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Security-oriented Languages


•  Manifest Security Project (NSF-0714649)

–  Penn: Benjamin Pierce, Stephanie Weirich

–  CMU: Karl Crary, Bob Harper, Frank Pfenning


•  CAREER: Language-based Distributed System 
Security (NSF-0311204)


Limin Jia,  Karl Mazurak, Jeff Vaughan, Jianzhou Zhao

Joey Schorr  and Luke Zarko
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Goal of the AURA project: 

•  Develop a security-oriented programming language that 

supports:

–  Proof-carrying Authorization�

[Appel & Felton] [Bauer et al.]

–  Strong information-flow properties �

(as in Jif [Myers et al.] , FlowCaml [Pottier & Simonet]) 


•  Why?

–  Declarative policies (for access control & information flow)

–  Auditing & logging: proofs of authorization are informative

–  Good theoretical foundations


•  In this talk: tour of AURA's 

–  Focus on the authorization and audit components
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Outline

• AURA's programming model


• Authorization logic

– Examples


• Programming in AURA

–  (Restricted) Dependent types 


• Status, future directions, conclusions
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AURA: Programming Model


•  AURA is a call-by-value type-safe functional programming language

•  As in Java, C#, etc. AURA provides an interface to the OS resources


–  disk, network, memory, …

•  AURA is intended to be used for writing security-critical components


system interface


application


AURA runtime system


 code 
  code 


I/O
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AURA: Authorization Policies


•  AURA security policies are expressed in an authorization logic

•  Applications can define their own policies

•  Language provides features for creating/manipulating proofs


system interface


application


AURA runtime system


 code 
  code 
  policy 


proof


I/O




7 

AURA: Authorization Policies


•  Proofs are first class and they can depend on data

•  Proof objects are capabilities needed to access resources protected by 

the runtime: AURA's type system ensures compliance

•  The runtime logs the proofs for later audit


system interface


application


AURA runtime system


 code 
  code 
  policy 


proof

data


I/O

log
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AURA: Principals and Keys


•  For distributed systems, AURA also manages private keys

•  Keys can create policy assertions sharable over the network

•  Connected to the policy by AURA's notion of principal


system interface


application


AURA runtime system


log


 code 
  code 
  policy 


proof

data


I/O

A


B


A
 B
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Evidence-based Audit

•  Connecting the contents of 

log entries to policy helps 
determine what to log.


log


 policy 
  code 
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Evidence-based Audit

•  Connecting the contents of 

log entries to policy helps 
determine what to log.


•  Proofs contain structure 
that can help 
administrators find flaws 
or misconfigurations in the 
policy.


log


 policy 
  code 
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Evidence-based Audit

•  Connecting the contents of 

log entries to policy helps 
determine what to log.


•  Proofs contain structure 
that can help 
administrators find flaws 
or misconfigurations in the 
policy.


•  Reduced TCB: Typed 
interface forces code to 
provide auditable 
evidence. 


log


 policy 
  code 
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Outline

• AURA's programming model


• Authorization logic

– Examples


• Programming in AURA

–  (Restricted) Dependent types 


• Status, future directions, conclusions
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AURA's Authorization Logic

• Policy propositions

ϕ ::=
true 


 
c


 
A says ϕ


 
α


 
  ϕ ∧ ϕ


 
ϕ ∨ ϕ


 
ϕ → ϕ


 
∀α. ϕ


•  Principals

       A,B,C … P,Q,R etc.


•  Constructive logic:

–  proofs are programs

–  easy integration with�

software


• Access control in a 
Core Calculus of 
Dependency�
                [Abadi: ICFP 2006]


Encoded using �
Π types and �

inductive datatypes.




14 

Example: File system authorization

•   P1: FS says (Owns A f1)

•   P2: FS says (Owns B f2)

•  …


•   OwnerControlsRead: �
FS says    ∀o,r,f. 
(Owns o f) → �


 
  
(o says (MayRead r f)) → �

 
 
(MayRead r f)


•  Might need to prove:    FS says (MayRead A f1)

•  What are "Owns" and "f1"?
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Decentralized Authorization 

•  Authorization policies require application-specific 

constants:

–  e.g.        "MayRead B f"    or    "Owns A f"

–  There is no "proof evidence" associated with these constants

–  Otherwise, it would be easy to forge authorization proofs


•  But, principal A should be able to create a proof of �
                            A says (MayRead B f)

–  No justification required -- this is a matter of policy, not fact!  


