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The problem

A query using list comprehensions:

[(dep, acct) | dep <- depositors,
acct <- accounts,
depNum dep == acctNum account]

Using relational algebra operators:

select (\(dep, acct) ->
depNum dep == acctNum account))

(prod depositors accounts)

+ Compositional, simple (generate and test)
- Θ(n2) time and space complexity (not scalable)
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Solution 1: Optimize by rewriting

Rewrite and use a sort-merge join (Wadler, Trinder 1989)
or hash join; e.g.

jmerge (sort s1) (sort s2)

+ O(n log n + o) time complexity
- Programmer needs to rewrite statically
- Join algorithm explicit and fixed
- Requires ordering relation for sorting
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Solution 2: Use join

I Introduce (equi)join operator and make
programmer use it.

I Use hash or sort-merge join algorithm in
implementation of join

+ O(n log n + o) time complexity
+ Join algorithm encapsulated, can be changed (even

dynamically)
- Requires using join and clever static optimization,

e.g. combining two consecutive joins.
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Solution 3: Write it naively
I Write query using select, project, prod, no

need to use explicit join
I Use lazy (symbolic) products to represent Cartesian

products
I Employ generic discrimination for asymptotically

worst-case optimal joining

+ O(n + o) time complexity
+ Naive query, with symbolic representations of

formulas
+ Dynamic optimization, subsumes classical static

algebraic optimizations
+ Works generically for equivalences, not just

equalities
+ Works for reference types with observable equality

only, no need for observable sort order or hash
function
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Sets, naively

data Set a = Set [a]

I A set is represented by any list that contains the right
elements

I Same set represented by:
I [4, 8, 9, 1]
I [1, 9, 8, 4, 4, 9]

I Allow any element type, not just tuples of primitive
type as in Relational Algebra
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Projections, naively

data Proj a b = Proj (a -> b)

I A projection is any function.
I Allow any function, not just proper projections of

records to fields.
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Predicates, naively

data Pred a = Pred (a -> Bool)

I A predicate is any function to Bool.
I Allow any predicate, not just relational operators

=, 6=,≤,≥ applied to fields of records.
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Relational operators

select (Pred c) (Set xs) =
Set (filter c xs)

project (Proj f) (Set xs) =
Set (map f xs)

prod (Set xs) (Set ys) =
Set [(x, y) | x <- xs, y <- ys]

Other operators: union, intersect similarly
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Definable operators

Join operator:

join c s1 s2 =
select c (prod s1 s2)

SQL-style SELECT FROM WHERE:

selectFromWhere p s c =
project p (select c s)

Problem:
I Intermediate data may require asymptotically more

storage space than input and output:
I prod produces large output
I select shrinks it again
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Partitioning discriminator

Definition
D :: forall v. [(k, v)] -> [[v]]
is a (partitioning) discriminator for equivalence e on k if

I D partitions the value components of key-value pairs
into the e-equivalence classes of their keys.

I D is parametric wrt. e: Replacing a key in the input
with any e-equivalent key yields the same result.

Example:
I (x , y) ∈ evenOdd iff both x , y even or both odd.
I Possible result:
D[(5, 100), (4, 200), (9, 300)] = [[100, 300], [200]]

I By parametricity then also:
D[(3, 100), (8, 200), (1, 300)] = [[100, 300], [200]]
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Discrimination-based equijoin: Algorithm

I Values: Tag records of input sets to identify where
they come from

I Keys: Apply specified projections to records
I Concatenate list of key/value pairs
I Discriminate
I Form formal products (formal product: list of records

from first input and list of records from second input,
all with equivalent keys)

I Multiply out: Each record in a formal product from
first input paired with each record from the second
input.
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Discrimination-based equijoin: Code

join (Set xs, Set ys) (Proj f1) e (Proj f2)=
Set [(x, y) | (xs, ys) <- fprods,

x <- xs, y <- ys ]
where bs = disc e

([(f1 x, Left x) | x <- xs] ++
[(f2 y, Right y) | y <- ys])

fprods = map split bs

Auxiliary function

split :: [Either a b] -> ([a], [b])

splits a group of tagged values into their left, respective
right values.
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Discrimination-based equijoin: Example

