Relational algebra

Fritz Henglein

Relational algebra with discriminative
joins and lazy products

Fritz Henglein

Department of Computer Science
University of Copenhagen
Email: henglein@diku.dk

IFIP TC 2 Working Group 2.8 meeting, Frauenchiemsee,
2009-06-08

The pr0b|em Relational algebra

Fritz Henglein

The problem

A query using list comprehensions:

[(dep, acct) | dep <- depositors,
acct <- accounts,
depNum dep == acctNum account]

Using relational algebra operators:

select (\ (dep, acct) -—>

depNum dep == acctNum account))
(prod depositors accounts)

+ Compositional, simple (generate and test)
- ©(n?) time and space complexity (not scalable)

Solution 1: Optimize by rewriting Refational algebra

Fritz Henglein

The problem

Rewrite and use a sort-merge join (Wadler, Trinder 1989)
or hash join; e.g.

jmerge (sort sl) (sort s2)

+ O(nlog n + o) time complexity

- Programmer needs to rewrite statically
- Join algorithm explicit and fixed

- Requires ordering relation for sorting

Relational algebra

Solution 2: Use join

Fritz Henglein

The problem

» Introduce (equi) join operator and make
programmer use it.

» Use hash or sort-merge join algorithm in
implementation of join

+ O(nlog n + o) time complexity
+ Join algorithm encapsulated, can be changed (even
dynamically)

- Requires using join and clever static optimization,
e.g. combining two consecutive joins.

SOIut'On 3_ erte |t na|ve|y Relational algebra

Fritz Henglein

» Write query using select, project, prod, no
need to use explicit join

» Use lazy (symbolic) products to represent Cartesian
products

» Employ generic discrimination for asymptotically
worst-case optimal joining

The problem

+ O(n+ o) time complexity

+ Naive query, with symbolic representations of
formulas

+ Dynamic optimization, subsumes classical static
algebraic optimizations

+ Works generically for equivalences, not just
equalities

+ Works for reference types with observable equality
only, no need for observable sort order or hash
function

SetS, na|ve|y Relational algebra

Fritz Henglein

Relational algebra,
naively

data Set a = Set [a]

» A setis represented by any list that contains the right
elements
» Same set represented by:
> [4,8,9,1]
» [1,9,8,4,4,9]
» Allow any element type, not just tuples of primitive
type as in Relational Algebra

Projections, naively Relatona aigebra

Fritz Henglein

Relational algebra,
naively

data Proj a b = Proj (a —-> b)

» A projection is any function.

» Allow any function, not just proper projections of
records to fields.

Predicates, naively Relatonal algebra

Fritz Henglein

Relational algebra,
naively

data Pred a = Pred (a —> Bool)

» A predicate is any function to Bool.

» Allow any predicate, not just relational operators
=, #,<, > applied to fields of records.

Relational algebra

Relational operators

Fritz Henglein

Relational algebra,
naively

select (Pred c) (Set xs) =
Set (filter c xs)

project (Proj f) (Set xs) =
Set (map f xs)

prod (Set xs) (Set ys) =
Set [(x, y) | x <= xs, y <- ys]

Other operators: union, intersect similarly

Deflnable Operato rs Relational algebra

Fritz Henglein

Join operator:

Relational algebra,
naively

join ¢ sl s2 =
select ¢ (prod sl s2)

SQL-style SELECT FROM WHERE:

selectFromWhere p s c =
project p (select c s)

Problem:
» Intermediate data may require asymptotically more
storage space than input and output:

» prod produces large output
» select shrinks it again

Relational algebra

Partitioning discriminator

Fritz Henglein

Definition _

Relational algebra,
D :: forall v. [(k, v)]1 =—> [[Vv]] naively
is a (partitioning) discriminator for equivalence e on k if

» D partitions the value components of key-value pairs
into the e-equivalence classes of their keys.

» D is parametric wrt. e: Replacing a key in the input
with any e-equivalent key yields the same result.

Example:
» (x,y) € evenOdd iff both x, y even or both odd.