•  Decentralized implementation:

–  One proof that "A says T" is A's digital signature on a string "T"

–  written   sign(A, "T")
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Example Proof (1)

•   P1: FS says (Owns A f1)

•   OwnerControlsRead: �

FS says    ∀o,r,f. 
(Owns o f) → �

 
  
(o says (MayRead r f)) → �

 
 
(MayRead r f)


•  Direct authorization via FS's signature:�
   
�


sign(FS, "MayRead A f1") �
 
: FS says (MayRead A f1)
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Example Proof (2)

•   P1: FS says (Owns A f1)

•   OwnerControlsRead: �

FS says    ∀o,r,f. 
(Owns o f) → �

 
  
(o says (MayRead r f)) → �

 
 
(MayRead r f)


•  Complex proof constructed using "bind" and "return"�
 
�


bind p = OwnerControlsRead in�
 
bind q = P1 in�
 
    return FS (p A A f1 q sign(A,"MayRead A f1")))


    
 
: FS says (MayRead A f1)
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Authority in AURA

• How to create the value sign(A, "ϕ") ?

•  Components of the software have authority


–  Authority modeled as possession of a private key

–  With A's authority : �

               say("ϕ")  evaluates to  sign(A, "ϕ")


• What ϕ's should a program be able to say? 

–  From a statically predetermined set (static auditing)

–  From a set determined at load time 


•  In any case: log which assertions are made
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Outline

• AURA's programming model


• Authorization logic

– Examples


• Programming in AURA

–  (Restricted) Dependent types 


• Status, future directions, conclusions
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Propositions: specify policy


ϕ              
 A says ϕ


(ϕ ∧ φ) 
 ∀α.T


(Owns A fh1)     (ϕ -> φ) 


Evidence: proofs/credentials

  
sign(A, "ϕ")

    
bind/return

     \x:t.e


AURA Programming Language



Types: describe programs


 
int         FileHandle


 
string 
prin


 
int -> int 
pf  ϕ



Programs: computations, I/O


 
3 
fh1 



 
"hello" 
A


 
say(ϕ)         
\x:t.e


Programs
 Policies


St
at

ic



D
yn

am
ic
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(Restricted) Dependent Types

•  Policy propositions can mention program data


–  E.g. "f1" is a file handle that can appear in a policy

–  AURA restricts dependency to first order data types

–  Disallows computation at the type level – only values!


•  Programming with dependent types:

   {x:T;     U(x)}      dependent pair*       (* syntactic sugar) �

(x:T) → U(x)      dependent functions


•  Invariant: sign only types

–  Computation can't depend on signatures

–  But, can use predicates:  {x:int; pf A says Good(x)}
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Auditing Interfaces

•  Type of the "native" read operation:

       raw_read :   FileHandle → String 

•  AURA's runtime exposes it this way:�
 read : (f:FileHandle) →  

    pf RT says (OkToRead self f) →  
    {ans:String; pf RT says (DidRead f ans)} 

•  RT is a principal that represents the AURA runtime

•  OKtoRead and DidRead are "generic" policies 


–  The application implements its own policies about when it is 
OKtoRead by providing assertions, etc.


–  Parts of the runtime must delegate to the application




Signatures

•  Assertions: uninhabited constants that construct Prop’s

assert MayRead : Prin -> FileHandle -> Prop; 
assert Owns : Prin -> FileHandle -> Prop;

•  AURA supports mutually recursive datatypes and

 mutually inductively defined propositions:

data List: Type -> Type { 

| nil : (t:Type) -> List t 
 | cons: (t:Type) -> t -> List t -> List t 

} 
data OwnerInfo : FileHandle -> Type { 
 | oinfo : (f:FileHandle) -> (p:Prin)  

             -> pf (self says (Owns p f)) -> OwnerInfo f 
} 
data And : Prop ->  Prop -> Prop { 
   | both : (p:Prop) -> (q:Prop) -> p -> q -> And p q 
} 
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More about Prop vs. Type

•  We want the Prop fragment to  be a logic:


–  Pure, strongly normalizing

–  Signature typing rules add a strong positivity constraint for Prop

 to rule out divergence


•  We need to separate the Prop and Type fragments

–  Type fragment includes divergent terms (possibly other effects)

–  This is the purpose of the “pf” monad.  A value of type “pf P” is of

 the form “returnp t”  where “t” is a pure proof term that proves P.

