
AURA:�
A language with authorization and audit

Steve Zdancewic

University of Pennsylvania

WG 2.8 2008

2

Security-oriented Languages

•  Manifest Security Project (NSF-0714649)

–  Penn: Benjamin Pierce, Stephanie Weirich

–  CMU: Karl Crary, Bob Harper, Frank Pfenning

•  CAREER: Language-based Distributed System
Security (NSF-0311204)

Limin Jia, Karl Mazurak, Jeff Vaughan, Jianzhou Zhao

Joey Schorr and Luke Zarko

3

Goal of the AURA project:

•  Develop a security-oriented programming language that

supports:

–  Proof-carrying Authorization�

[Appel & Felton] [Bauer et al.]

–  Strong information-flow properties �

(as in Jif [Myers et al.] , FlowCaml [Pottier & Simonet])

•  Why?

–  Declarative policies (for access control & information flow)

–  Auditing & logging: proofs of authorization are informative

–  Good theoretical foundations

•  In this talk: tour of AURA's

–  Focus on the authorization and audit components

4

Outline

• AURA's programming model

• Authorization logic

– Examples

• Programming in AURA

–  (Restricted) Dependent types

• Status, future directions, conclusions

5

AURA: Programming Model

•  AURA is a call-by-value type-safe functional programming language

•  As in Java, C#, etc. AURA provides an interface to the OS resources

–  disk, network, memory, …

•  AURA is intended to be used for writing security-critical components

system interface

application

AURA runtime system

 code
 code

I/O

6

AURA: Authorization Policies

•  AURA security policies are expressed in an authorization logic

•  Applications can define their own policies

•  Language provides features for creating/manipulating proofs

system interface

application

AURA runtime system

 code
 code
 policy

proof

I/O

7

AURA: Authorization Policies

•  Proofs are first class and they can depend on data

•  Proof objects are capabilities needed to access resources protected by

the runtime: AURA's type system ensures compliance

•  The runtime logs the proofs for later audit

system interface

application

AURA runtime system

 code
 code
 policy

proof

data

I/O

log

8

AURA: Principals and Keys

•  For distributed systems, AURA also manages private keys

•  Keys can create policy assertions sharable over the network

•  Connected to the policy by AURA's notion of principal

system interface

application

AURA runtime system

log

 code
 code
 policy

proof

data

I/O

A

B

A
 B

9

Evidence-based Audit

•  Connecting the contents of

log entries to policy helps
determine what to log.

log

 policy
 code

10

Evidence-based Audit

•  Connecting the contents of

log entries to policy helps
determine what to log.

•  Proofs contain structure
that can help
administrators find flaws
or misconfigurations in the
policy.

log

 policy
 code

11

Evidence-based Audit

•  Connecting the contents of

log entries to policy helps
determine what to log.

•  Proofs contain structure
that can help
administrators find flaws
or misconfigurations in the
policy.

•  Reduced TCB: Typed
interface forces code to
provide auditable
evidence.

log

 policy
 code

12

Outline

• AURA's programming model

• Authorization logic

– Examples

• Programming in AURA

–  (Restricted) Dependent types

• Status, future directions, conclusions

13

AURA's Authorization Logic

• Policy propositions

ϕ ::=
true

c

A says ϕ

α

 ϕ ∧ ϕ

ϕ ∨ ϕ

ϕ → ϕ

∀α. ϕ

•  Principals

 A,B,C … P,Q,R etc.

•  Constructive logic:

–  proofs are programs

–  easy integration with�

software

• Access control in a
Core Calculus of
Dependency�
 [Abadi: ICFP 2006]

Encoded using �
Π types and �

inductive datatypes.

14

Example: File system authorization

•  P1: FS says (Owns A f1)

•  P2: FS says (Owns B f2)

•  …

•  OwnerControlsRead: �
FS says ∀o,r,f.
(Owns o f) → �

(o says (MayRead r f)) → �

(MayRead r f)

•  Might need to prove: FS says (MayRead A f1)

•  What are "Owns" and "f1"?

