
ADDING SUPPORT FOR
MULTI-DIMENSIONAL ARRAYS TO DATA

PARALLEL HASKELL

Gabriele Keller with
M. Chakravarty, S. Peyton Jones, R. Leshchinskiy

Programming Languages & Systems
School of Computer Sciences & Engineering

University of New South Wales
Sydney

Thursday, 25 June 2009

DATA PARALLEL HASKELL

• Data Parallel Haskell (DPH) was designed with irregular
parallel applications in mind:

• structure of parallel computations/data structures
impossible to predict statically

• Nested arrays as parallel data structure, elements and
shape information distributed over processors

• Interface similar to list operations:
• collective operations like map, fold, filter, array

comprehension executed in parallel

Thursday, 25 June 2009

Two forms of data parallelism

flat, regular nested, irregular

limited expressiveness
covers sparse structures and

even divide&conquer

close to the hardware model
needs to be turned into flat

parallelism for execution

well understood compilation
techniques

highly experimental program
transformations

Thursday, 25 June 2009

• matrix represented in compressed row format
• every non-zero element represented as pair of

column index and value
• every row as array of elements, matrix as array of

rows

 smvm' :: [:[: (Int, Double) :]:] -> [:Double:] -> [:Double:]
 smvm' m v =
 [: sumP [: x * (v !: i) | (i,x) <- row :] | row <- m :]

Example: Sparse matrix vector multiplication

Thursday, 25 June 2009

Can we express regular computations in DPH?

• nested arrays could be interpreted as n-dim arrays:

transpose:: [:[:a:]:] -> [:[:a:]:]
transpose m =
 [:[: v :! i | v <- m :] | i <-[:0..(length m) -1:]

• awkward for more complicated operations (e.g., relaxation)

• wasteful, error prone, inefficient

Thursday, 25 June 2009

Haskell + NDP support

Desugarer

Core

Code Generation

Machine Code

Vectoriser Simplifier

fusion rules
array code

DPH Compilation

Thursday, 25 June 2009

Haskell + NDP support

Desugarer

Core

Code Generation

Machine Code

Vectoriser Simplifier

fusion rules
array code

+ n-dimensional arrays
selectors, comprehension

DPH Compilation

Thursday, 25 June 2009

Haskell + NDP support

Desugarer

Core

Code Generation

Machine Code

Vectoriser Simplifier

fusion rules
array code

+ n-dimensional arrays
selectors, comprehension

add. rules
operations

DPH Compilation

Thursday, 25 June 2009

DESIGN QUESTIONS

• How much syntactic support?
• selection/indexing of subarrays
• array comprehension

• How much static checking of shape information?

• shape checking
• shape polymorphic operations

• Which basic operations do we need?

• Interaction between regular and irregular computations

Thursday, 25 June 2009

TRACKING AND CHECKING OF SHAPE
INFORMATION

• Shape information:
• dimensionality and length of each dimension

• Statically checked:
• dimensionality

• Dynamically checked:
• size of each dimension

Thursday, 25 June 2009

N-DIM ARRAYS
• Arrays parametrised with shape descriptor type and element

type:

 Array dim e

• dimensionality on type level, size on value level

• element type restricted to basic types and pairs thereof

Thursday, 25 June 2009

DIMENSIONALITY
• element-wise mapping works on arrays of any dim, leaves it

unchanged:

• some operations require the array to be of a specific
dimensionality:

 map:: (a -> b) -> Array dim a -> Array dim b

 inverse:: Array DIM2 Double -> Array DIM2 Double

Thursday, 25 June 2009

• for some operations, we want to express a more complex
relationship between argument and result dimension

 (!:):: Array dim a -> selector -> Array (depends on selector) a

Thursday, 25 June 2009

• for some operations, we want to express a more complex
relationship between argument and result dimension

(4,0,1)

 (!:):: Array dim a -> selector -> Array (depends on selector) a

Thursday, 25 June 2009

• for some operations, we want to express a more complex
relationship between argument and result dimension

(4,0,.)

 (!:):: Array dim a -> selector -> Array (depends on selector) a

Thursday, 25 June 2009

• for some operations, we want to express a more complex
relationship between argument and result dimension

(4,.,.)

 (!:):: Array dim a -> selector -> Array (depends on selector) a

Thursday, 25 June 2009

• to do type level calculations on the dimensionality, we use
internally an inductive definition

type DIM0 = ()
type DIM1 = (DIM0, Int)
type DIM2 = (DIM1, Int)
.....