–  It is possible to write a loop of type “pf P” by not one of type “P”.
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Example Program

•  (see demo.core)
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Formalizing Core AURA

•  Lambda-cube-like representation with a very simple core:



t ::= x  |  ctr  |  λx:t1.t2  |  t1 t2  |  (x:t1) → t2  | �
       match t1 t2 with {b}   |   (t1 : t2)    | c


•  Plus these constants  (special typechecking rules):


c   ::= Type   |  Prop  | Kind�


    prin  |  says   | returns | binds


                self   | sign�
           pf  |   returnp | bindp



 
        if 
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Coq Formalization

•  Type system and operational semantics:


–  30 rules in 4 mutually inductive predicates: wf_env, wf_tm, 
wf_branches, wf_brn


–  Signature checking: wf_sig, wf_bundle_tcrs, wf_bundle_ctrs, 
wf_ctr_decls


–  Conversion relation (for casts) that reflects dynamic equality 
checks into the static type system


–  Evaluation rules

•  Correctness properties proved in Coq: 


–  Type soundness and decidability of typechecking  (~7000 loc)

–  Decidability of typechecking is simplified by:


•  Restricted dependency (only values)

•  Limited equality proofs available statically


•  Paper proof of strong normalization of (a slightly simplified
 version of) the Prop fragment.
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Observations about the Formalization

•  Dealing with mutually recursive datatypes and pattern

 matching was a lot of work

–  Significant source of complexity for soundness and decidability

–  … hopefully reusable in other contexts (our lambda cube plus

 constants can probably be instantiated to other languages)


•  Initial investment in formalization was heavy – many
 hours to implement the typing rules, etc.

–  But: having machine checked proofs is a big win, especially for

 large groups of collaborators.

–  It gets easier over time…
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Open Questions


•  AURA needed improvements: 
 
 
 


–  Anonymous existential types / dependent type & inference

–  Richer dependent types?  

–  Explicit / richer equality proofs?

–  Revocation/expiration of signed objects?  [Garg and Pfenning]

–  Connection to program verification?

–  Correlate distributed logs?


•  This story seems just fine for integrity, but what about 
confidentiality?

–  We have many ideas about connecting to information-flow analysis

–  Is there an "encryption" analog to "signatures" interpretation? 

–  Encode confidentiality using “security monads” [work at Chalmers]




Conjecture: Non-security use?

•  Carve up a program into principals


–  Perhaps by module?

•  Allow principals to make arbitrary (dependent) logical

 assertions

–  Interfaces can specify constraints in this logic

–  (e.g. propositions regulate type equality)


•  The “says” modality offers an escape hatch: no need to
 construct an actual proof

–  Cast uses “asserted equality” (not “verifiable equality”)

–  “says” isolates components, allows assignment of blame and makes

 trust relationships explicit.

•  Question: is this interesting?  Useful? Does anyone know

 of any work similar to this?
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Outline

• AURA's programming model


• Authorization logic

– Examples


• Programming in AURA

– Dependent types 


• Status, future directions, conclusions
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AURA's Status

•  Have implemented an interpreter in F#


–  Many small examples  programs 

–  Working on larger examples

–  Goal: experience with proof sizes, logging infrastructure


•  Planning to compile AURA to Microsoft .NET platform

–  Proof representation / compatibility with C# and other .NET 

languages

–  Luke Zarko is awesome


•  Penn undergrad applying this fall to Ph.D. programs for next year
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Security-oriented Languages


                           AURA

•  A language with support for authorization and audit

•  Authorization logic

•  Limited form of dependent types

•  Language features that support secure systems 


www.cis.upenn.edu/~stevez/sol
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Thanks!