[(5, “B”),  
 (4, “A”),  
 (7, “J”)] 

[(20, “P”),  
 (88, “C”),  
 (11, “E”)] 

[(5, Le8 (5, “B”)),  
 (4, Le8 (4, “A”)),  
 (7, Le8 (7, “J”))] 

[(20, Right (20, “P”)),  
 (88, Right (88, “C”)),  
 (11, Right (11, “E”))] 

[(5, Le8 (5, “B”)),  
 (4, Le8 (4, “A”)), 
 (7, Le8 (7, “J”)),  
 (20, Right (20, “P”)),  
 (88, Right (88, “C”)),  
 (11, Right (11, “E”))] 

[[ Le8 (5, “B”),  Le8 (7, “J”), Right (11, “E”) ], 
  [ Le8 (4, “A”),  Right (20, “P”),  Right (88, “C”)]] 

[([ (5, “B”),  (7, “J”)],        [(11, “E”) ]), 
  ([(4, “A”)],                          [(20, “P”), (88, “C”)]] 

[  ((5, “B”), (11, “E”)), ((7, “J”), (11, “E”)), 
   ((4, “A”), (20, “P”)), ((4, “A”), (88, “C”)) ]   

++ 

disc evenOdd 

bs = 

xs =  = ys 

map split 

fprods = 

mulAply out 
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Complexity

Assume:
I Worst-case time complexity of projection application:

O(1).
I s1, s2 are the respective lengths of the two inputs.
I o is the length of the output.

Observe:
I Discrimination-based join runs in worst-case time

O(s1 + s2 + o).
I Each step runs in time O(s1 + s2) except for the last:

multiplying out the results.
Idea: Be lazy! (Why multiply out if it’s a lot of work?)
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Lazy sets

Constructors for sets:

data Set :: * -> * where
Set :: [a] -> Set a
U :: Set a -> Set a -> Set a
X :: Set a -> Set b -> Set (a, b)

I Set xs: Set represented by list xs
I s1 ‘U‘ s2: Union of sets s1, s2

I s1 ‘X‘ s2: Cartesian product of s1, s2
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Lazy projections

data Proj :: * -> * -> * where
Proj :: (a -> b) -> Proj a b
Par :: Proj a b -> Proj c d ->

Proj (a, c) (b, d)

I Proj f: Projection given by function f
I Par p q: Parallel composition of p, q

Why parallel compositions?
Permit symbolic execution at run-time.
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Lazy predicates

data Pred :: * -> * where
Pred :: (a -> Bool) -> Pred a
TT :: Pred a
FF :: Pred a
PAnd :: Pred a -> Pred b -> Pred (a, b)
In :: (Proj a k, Proj b k) -> Equiv k

-> Pred (a, b)

I Pred f: Predicate given by characteristic function
I TT, FF: Constant true, false
I PAnd: Parallel conjunction
I In: Join condition constructor.
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Relational algebra operators

select :: Pred a -> Set a -> Set a
project :: Proj a b -> Set a -> Set b
prod :: Set a -> Set b -> Set (a, b)

Example:

select ((depNum, acctNum) ‘In‘ eqNat16)
(prod depositors accounts)

Like original naive definition, but:
I runs in time O(n) (size of the input);
I listing result takes time O(o) (size of the output).

Observe:
No separate join! Defined naively:

join c s1 s2 = select c (prod s1 s2)
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Select: Nonjoins

select TT s = s
select FF s = Set []
select p (Set xs) = Set (filter (sat p) xs)
select p (s1 ‘U‘ s2) =

select p s1 ‘U‘ select p s2
select (Pred f) s@(s1 ‘X‘ s2) =

Set (filter f (toList s))
select (p ‘PAnd‘ q) (s1 ‘X‘ s2) =

select p s1 ‘X‘ select q s2
select ((p, q) ‘In‘ e) s@(s1 ‘X‘ s2) = ...

