
Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Relational algebra with discriminative
joins and lazy products

Fritz Henglein

Department of Computer Science
University of Copenhagen
Email: henglein@diku.dk

IFIP TC 2 Working Group 2.8 meeting, Frauenchiemsee,
2009-06-08

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

The problem

A query using list comprehensions:

[(dep, acct) | dep <- depositors,
acct <- accounts,
depNum dep == acctNum account]

Using relational algebra operators:

select (\(dep, acct) ->
depNum dep == acctNum account))

(prod depositors accounts)

+ Compositional, simple (generate and test)
- Θ(n2) time and space complexity (not scalable)

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Solution 1: Optimize by rewriting

Rewrite and use a sort-merge join (Wadler, Trinder 1989)
or hash join; e.g.

jmerge (sort s1) (sort s2)

+ O(n log n + o) time complexity
- Programmer needs to rewrite statically
- Join algorithm explicit and fixed
- Requires ordering relation for sorting

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Solution 2: Use join

I Introduce (equi)join operator and make
programmer use it.

I Use hash or sort-merge join algorithm in
implementation of join

+ O(n log n + o) time complexity
+ Join algorithm encapsulated, can be changed (even

dynamically)
- Requires using join and clever static optimization,

e.g. combining two consecutive joins.

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Solution 3: Write it naively
I Write query using select, project, prod, no

need to use explicit join
I Use lazy (symbolic) products to represent Cartesian

products
I Employ generic discrimination for asymptotically

worst-case optimal joining

+ O(n + o) time complexity
+ Naive query, with symbolic representations of

formulas
+ Dynamic optimization, subsumes classical static

algebraic optimizations
+ Works generically for equivalences, not just

equalities
+ Works for reference types with observable equality

only, no need for observable sort order or hash
function

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Sets, naively

data Set a = Set [a]

I A set is represented by any list that contains the right
elements

I Same set represented by:
I [4, 8, 9, 1]
I [1, 9, 8, 4, 4, 9]

I Allow any element type, not just tuples of primitive
type as in Relational Algebra

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Projections, naively

data Proj a b = Proj (a -> b)

I A projection is any function.
I Allow any function, not just proper projections of

records to fields.

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Predicates, naively

data Pred a = Pred (a -> Bool)

I A predicate is any function to Bool.
I Allow any predicate, not just relational operators

=, 6=,≤,≥ applied to fields of records.

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Relational operators

select (Pred c) (Set xs) =
Set (filter c xs)

project (Proj f) (Set xs) =
Set (map f xs)

prod (Set xs) (Set ys) =
Set [(x, y) | x <- xs, y <- ys]

Other operators: union, intersect similarly

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Definable operators

Join operator:

join c s1 s2 =
select c (prod s1 s2)

SQL-style SELECT FROM WHERE:

selectFromWhere p s c =
project p (select c s)

Problem:
I Intermediate data may require asymptotically more

storage space than input and output:
I prod produces large output
I select shrinks it again

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Partitioning discriminator

Definition
D :: forall v. [(k, v)] -> [[v]]
is a (partitioning) discriminator for equivalence e on k if

I D partitions the value components of key-value pairs
into the e-equivalence classes of their keys.

I D is parametric wrt. e: Replacing a key in the input
with any e-equivalent key yields the same result.

Example:
I (x , y) ∈ evenOdd iff both x , y even or both odd.
I Possible result:
D[(5, 100), (4, 200), (9, 300)] = [[100, 300], [200]]

I By parametricity then also:
D[(3, 100), (8, 200), (1, 300)] = [[100, 300], [200]]

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Discrimination-based equijoin: Algorithm

I Values: Tag records of input sets to identify where
they come from

I Keys: Apply specified projections to records
I Concatenate list of key/value pairs
I Discriminate
I Form formal products (formal product: list of records

from first input and list of records from second input,
all with equivalent keys)

I Multiply out: Each record in a formal product from
first input paired with each record from the second
input.

