
FPH: First-class polymorphism for Haskell

Stephanie Weirich

joint work with Dimitrios Vytiniotis and Simon Peyton Jones

Computer and Information Science Department
University of Pennsylvania

Park City UT, June 2008

– 1 –



– 2 –



Unleashing polymorphism

• First-class functions are good

• Polymorphic functions are good

• But where are the first-class polymorphic functions?

g :: (forall a. a -> a -> a) -> (Bool, Int)

g sel = (sel True False, sel 1 2)

f :: [forall a. a -> a -> a] -> (Bool, Int)

f sels = ((head sel) True False, (head sel) 1 2)

This talk: extending Damas-Milner type inference to support rich

polymorphism
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Why no first-class polymorphism?

Damas-Milner has two expressiveness restrictions

1. 8 quantifiers allowed only at top-level

• eg: [8a :a ! a ! a ]! (Bool ; Int) not allowed
• Damas-Milner types: 8a1 : : : 8an :� where � is quantifier-free
• Rich types: contain arbitrary polymorphism

2. Instantiations only with quantifier-free types:

• eg: head sels not allowed, even if sels : [8a :a ! a ! a ]
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Lifting restriction [1]: arbitrary-rank types

Arbitrary-rank types: arbitrary polymorphism under “!”

f get = (get 3, get False)

Many possible types for f:

• (8a :a ! Int)! (Int ; Int)

• (8a :a ! a)! (Int ;Bool)

No principal type, no single one to choose and use throughout the

scope of the definition

=) modular type inference: impossible
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Arbitrary-rank types: problem solved, really

[Odersky & Läufer, 1996]

f (get :: forall a.a -> a) = (get 3, get False)

Key ideas

• Exploit type annotations for arbitrary-rank type inference

• Annotate function arguments that must be polymorphic

[Peyton Jones, Vytiniotis, Weirich, Shields, 2007]

• Propagation of type annotations to basic O-L

• Fewer annotations, better error messages

• Explored further metatheory and expressiveness
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Example: Haskell generic programming

Scrap your boilerplate [Lämmel & Peyton Jones, 2003]

class Typeable a => Data a where

...

gmapT :: (forall b.Data b => b -> b) -> a -> a

gmapQ :: (forall a.Data a => a -> u) -> a -> [u]

...

gmapT applies a transformation to immediate subnodes in a data

structure independently of what type these subnodes have, as long

as they are instances of Data

– 7 –



Example: Haskell generic programming

Scrap your boilerplate [Lämmel & Peyton Jones, 2003]
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Example: Encapsulating state, purely functionally

State transformers for Haskell [Peyton Jones & Launchbury, 1994]

data ST s a

data STRef s a

newSTRef :: forall s a.a -> ST s (STRef s a)

runST :: forall a.(forall s.ST s a) -> a

runST encapsulates stateful computation and returns a pure result.

Type prevents state to “escape” the encapsulation

let v = runST (newSTRef True) in ... -- should fail!
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Lifting restriction [2]: impredicative instantiations

runST :: forall a.(forall s.ST s a) -> a

($) :: forall a b.(a -> b) -> a -> b

f = runST $ arg

Must instantiate a of $ with forall s.ST s ...
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Problematic for type inference, again

choose :: forall a.a -> a -> a

id :: forall b.b -> b

goo = choose id

a 7! (b ! b) =) goo : 8b:(b ! b)! b ! b

a 7! (8b:b ! b) =) goo : (8b:b ! b)! (8b:b ! b)

Incomparable types for definitions. Which one to choose?

• No principal types =) no modular type inference
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“Local” type inference tempting but not satisfactory

We may try to use type annotation propagation to let the type

checker decide about instantiations locally. Difficult to make it

work

length :: forall a.[a] -> Int

ids :: [forall a.a->a]

f :: [forall b.b->b] -> Int

[] :: forall a.[a]

h0 = length ids

h1 = f []

h2 :: [forall a.a -> a]

h2 = cons (�x.x) []

h3 = cons (�x.x) (reverse ids)

Who determines polymorphic

instantiation in applications?

• Argument type?

• Function type?

• Type annotation?

• Some subexpression?
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Back to the drawing board

choose :: forall a.a -> a -> a

id :: forall b.b -> b

goo = choose id

a 7! (b ! b) =) goo : 8b:(b ! b)! b ! b

a 7! (8b:b ! b) =) goo : (8b:b ! b)! (8b:b ! b)

Problem can be fixed if we go beyond System F:

• The type

8a � (8b:b ! b):a ! a

is the principal (non System F) type for choose id
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The MLF solution

The MLF solution [Le Botlan & Rémy, 2003]: extend the type

language beyond System F to recover principal types

• Expose constraints in the high-level specification

• Algorithm manipulates instantiation constraints

• Substantial additional machinery in the specification

compared to Damas-Milner

• But expressive, robust, requires a small number of type

annotations

MLF: the main inspiration for this work
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A Challenge Problem for 2003-2008

• Can we achieve a constraint-free specification of type

inference for first-class polymorphism?

• Want simplicity, expressiveness, robustness, backwards

compatibility, . . .

• Can we give clear guidelines to programmers about where type

annotations are needed?
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A principled “global” approach

Look again at where, in theory, you run into trouble with ambiguity

• Theory says: “let-bound definitions and abstractions” because

there you must choose which type to use!

• Intuition: “if Theory is correct, these should be the ONLY

places where you may need annotations”

Can we make this work?