15

Decentralized Authorization

•  Authorization policies require application-specific

constants:

–  e.g. "MayRead B f" or "Owns A f"

–  There is no "proof evidence" associated with these constants

–  Otherwise, it would be easy to forge authorization proofs

•  But, principal A should be able to create a proof of �
 A says (MayRead B f)

–  No justification required -- this is a matter of policy, not fact!

•  Decentralized implementation:

–  One proof that "A says T" is A's digital signature on a string "T"

–  written sign(A, "T")

16

Example Proof (1)

•  P1: FS says (Owns A f1)

•  OwnerControlsRead: �

FS says ∀o,r,f.
(Owns o f) → �

(o says (MayRead r f)) → �

(MayRead r f)

•  Direct authorization via FS's signature:�

�

sign(FS, "MayRead A f1") �

: FS says (MayRead A f1)

17

Example Proof (2)

•  P1: FS says (Owns A f1)

•  OwnerControlsRead: �

FS says ∀o,r,f.
(Owns o f) → �

(o says (MayRead r f)) → �

(MayRead r f)

•  Complex proof constructed using "bind" and "return"�

�

bind p = OwnerControlsRead in�

bind q = P1 in�

 return FS (p A A f1 q sign(A,"MayRead A f1")))

: FS says (MayRead A f1)

18

Authority in AURA

• How to create the value sign(A, "ϕ") ?

•  Components of the software have authority

–  Authority modeled as possession of a private key

–  With A's authority : �

 say("ϕ") evaluates to sign(A, "ϕ")

• What ϕ's should a program be able to say?

–  From a statically predetermined set (static auditing)

–  From a set determined at load time

•  In any case: log which assertions are made

19

Outline

• AURA's programming model

• Authorization logic

– Examples

• Programming in AURA

–  (Restricted) Dependent types

• Status, future directions, conclusions

20

Propositions: specify policy

ϕ
 A says ϕ

(ϕ ∧ φ)
 ∀α.T

(Owns A fh1) (ϕ -> φ)

Evidence: proofs/credentials

sign(A, "ϕ")

bind/return

 \x:t.e

AURA Programming Language

Types: describe programs

int FileHandle

string
prin

int -> int
pf ϕ

Programs: computations, I/O

3
fh1

"hello"
A

say(ϕ)
\x:t.e

Programs
 Policies

St
at

ic

D
yn

am
ic

21

(Restricted) Dependent Types

•  Policy propositions can mention program data

–  E.g. "f1" is a file handle that can appear in a policy

–  AURA restricts dependency to first order data types

–  Disallows computation at the type level – only values!

•  Programming with dependent types:

 {x:T; U(x)} dependent pair* (* syntactic sugar) �

(x:T) → U(x) dependent functions

•  Invariant: sign only types

–  Computation can't depend on signatures

–  But, can use predicates: {x:int; pf A says Good(x)}

22

Auditing Interfaces

•  Type of the "native" read operation:

 raw_read : FileHandle → String

•  AURA's runtime exposes it this way:�
 read : (f:FileHandle) →

 pf RT says (OkToRead self f) →
 {ans:String; pf RT says (DidRead f ans)}

•  RT is a principal that represents the AURA runtime

•  OKtoRead and DidRead are "generic" policies

–  The application implements its own policies about when it is
OKtoRead by providing assertions, etc.

–  Parts of the runtime must delegate to the application

Signatures

•  Assertions: uninhabited constants that construct Prop’s

assert MayRead : Prin -> FileHandle -> Prop;
assert Owns : Prin -> FileHandle -> Prop;

•  AURA supports mutually recursive datatypes and

 mutually inductively defined propositions:

data List: Type -> Type {

| nil : (t:Type) -> List t
 | cons: (t:Type) -> t -> List t -> List t

}
data OwnerInfo : FileHandle -> Type {
 | oinfo : (f:FileHandle) -> (p:Prin)

 -> pf (self says (Owns p f)) -> OwnerInfo f
}
data And : Prop -> Prop -> Prop {
 | both : (p:Prop) -> (q:Prop) -> p -> q -> And p q
}

23

More about Prop vs. Type

•  We want the Prop fragment to be a logic:

–  Pure, strongly normalizing

–  Signature typing rules add a strong positivity constraint for Prop

 to rule out divergence

•  We need to separate the Prop and Type fragments

–  Type fragment includes divergent terms (possibly other effects)

–  This is the purpose of the “pf” monad. A value of type “pf P” is of

 the form “returnp t” where “t” is a pure proof term that proves P.