What do lazy (symbolic) representations buy?
I TT, FF: Argument set not traversed (good!)
I p with ‘U‘: Lazy selection (good!)
I Pred f with ‘X‘: Multiplying out (ouch!)
I p ‘PAnd‘ q with ‘X‘: Lazy product (good!)
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Select: Join

select ((f1, f2) ‘In‘ e) (s1 ‘X‘ s2) =
foldr (\b s -> let (xs, ys) = split b

in (Set xs ‘X‘ Set ys) ‘U‘ s) empty bs
where bs = disc e
([(ext f1 r, Left r) | r <- toList s1] ++
[(ext f2 r, Right r) | r <- toList s2])

I Recognize dynamically when select has an
(equi)join condition applied to a lazy product.

I Invoke discrimination-based join algorithm
I Avoid multiplying out result in final step

Theorem
Join executes in time O(s1 + s2) for O(1)-time projections
where s1, s2 are the sizes (as lists) of s1, s2,
respectively.
Observe: No o in that formula! Not s1 × s2, but s1 + s2!
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Project

project f (Set xs) = Set (map (ext f) xs)
project f (s1 ‘U‘ s2) =

project f s1 ‘U‘ project f s2
project (Proj f) s@(s1 ‘X‘ s2) =

Set (map f (toList s))
project (Par f1 f2) (s1 ‘X‘ s2) =

project f1 s1 ‘X‘ project f2 s2

At run time:
I Set: Iterate (okay, not much else to do)
I ‘U‘: Lazy union (good!)
I Proj f with ‘X‘: Multiply out (ouch!)
I Par f1 f2 with ‘X‘: Lazy product (good!)
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Prod

prod s1 s2 = s1 ‘X‘ s2

I Constant time!
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Relation to query optimization

Implementation performs classical algebraic query
optimizations, including

I filter promotion (performing selections early)
I join introduction (replacing product followed by

selection by join)
I join composition (combining join conditions to avoid

intermediate multiplying out)

Observe:
I Done at run-time
I No static preprocessing
I Data-dependent optimization possible.
I Deforestatation of intermediate materialized data

structures not necessary due to lazy evaluation.
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Applicability

I Assumption: RAM-model, all memory accesses cost
the same

I Out-of-the-box applicability: In-memory bulk data.
I Just as you would not dream of applying sorting or

hashing out-of-the-box to disk data, do not apply
discrimination to disk data out of the box.

I As for sorting and hashing, does not rule out usability
of generic discrimination as a technique to be
combined with I/O efficiency techniques; e.g.
block-by-block discrimination.
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Related work
Database theory:

I Discrimination as an alternative/complement to
sorting and hashing: Not previously explored.

I Lazy products, unions: Where? (Couldn’t find in
literature)

I Dynamic algebraic query optimization: Where?
(Couldn’t find in literature)

Functional Programming:
I Buneman et al., HaskellDB, LINQ, Links: Type-safe

interfaces to SQL database systems
I Query optimization for in-memory non-SQL data:

HaskellDB (?), LINQ (?)
I Kleisli: Distributed database system with functional

query language based on Nested Relational Calculus
I Trinder, Wadler (1990), Improving list comprehension

database queries: Classical query optimizations on
list comprehensions
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Contributions

I Partitioning discrimination: New generic technique
for “bringing data together”

I complements hashing and sorting techniques
I makes only equivalence observable (no order, no

hash function)
I Lazy products (and derived lazy data structures):

New (?) data structure for compact representation of
cross-products

I Generic relational algebra
I User-definable equivalences, not just equalities
I User-defined data types, including reference types

(pointers)
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