No “local” decisions: postpone instantiation decisions using

constraints in the algorithm, until forced to make a decision

But never expose these constraints in your specification, pretend

you knew the solution to the constraints from the beginning
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The running example

choose :: forall a.a -> a -> a

id :: forall b.b->b

goo = choose id

Suppose we allow in the type system any instantiation of choose:

1: a 7! (b ! b) =) goo : 8b:(b ! b)! b ! b

2: a 7! (8b:b ! b) =) goo : (8b:b ! b)! (8b:b ! b)

At a definition point, we have to decide which one we want

Key insight: Type system keeps track of ambiguity in the types.

At a let-definition the type of the expression to be bound must be

unambiguous
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Boxes around ambiguous types

• Use a special type constructor �

• Call it a box. It “guards” impredicative instantiations

• Instantiate with boxy monomorphic types � :

� ::= a j � ! � j [� ] j �

� ::= 8a :� j a j � ! � j [�]

� -types: ordinary Damas-Milner quantifier-free types + boxy types

Instantiation exactly as in Damas-Milner

(choose : 8a :a ! a ! a) 2 �

� ` choose : � ! � ! �

for any � !
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Typing (choose id) in the specification

First way (as in Damas-Milner)

1. Instantiate choose : (b ! b)! (b ! b)! b ! b

2. Instantiate id to b ! b

3. Match-up type of id with the type that choose requires

b ! b � b ! b

4. Result is choose id : (b ! b)! b ! b

Second way

1. Instantiate choose : 8b:b ! b ! 8b:b ! b ! 8b:b ! b

2. Match-up type of id with the type that choose requires

ignoring boxes

8b:b ! b � 8b:b ! b

3. Result is choose id : 8b:b ! b ! 8b:b ! b
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Again multiple types for (choose id)?

Indeed:
choose id : 8b:b ! b ! 8b:b ! b

choose id : 8b:(b ! b)! b ! b

A boxy type is a warning for ambiguity!

Let-bound definitions must have box-free types =) no ambiguity

� ` u : � � is box-free �; (x :�) ` e : �0

� ` let x = u in e : �0
let

Hence, can only bind goo with type 8b:(b ! b)! b ! b

As in Damas-Milner: backwards compatibility
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Annotations recover other types

goo :: (forall b.b->b) -> (forall b.b->b)

goo = choose id

Same idea as in applications

1. Type choose id : 8b:b ! b ! 8b:b ! b

2. Match-up annotation with expression type ignoring boxes

8b:b ! b ! 8b:b ! b � (8b:b ! b)! 8b:b ! b

3. Bind goo with the box-free type from the annotation

� ` e : �0
�

0 � �

� ` (e ::�) : �
ann
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Boxes do not get in the way

Boxes only used at lets.

head :: forall a.[a] -> a

g = head ids 42

The boxy type of head ids can automatically become box-free

� ` head ids : 8a :a ! a

� Int ! Int v Int ! Int

Relation � instantiates inside boxes

Relation v removes boxes when their contents are monomorphic
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What is going on at let-bound definitions?

Many types for the same expression

Box-free types

Arbitrary boxy types

...

Principal
box-free type

Potentially
incomparable types

• No annotation present: a box-free type is chosen

• Other types recovered through annotations– 22 –



Where does one need an annotation?

If we want to be conservative, we need not think about boxes at all

Guideline: You need only annotate all those definitions (and anonymous

functions) that must be typed with rich types

Theorem: If � `F
e : � (i.e. typeable in implicit System F) and e

consists only of constants, variables, and applications, then � ` e : �0

such that �
0 � �.

Consequence: very robust for polymorphic combinators such as $
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Guideline is conservative: that’s why boxes are
there!

f :: [forall b.b -> b] -> [forall b.b->b]

ids :: [forall b.b->b]

g = f ids

Type of f ids is a rich type

• But no ambiguity, should need no annotations

• Possible, because type of f ids is box-free
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Conservativity for a declarative specification

Assume (h : 8a :a ! [a ]! [a ]) 2 �

f :: [forall a.a->a] -- annotation required!

f = h id ids

Seems silly to require an annotation on f

But if h gets a more general type, (h : 8ab:a ! [b]! [a ]) 2 �

f = h id ids

Then f gets the incomparable type 8c:[c ! c]

A more general type for a let-bound expression can make a

program in its scope untypeable!
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Summary

• Simplicity:

Reminiscent of the declarative Damas-Milner specification

• Expressiveness:

Can embed all of System F with the addition of annotations

to abstractions and let-bindings with rich types

• Robustness:

Robust in application of polymorphic combinators

• Modularity:

Principal box-free types for programs

• Backwards compatibility:

Types all Damas-Milner typeable programs

Good candidate for next-generation FP languages
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Related work

MLF [Le Botlan & Rémy, 2003]

• Substantial additional machinery in the specification,

implementation with constraints, precise guidelines where

annotations are needed, fewer annotations are needed

Boxy Types [Vytiniotis et al., 2006]

• Simple implementation, complex syntax-directed spec, little

robustness

HMF [Leijen, 2008]

• Simple implementation, somewhat algorithmic specification,

harder to tell where annotations are needed

This work

• Simple specification, implementation with constraints, precise

annotation guidelines, robust, elegant
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Future work

• Interaction with Haskell type classes

• Efficiency considerations

• Implementation in a commercial-scale compiler

• Explore expressiveness improvements

• Hoisting of 8-quantifiers to the right of !?
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Prototype available!

www.cis.upenn.edu/~dimitriv/fph
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