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Discrimination-based equijoin: Code

join (Set xs, Set ys) (Proj f1) e (Proj f2)=
Set [(x, y) | (xs, ys) <- fprods,

x <- xs, y <- ys]
where bs = disc e

([(f1 x, Left x) | x <- xs] ++
[(f2 y, Right y) | y <- ys])

fprods = map split bs

Auxiliary function

split :: [Either a b] -> ([a], [b])

splits a group of tagged values into their left, respective
right values.

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Discrimination-based equijoin: Example

[(5, “B”),
 (4, “A”),
 (7, “J”)]

[(20, “P”),
 (88, “C”),
 (11, “E”)]

[(5, Le8 (5, “B”)),
 (4, Le8 (4, “A”)),
 (7, Le8 (7, “J”))]

[(20, Right (20, “P”)),
 (88, Right (88, “C”)),
 (11, Right (11, “E”))]

[(5, Le8 (5, “B”)),
 (4, Le8 (4, “A”)),
 (7, Le8 (7, “J”)),
 (20, Right (20, “P”)),
 (88, Right (88, “C”)),
 (11, Right (11, “E”))]

[[Le8 (5, “B”), Le8 (7, “J”), Right (11, “E”)],
 [Le8 (4, “A”), Right (20, “P”), Right (88, “C”)]]

[([(5, “B”), (7, “J”)], [(11, “E”)]),
 ([(4, “A”)], [(20, “P”), (88, “C”)]]

[((5, “B”), (11, “E”)), ((7, “J”), (11, “E”)),
 ((4, “A”), (20, “P”)), ((4, “A”), (88, “C”))]

++

disc evenOdd

bs =

xs = = ys

map split

fprods =

mulAply out

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Complexity

Assume:
I Worst-case time complexity of projection application:

O(1).
I s1, s2 are the respective lengths of the two inputs.
I o is the length of the output.

Observe:
I Discrimination-based join runs in worst-case time

O(s1 + s2 + o).
I Each step runs in time O(s1 + s2) except for the last:

multiplying out the results.
Idea: Be lazy! (Why multiply out if it’s a lot of work?)

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Lazy sets

Constructors for sets:

data Set :: * -> * where
Set :: [a] -> Set a
U :: Set a -> Set a -> Set a
X :: Set a -> Set b -> Set (a, b)

I Set xs: Set represented by list xs
I s1 ‘U‘ s2: Union of sets s1, s2

I s1 ‘X‘ s2: Cartesian product of s1, s2

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Lazy projections

data Proj :: * -> * -> * where
Proj :: (a -> b) -> Proj a b
Par :: Proj a b -> Proj c d ->

Proj (a, c) (b, d)

I Proj f: Projection given by function f
I Par p q: Parallel composition of p, q

Why parallel compositions?
Permit symbolic execution at run-time.

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Lazy predicates

data Pred :: * -> * where
Pred :: (a -> Bool) -> Pred a
TT :: Pred a
FF :: Pred a
PAnd :: Pred a -> Pred b -> Pred (a, b)
In :: (Proj a k, Proj b k) -> Equiv k

-> Pred (a, b)

I Pred f: Predicate given by characteristic function
I TT, FF: Constant true, false
I PAnd: Parallel conjunction
I In: Join condition constructor.

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Relational algebra operators

select :: Pred a -> Set a -> Set a
project :: Proj a b -> Set a -> Set b
prod :: Set a -> Set b -> Set (a, b)

Example:

select ((depNum, acctNum) ‘In‘ eqNat16)
(prod depositors accounts)

Like original naive definition, but:
I runs in time O(n) (size of the input);
I listing result takes time O(o) (size of the output).

Observe:
No separate join! Defined naively:

join c s1 s2 = select c (prod s1 s2)

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Select: Nonjoins

select TT s = s
select FF s = Set []
select p (Set xs) = Set (filter (sat p) xs)
select p (s1 ‘U‘ s2) =

select p s1 ‘U‘ select p s2
select (Pred f) s@(s1 ‘X‘ s2) =

Set (filter f (toList s))
select (p ‘PAnd‘ q) (s1 ‘X‘ s2) =

select p s1 ‘X‘ select q s2
select ((p, q) ‘In‘ e) s@(s1 ‘X‘ s2) = ...

