
Building a Haskell Verifier
out of component theories

Dick Kieburtz
WG2.8, Frauenchiemsee, June 2009

2

Why a verifier for Haskell, in particular?
 Feasibility:

– There’s a recognized, stable version that is pretty well defined
– Haskell 98

– Mature compilers and interpreters exist
– A collection of papers specifies nearly all aspects of its semantics denotationally

•• a modular, categorical semantics for a modular, categorical semantics for datatypes datatypes provides an provides an equational equational theory for thetheory for the
operations of each typeoperations of each type

– A programming logic has been developed -- P-logic
– P-logic refines the Haskell 98 type system

•• properties of functions are stated as dependent typesproperties of functions are stated as dependent types
– it takes advantage of the referential transparency of the Haskell language

– A front-end processor (pfe) comprehends both language and logic

 Challenges:
– Haskell 98 is a rich language

– Embodies both lazy and strict semantics
– Higher-order function types
– Recursion in both expression and type definitions

3

What’s new?
After experimenting with the construction of an ad hoc verifier

(Plover) for two years, it became unmaintainable; a new
approach was called for.
– I needed an architecture that was modular, provably

sound, and could be developed incrementally

 DPT to the rescue!
– DPT (Decision Procedure Toolkit) is an open-source toolkit

for integrating decision procedures with a first-order
satisfiability solver
– Written in OCAML by a team of researchers at Intel

– (Jim Grundy, Amit Goel, Sava Krstic)

– Gives state-of-the-art performance
– The decision-procedure integration strategy is based upon ten

simple rules and has been proved sound (Krstic & Goel, 2007)

– Distributed via Sourceforge

But how can a solver for decidable, first-order logic formulas be
used to verify properties of Haskell programs?

4

Components of a complex theory are its
subtheories

 Let’s take the semantic theory of Haskell 98, for example
– Subtheories include:

– Equality
– Uninterpreted functions
– Cartesian products
– Definedness of terms

– (i.e., a 1st approximation to a theory of pointed cpo’s)

– Tensor products
– Coalesced sums
– Integer arithmetic with (+, -, *)
– Linear, real arithmetic (interval arithmetic)
– Booleans

– Many properties of (closed) Haskell 98 programs can be formulated
in these theories alone
– Other properties will require additional or more complete theories

– Induction rules, for instance

5

The basic idea for a modular theory solver

 Atomic propositions gleaned from an asserted, closed formula are
sorted according to the theories to which they belong

 For each theory, a dedicated solver calculates
– Conflicts (if any) among the propositions relevant to its theory, or
– Propositions entailed by the theory, if the solver state is consistent.

 A SAT solver makes tentative truth assignments to the atomic
propositions and communicates these to the individual theory solvers
– The current state is a (partial) assignment to the set of atomic

propositions, compatible with truth of the asserted formula
– A (complete) state that all solvers agree is conflict-free is evidence that

the formula is satisfiable
– If no such state exists, the formula is unsatisfiable

– A formula  is valid iff the formula (¥ ) is unsatisfiable

– Modern SAT solvers use sophisticated strategies to quickly prune unsatisfiable
search paths

6

Example: Normalizing a formula:
Translation from a closed formula to atomic literals

Formula: Proxy definitions
forall x, y. x ≥ 0 /\ y ≥ 0 => f (x + y) ≥ 0

Replace quantified variables by unique constant symbols

x0 ≥ 0 /\ y0 ≥ 0 => f (x0 + y0) ≥ 0
Eliminate implication connective

¥ (x0 ≥ 0) \/ ¥ (y0 ≥ 0) \/ (f (x0 + y0) ≥ 0)
Proxy the argument expression in a function application

¥ (x0 ≥ 0) \/ ¥ (y0 ≥ 0) \/ (f v0 ≥ 0) v0 = x0 + y0

Proxy the function application in the rightmost inequality

¥ (x0 ≥ 0) \/ ¥ (y0 ≥ 0) \/ (v1 ≥ 0) v0 = x0 + y0 , v1= f v0

Proxy the inequalities

¥ z0 \/ ¥ z1 \/ z2 v0 = x0 + y0 , v1= f v0 ,

 z0 = x0 ≥ 0, z1 = y0 ≥ 0,
 z2 = v1 ≥ 0

Yielding an equivalent formulation in CNF with all atoms proxied

7

Assigning atomic formulas to theory
solvers

 Each atomic formula is assigned by a host solver to a
particular theory solver for interpretation
– Operator symbols (which must not be overloaded) are partitioned

into sorts corresponding to theories
– Assignment to a theory follows the sort of the dominant operator

symbol of each atomic formula
Examples:

 x0 + y0 : linear arithmetic (INT solver)

 f v0 : uninterpreted functions with equality (CC solver)
 x0 ≥ 0 : linear arithmetic (INT solver)
 … etc.