–  It is possible to write a loop of type “pf P” by not one of type “P”.

24

Example Program

•  (see demo.core)

25

Formalizing Core AURA

•  Lambda-cube-like representation with a very simple core:

t ::= x | ctr | λx:t1.t2 | t1 t2 | (x:t1) → t2 | �
 match t1 t2 with {b} | (t1 : t2) | c

•  Plus these constants (special typechecking rules):

c ::= Type | Prop | Kind�

 prin | says | returns | binds

 self | sign�
 pf | returnp | bindp

 if

26

Coq Formalization

•  Type system and operational semantics:

–  30 rules in 4 mutually inductive predicates: wf_env, wf_tm,
wf_branches, wf_brn

–  Signature checking: wf_sig, wf_bundle_tcrs, wf_bundle_ctrs,
wf_ctr_decls

–  Conversion relation (for casts) that reflects dynamic equality
checks into the static type system

–  Evaluation rules

•  Correctness properties proved in Coq:

–  Type soundness and decidability of typechecking (~7000 loc)

–  Decidability of typechecking is simplified by:

•  Restricted dependency (only values)

•  Limited equality proofs available statically

•  Paper proof of strong normalization of (a slightly simplified
 version of) the Prop fragment.

27

Observations about the Formalization

•  Dealing with mutually recursive datatypes and pattern

 matching was a lot of work

–  Significant source of complexity for soundness and decidability

–  … hopefully reusable in other contexts (our lambda cube plus

 constants can probably be instantiated to other languages)

•  Initial investment in formalization was heavy – many
 hours to implement the typing rules, etc.

–  But: having machine checked proofs is a big win, especially for

 large groups of collaborators.

–  It gets easier over time…

28

29

Open Questions

•  AURA needed improvements:

–  Anonymous existential types / dependent type & inference

–  Richer dependent types?

–  Explicit / richer equality proofs?

–  Revocation/expiration of signed objects? [Garg and Pfenning]

–  Connection to program verification?

–  Correlate distributed logs?

•  This story seems just fine for integrity, but what about
confidentiality?

–  We have many ideas about connecting to information-flow analysis

–  Is there an "encryption" analog to "signatures" interpretation?

–  Encode confidentiality using “security monads” [work at Chalmers]

Conjecture: Non-security use?

•  Carve up a program into principals

–  Perhaps by module?

•  Allow principals to make arbitrary (dependent) logical

 assertions

–  Interfaces can specify constraints in this logic

–  (e.g. propositions regulate type equality)

•  The “says” modality offers an escape hatch: no need to
 construct an actual proof

–  Cast uses “asserted equality” (not “verifiable equality”)

–  “says” isolates components, allows assignment of blame and makes

 trust relationships explicit.

•  Question: is this interesting? Useful? Does anyone know

 of any work similar to this?

30

31

Outline

• AURA's programming model

• Authorization logic

– Examples

• Programming in AURA

– Dependent types

• Status, future directions, conclusions

32

AURA's Status

•  Have implemented an interpreter in F#

–  Many small examples programs

–  Working on larger examples

–  Goal: experience with proof sizes, logging infrastructure

•  Planning to compile AURA to Microsoft .NET platform

–  Proof representation / compatibility with C# and other .NET

languages

–  Luke Zarko is awesome

•  Penn undergrad applying this fall to Ph.D. programs for next year

33

Security-oriented Languages

 AURA

•  A language with support for authorization and audit

•  Authorization logic

•  Limited form of dependent types

•  Language features that support secure systems

www.cis.upenn.edu/~stevez/sol

34

Thanks!

