
ation)