• this is only used as internal representation type, the user
should see them as n-tuples:

 ()
 Int
(Int, Int)
.....

Representing the shape of an array:

Thursday, 25 June 2009

The Index type

• the generalised selection notation expresses an relationship
between initial and projected dimension:

• The index type reflects this relationship on the type level:

data Index initialDim projectedDim where
 IndexNil :: Index () ()
 IndexAll :: Index init proj -> Index (init, Int) (proj, Int)
 IndexFixed :: Int -> Index init proj -> Index (init, Int) proj

 (4, 0, 3)
 (4, . , 3)

• terms of index typed only used internally

Thursday, 25 June 2009

The Index type

• Some examples

IndexFixed 4 (IndexAll (IndexFixed 3 ())):: Index DIM3 DIM1
 (4, . , 3)

IndexFixed 4 (IndexAll (IndexAll ())):: Index DIM3 DIM2
 (4, ., .,)

Thursday, 25 June 2009

• With this definition, we can express the type of select as:

(!:):: Array dim e -> Index dim dim’ -> Array dim’

• for example

arr:: Array DIM3 Double
arr !: (IndexFixed 4 (IndexFixed 0 (IndexFixed 1 IndexNil)))

Thursday, 25 June 2009

• similarly, we can use the index type to express the type of a
generalized replicate:

replicate:: Array dim e -> Index dim‘ dim -> Array dim‘ e

s:: Array DIM0 Int
replicate s (IndexFixed 5 ())
replicate s (IndexFixed 5 (IndexFixed 3 ())

v:: Array DIM1 Int
replicate v (IndexAll (IndexFixed 5 ())):: Array DIM2 Int
replicate v (IndexFixed 5 (IndexAll ())):: Array DIM2 Int

• examples:

Thursday, 25 June 2009

Mapping a reduction operation

• Collapsing all the elements along one or multiple dimensions
into a scalar value

mapFold:: Array dim a -> Index dim dim’ -> (Array dim’ a -> b) -> ?

(*,.,.)

Thursday, 25 June 2009

The index type revisited

• we add an additional parameter to the index type

data Index a initialDim projectedDim where
 IndexNil :: Index a () ()
 IndexAll :: Index a init proj -> Index a (init, Int) (proj, Int)
 IndexFixed :: a -> Index a init proj -> Index a (init, Int) proj

• and the type of indexing changes accordingly

(!:):: Array dim e -> Index Int dim dim’ -> Array dim’

Thursday, 25 June 2009

• but still, what is the result type?

mapFold:: (Array dim a) ->
 Index () dim dim’ -> (Array dim’ a -> b)-> Array (dim - dim’) b

• to perform subtraction on the type level, we define the type
family

type family (:-:) init proj
type instance (:-:) init () = init
type instance (:-:) (init,Int) (proj, Int) = (:-:) init proj

Thursday, 25 June 2009

• but still, what is the result type?

mapFold:: (Array dim a) ->
 Index () dim dim’ -> (Array dim’ a -> b)-> Array (dim :-: dim’) b

• to perform subtraction on the type level, we define the type
family

type family (:-:) init proj
type instance (:-:) init () = init
type instance (:-:) (init,Int) (proj, Int) = (:-:) init proj

Thursday, 25 June 2009

BASIC OPERATIONS

• Separating reordering/extraction of array elements and
computations on elements

• Extraction/reordering:

bpermute::
 Array dim a -> (dim’ -> dim) -> Array dim’ a

defaultBpermute::
 Array dim a -> b -> (dim’ -> Maybe dim) -> Array dim’ a

Thursday, 25 June 2009

OPERATIONS

• Transposing, tiling, rotation, shifts can be easily expressed in
terms of backpermute and default backpermute

• relaxation in terms of shifts or backpermute straight
forward

• No overhead if such a newly created array is immediately
used as an argument to another function (stream fusion)

• element-wise map, scan, fold, zipWith to perform
computations

Thursday, 25 June 2009

COMBINING REGULAR &
 IRREGULAR COMPUTATIONS

• Regular arrays as elements of irregular structures are useful to
control the granularity of parallel computations

• Irregular structures insides regular arrays not allowed at the
moment - should they be?

Thursday, 25 June 2009

STATUS

• Implementation of library in progress

• Currently implementing examples to figure out if operations
etc appropriate

• User level syntax not fixed yet

Thursday, 25 June 2009