 Theory solvers bind fresh variables as proxies for atomic formulas
– Each solver reports its set of bound proxy variables to the host solver

– to establish the data of a working interface

8

Modular Architecture of DPT
 Solver_api prescribes an object template

– A solver object may have internal state, which is accessed only
through its public methods

 A host solver communicates literals of interest to each theory
solver
– An individual theory solver is responsible to detect conflicts among

the set of literals it has been given, interpreting only its own theory
– Detected conflicts are communicated back to the host solver

 A CC (congruence closure) solver propagates equalities
 A SAT solver (DPLL) directs a search for a satisfying assignment

to literals extracted from a given formula
– Backtracks when a conflict is detected in a current assignment
– Reports satisfiability if a full assignment is made for which no conflict

is detected (but doesn’t yet trace the satisfying assignment)
– Reports unsatisfiability if no further assignments are possible and

conflict persists

9

Architecture of a system of solvers

DPLL CC INT PROD SUM ISDEF

distributor

TENSOR

Modules packaged with DPT User-defined modules interfaced with DPT …
• SAT solver Cartesian product
• Uninterpreted functions w/ equality Coalesced sum
• Linear, integer arithmetic Strength (approximates definedness)
• Real, interval arithmetic Tensor product

…

10

Internal architecture of a theory solver

 A typical theory solver has at least three components
– A literals module defines the data representation of literals for

this theory solver
– (a literal is either an atomic proposition or its negation)

– A core module implements the decision procedure
– maintains the state variables of a model for this theory
– interprets operators of this theory in the model
– interprets dedicated predicates of this theory (if any)
– reports conflicts in the state of the model

– An interface wrapper conforms to the solver_api
– It proxies literals and their subterms with unique variables

– a proxy map is a bijection between variables and terms

– Maintains a bijective map between term representations and the
equivalent data representations used in an internal model

– Accepts set_literal directives from the host to update the solver state
– Replies to queries from the host about conflicts detected in the core
– Manages backtrack requests from the host

11

My First Theory Solver: Prod

 First solver: Cartesian product
– Constants: mkpr :: t → t → t, fst :: t → t, snd :: t → t
– Three axioms can be implemented by reduction rules:

– fst (mkpr x y) = x
– snd (mkpr x y) = y
– (mkpr (fst p) (snd p)) = p

– Two conditions of inductive definition can be checked
– (mkpr x y) ≠ x
– (mkpr x y) ≠ y

– Prod solver was constructed with a term model
– Interfaced by following the documented, DPT solver_api

– Reading DPT source code was essential, however
– Non-critical methods were dummied

– Given a set of asserted literals, the Prod solver detects any
conflict with the axioms and conditions

12

A Second Solver: Tensor Product

 The first solver gave me confidence that I knew what I was doing
 So I tried a second solver, for a theory of tensor products in a cpo

domain
– and encountered some surprises!

 The theory is more interesting than Prod
– Constants: mktr :: t → t → t, tfst :: t → t, tsnd :: t → t
– Axioms:

– Isdef y e tfst (mktr x y) = x
– Isdef x e tsnd (mktr x y) = y
– mktr (tfst p) (tsnd p) = p

– Inductivity conditions:
– Isdef x e x ≠ mktr x y
– Isdef y e y ≠ mktr x y

– where Isdef is an interpreted predicate satisfied by all non-bottom
elements of a domain.