» Possible result:
D[(5, 100), (4,200), (9,300)] = [[100, 300], [200]]

» By parametricity then also:
D[(3,100), (8,200), (1,300)] = [[100, 300], [200]]

Discrimination-based equijoin: Algorithm Relatonal algebra

Fritz Henglein

Relational algebra,

» Values: Tag records of input sets to identify where naively
they come from

Keys: Apply specified projections to records
Concatenate list of key/value pairs
Discriminate

Form formal products (formal product: list of records
from first input and list of records from second input,
all with equivalent keys)

» Multiply out: Each record in a formal product from
first input paired with each record from the second
input.

vV v v Yy

Relational algebra

Discrimination-based equijoin: Code

Fritz Henglein

Relational algebra,

join (Set xs, Set ys) (Proj fl) e (Proj f2)= REE

Set [(x, y) | (xs, ys) <- fprods,
X <- x5, y <= ys]
where bs = disc e
([(fl x, Left x) | x <—= xs] ++
[(£2 y, Right y) | y <= ys])

fprods = map split bs

Auxiliary function
split :: [Either a b] -> (la]l, [bl)

splits a group of tagged values into their left, respective
right values.

Discrimination-based equijoin: Example Reltional algebra

Fritz Henglein

(5, “B"), I(5, Left(5, “B”)), | ++ | [(20, Right (20, “P"))
xs = | (4, “AY) | (4, Left|(4, “A%)), (88, Right (88, “C”))} [« (88, “C”)
7, ") (7, Left (7, “9))] (11, Right (11, “E”)) (11, “E”)]
(5, Left (5, “B")),
(4, Left (4, “A")),
(7, Left (7, 47):
(20, Right/(20, “P”)),
disc evenOdd (88, Right|(88, “C”)),
(11, Right (11, “E”))]
be | Left 5,787, Leftl(Z, 9%, Right (11, “E")],
[Left (4, “A%)) (20, “P”), Right (88, “C”)1]
map split
rprods = |5 ”B" (5,“B"), (7, V)], ']), -
(14, “A")] (20, “P”), (88, “C")]]

eyt {1 (g e, () s

Relational algebra,
(20, “P”) naively
ys

(4, “A") Wﬂ (4 N ’88—”(2")‘]

Relational algebra

Complexity
Fritz Henglein
Assume: s;l\;a;ilsnal algebra,
» Worst-case time complexity of projection application:
O(1).

> Sy, So are the respective lengths of the two inputs.
» o is the length of the output.
Observe:
» Discrimination-based join runs in worst-case time
O(S1 + So + O).
» Each step runs in time O(s1 + s,) except for the last:
multiplying out the results.
Idea: Be lazy! (Why multiply out if it’s a lot of work?)

Lazy SetS Relational algebra

Fritz Henglein

Constructors for sets:

Relational algebra,

cleverly
data Set :: * —> % where
Set :: [a] —> Set a
U :: Set a —> Set a —-> Set a
X :: Set a —> Set b -> Set (a, b)

» Set xs: Set represented by list xs
» s1 ‘U s2:Unionofsetssl, s2
» s1 ‘X" s2: Cartesian product of s1, s2

Lazy prOJeCtlonS Relational algebra

Fritz Henglein

, Relational algebra,
data Proj :: * —> x —-> x where cleverly
Proj :: (a => b) -> Proj a b
Par :: Proj a b -> Proj ¢ d —>

Proj (a, c) (b, d)

» Proj f: Projection given by function f
» Par p g: Parallel composition of p, g

Why parallel compositions?
Permit symbolic execution at run-time.

Lazy predicates Relationsl algebra

Fritz Henglein

data Pred :: * —-> x where
Pred :: (a —-> Bool) —> Pred a Relational algebra,
cleverly
TT :: Pred a
FF :: Pred a
PAnd :: Pred a —-> Pred b -> Pred (a, b)
In :: (Proj a k, Proj b k) -> Equiv k

-> Pred (a, b)

» Pred f: Predicate given by characteristic function
» TT, FF:Constanttrue, false

» PAnd: Parallel conjunction

» In:Join condition constructor.

Relational algebra

Relational algebra operators

Fritz Henglein
select :: Pred a —> Set a —> Set a
project :: Proj a b —> Set a -> Set Db
prod :: Set a —> Set b —-> Set (a, b)
Relational algebra,
cleverly
Example:

select ((depNum, acctNum) ‘In‘' egNatlé6)
(prod depositors accounts)

Like original naive definition, but:
» runs in time O(n) (size of the input);
» listing result takes time O(0) (size of the output).