What do lazy (symbolic) representations buy?
I TT, FF: Argument set not traversed (good!)
I p with ‘U‘: Lazy selection (good!)
I Pred f with ‘X‘: Multiplying out (ouch!)
I p ‘PAnd‘ q with ‘X‘: Lazy product (good!)

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Select: Join

select ((f1, f2) ‘In‘ e) (s1 ‘X‘ s2) =
foldr (\b s -> let (xs, ys) = split b

in (Set xs ‘X‘ Set ys) ‘U‘ s) empty bs
where bs = disc e
([(ext f1 r, Left r) | r <- toList s1] ++
[(ext f2 r, Right r) | r <- toList s2])

I Recognize dynamically when select has an
(equi)join condition applied to a lazy product.

I Invoke discrimination-based join algorithm
I Avoid multiplying out result in final step

Theorem
Join executes in time O(s1 + s2) for O(1)-time projections
where s1, s2 are the sizes (as lists) of s1, s2,
respectively.
Observe: No o in that formula! Not s1 × s2, but s1 + s2!

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Project

project f (Set xs) = Set (map (ext f) xs)
project f (s1 ‘U‘ s2) =

project f s1 ‘U‘ project f s2
project (Proj f) s@(s1 ‘X‘ s2) =

Set (map f (toList s))
project (Par f1 f2) (s1 ‘X‘ s2) =

project f1 s1 ‘X‘ project f2 s2

At run time:
I Set: Iterate (okay, not much else to do)
I ‘U‘: Lazy union (good!)
I Proj f with ‘X‘: Multiply out (ouch!)
I Par f1 f2 with ‘X‘: Lazy product (good!)

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Prod

prod s1 s2 = s1 ‘X‘ s2

I Constant time!

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Relation to query optimization

Implementation performs classical algebraic query
optimizations, including

I filter promotion (performing selections early)
I join introduction (replacing product followed by

selection by join)
I join composition (combining join conditions to avoid

intermediate multiplying out)

Observe:
I Done at run-time
I No static preprocessing
I Data-dependent optimization possible.
I Deforestatation of intermediate materialized data

structures not necessary due to lazy evaluation.

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Applicability

I Assumption: RAM-model, all memory accesses cost
the same

I Out-of-the-box applicability: In-memory bulk data.
I Just as you would not dream of applying sorting or

hashing out-of-the-box to disk data, do not apply
discrimination to disk data out of the box.

I As for sorting and hashing, does not rule out usability
of generic discrimination as a technique to be
combined with I/O efficiency techniques; e.g.
block-by-block discrimination.

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Related work
Database theory:

I Discrimination as an alternative/complement to
sorting and hashing: Not previously explored.

I Lazy products, unions: Where? (Couldn’t find in
literature)

I Dynamic algebraic query optimization: Where?
(Couldn’t find in literature)

Functional Programming:
I Buneman et al., HaskellDB, LINQ, Links: Type-safe

interfaces to SQL database systems
I Query optimization for in-memory non-SQL data:

HaskellDB (?), LINQ (?)
I Kleisli: Distributed database system with functional

query language based on Nested Relational Calculus
I Trinder, Wadler (1990), Improving list comprehension

database queries: Classical query optimizations on
list comprehensions

Relational algebra

Fritz Henglein

The problem

Relational algebra,
naively

Relational algebra,
cleverly

Contributions

I Partitioning discrimination: New generic technique
for “bringing data together”

I complements hashing and sorting techniques
I makes only equivalence observable (no order, no

hash function)
I Lazy products (and derived lazy data structures):

New (?) data structure for compact representation of
cross-products

I Generic relational algebra
I User-definable equivalences, not just equalities
I User-defined data types, including reference types

(pointers)

	The problem
	Relational algebra, naively
	Relational algebra, cleverly