 Notice that most of these axioms are implicative formulas

13

List of potential conflicts and entailments

 Conflicts:
– Tr1) Isdef x & x = mktr x y
– Tr2) Isdef y & y = mktr x y
– Tr3) Isdef x & x = tfst x
– Tr4) Isdef y & y = tsnd y
– Tr5) Isdef z & e (Isdef (tfst z))

– Tr6) Isdef z & e (Isdef (tsnd z))

– Tr7) Isdef (mktr x y) & e (Isdef x)

– Tr8) Isdef (mktr x y) & e (Isdef y)
– Tr9) Isdef y & x ≠ tfst (mktr x y)
– Tr10)Isdef x & y ≠ tsnd (mktr x y)
– Tr11)Isdef x & Isdef y &

 ee ((Isdef Isdef ((mktr mktr x y))x y))

 Entailments:
– TI1) x = mktr x y e ¥ (Isdef x)

– TI2) y = mktr x y e ¥ (Isdef y)

– TI3) x = tfst x e ¥ (Isdef x)

– TI4) x = tsnd x e ¥ (Isdef x)

– TI5) Isdef z e Isdef (tfst z)

– TI6) Isdef z e Isdef (tsnd z)

– TI7) Isdef (mktr x y) e Isdef x

– TI8) Isdef (mktr x y) e Isdef y

– TI9) Isdef y e x = tfst (mktr x y)

– TI10)Isdef x e y = tsnd (mktr x y)

– TI11) ¥ (Isdef (mktr x y)) e
 (¥ (Isdef x) or ¥ (Isdef y))

• All involve the Isdef predicate

• Reduction rules are realized by Tr9, TR10 and TI9 and TI10

14

The ubiquitous Isdef suggests managing
definedness with a separate theory

 The theory Strength
– Constants:

– Isdef :: t → prop

– Axiom:
– ¥ (Isdef x) & ¥ (Isdef y) e x = y

 Strength is a simple theory for which to build a solver.
– However, interpreting a proposition (Isdef <term>) can only be done in

the particular theory in which <term> is interpreted
– An Isdef literal must be “shared” between the solver for Strength and the

solver in which the proposition can be interpreted.
– Either solver might detect a conflict among asserted literals containing

Isdef propositions
– Similar to equality in this respect

– The DPT framework provides a mechanism to implement sharing of
propositions between individual theory solvers

15

Sharing propositions between theory
solvers

 Suppose p is a proposition of interest to two theory solvers,
Th1 and Th2

 Each solver provides a proxy variable for p, a name by which
it is known to the host framework
– Suppose Th1 proxies p as x1; Th2 proxies p as x2

– To indicate to the DPLL solver that the two proxy variables are
logically equivalent literals, assert the following clauses to the
DPLL solver:
– (x1 or ¥ x2) and (¥ x2 or x1)

– That’s all there is to it!

16

Embedding Strict theories

 There are many useful decision procedures for theories over
sets, rather than over a cpo domain
– In such theories there is no notion of definedness (or not)
– Examples: linear arithmetic, boolean algebra, etc.
– When embedded in a pointed cpo domain, the operators of such a

theory are said to be strict and total.
– Mathematical comment: a subdomain whose algebra consists only of

strict operators embeds in a cpo domain as a comonad

 To integrate a decision procedure for a strict theory with a
framework for reasoning over cpo’s,
– Require that the variables of each strict operator expression

satisfy the Isdef predicate (to assure strictness)
– Infer that each strict operator expression satisfies Isdef

(to assure totality)
 This integration can be efficiently implemented in the DPT

framework by small additions to the code of the host solver
– Decision procedures for strict theories remain opaque (abstract)

17

What’s difficult about this?

 Not much, so long as you stay with decidable theories
– Comprehensive unit testing is essential

– it’s easy to err on the side of building unnecessary cases into a
prototype solver

 What does the future hold?
– Quantified variable instantiation could be added to DPT

– There are known algorithms for efficient E-matching (de Moura &
Bjorner, 2007), but none has yet been implemented in DPT

– Traceback reporting
– The ability to report a satisfying assignment would enable

counterexamples to false assertions of validity to be constructed
– an assignment satisfying (¥ ) is a counterexample of asserted validity

 To re-implement Plover, three more things are needed:
– a generic theory of induction (and coinduction)
– an interface to a language front-end, such as programatica-pfe
– termination analysis for recursively-defined functions

End

19

Some references

Sava Krstic and Amit Goel:
Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL
.pdf available from Sava’s home page, www.csee.ogi.edu/~krstics/

Grundy, Goel and Krstic: Decision Procedure Toolkit

sourceforge.net/projects/dpt
offers downloads of code and documentation;
additional user-submitted documentation is available via the wiki tab

Richard Kieburtz: P-logic: property verification for Haskell programs
web.cecs.pdx.edu/~dick/plogic.pdf
Programming logic for a large fragment of Haskell98, with some examples