Observe:
No separate join! Defined naively:

join ¢ sl s2 = select ¢ (prod sl s2)

Relational algebra

Select: Nonjoins

Fritz Henglein
select TT s = s
select FF s = Set []
select p (Set xs) = Set (filter (sat p) xs) Relational algebra,
select p (sl ‘U' s2) = cleverly

select p sl ‘U" select p s2

select (Pred f) s@(sl ‘X' s2) =
Set (filter f£ (tolList s))

select (p ‘PAnd' qg) (sl X' s2) =
select p sl ‘X' select g s2

select ((p, g) ‘In' e) s@(sl ‘X' s2) =

What do lazy (symbolic) representations buy?
» TT, FF:Argument set not traversed (good!)
» p with *U: Lazy selection (good!)
» Pred f with *x: Multiplying out (ouch!)
» p ‘PAnd‘ g with *x": Lazy product (good!)

Se|eCt JO'n Relational algebra

Fritz Henglein

select ((f1, £2) YIn' e) (sl X' s2) =
foldr (\b s —-> let (xs, ys) = split b
in (Set xs ‘X' Set ys) ‘U' s) empty bs
. Relational algebra,
where bs = disc e cleverly
([(ext f1 r, Left r) | r <— tolList sl] ++
[(ext f2 r, Right r) | r <- tolList s2])

» Recognize dynamically when select has an
(equi)join condition applied to a lazy product.

» Invoke discrimination-based join algorithm

» Avoid multiplying out result in final step

Theorem

Join executes in time O(sy + sp) for O(1)-time projections
where sq, so are the sizes (as lists) of s1, s2,
respectively.

Observe: No o in that formula! Not s; x S5, but 51 + So!

P rOJ eCt Relational algebra

Fritz Henglein

project £ (Set xs) = Set (map (ext f) xs)

project £ (sl ‘U" s2) = Relational algebra,
cleverly

project f sl ‘U" project f s2
project (Proj f) s@(sl ‘X' s2) =
Set (map f (toList s))
project (Par f1 f2) (sl X' s2) =
project fl1l sl ‘X' project f2 s2

At run time:
» Set: Iterate (okay, not much else to do)
» ‘U: Lazy union (good!)
» Proj £ with *x: Multiply out (ouch!)
» Par f1 f£2 with *x*: Lazy product (good!)

Relational algebra
Prod

Fritz Henglein

Relational algebra,
cleverly

prod sl s2 = sl ‘X' s2

» Constant time!

Relation to query Optimization Relational algebra

Fritz Henglein

Implementation performs classical algebraic query
optimizations, including

» filter promotion (performing selections early) Relational algebra,

cleverly

» join introduction (replacing product followed by
selection by join)

» join composition (combining join conditions to avoid
intermediate multiplying out)
Observe:
» Done at run-time
» No static preprocessing
» Data-dependent optimization possible.
| 4

Deforestatation of intermediate materialized data
structures not necessary due to lazy evaluation.

Apphcablhty Relational algebra

Fritz Henglein

» Assumption: RAM-model, all memory accesses cost |FSuu—G—_—m—_,
the same cleverly

» Out-of-the-box applicability: In-memory bulk data.

» Just as you would not dream of applying sorting or
hashing out-of-the-box to disk data, do not apply
discrimination to disk data out of the box.

» As for sorting and hashing, does not rule out usability
of generic discrimination as a technique to be
combined with 1/O efficiency techniques; e.g.
block-by-block discrimination.

Relational algebra

Related work

Database theory: e fenglen
» Discrimination as an alternative/complement to D e
sorting and hashing: Not previously explored. e
» Lazy products, unions: Where? (Couldn’t find in Relational algebra,
literature) cleverly

» Dynamic algebraic query optimization: Where?

(Couldn’t find in literature)
Functional Programming:

» Buneman et al., HaskellDB, LINQ, Links: Type-safe
interfaces to SQL database systems

» Query optimization for in-memory non-SQL data:
HaskellDB (?), LINQ (?)

» Kleisli: Distributed database system with functional
query language based on Nested Relational Calculus

» Trinder, Wadler (1990), Improving list comprehension
database queries: Classical query optimizations on
list comprehensions

Relational algebra

Contributions

Fritz Henglein

» Partitioning discrimination: New generic technique
for “bringing data tOgether” Relational algebra,

cleverly

» complements hashing and sorting techniques
» makes only equivalence observable (no order, no
hash function)

» Lazy products (and derived lazy data structures):
New (?) data structure for compact representation of
cross-products

» Generic relational algebra

» User-definable equivalences, not just equalities
» User-defined data types, including reference types
(pointers)

	The problem
	Relational algebra, naively
	Relational algebra, cleverly

