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DATA PARALLEL HASKELL

• Data Parallel Haskell (DPH) was designed with irregular 
parallel applications in mind:

• structure of parallel computations/data structures 
impossible to predict statically

• Nested arrays as parallel data structure, elements and 
shape information distributed over processors

•  Interface similar to list operations:
• collective operations like map, fold, filter, array 

comprehension executed in parallel
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Two forms of data parallelism

flat, regular nested, irregular

limited expressiveness
covers sparse structures and 

even divide&conquer

close to the hardware model
needs to be turned into flat 

parallelism for execution

well understood compilation 
techniques

highly experimental program 
transformations
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• matrix represented in compressed row format
• every non-zero element represented as pair of 

column index and value
• every row as array of elements, matrix as array of 

rows

 smvm' :: [:[: (Int, Double) :]:] -> [:Double:] -> [:Double:]
 smvm' m v = 
     [: sumP [: x * (v !: i) | (i,x) <- row :] | row <- m :]

Example: Sparse matrix vector multiplication
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Can we express regular computations in DPH?

• nested arrays could be interpreted as n-dim arrays:

transpose:: [:[:a:]:] -> [:[:a:]:]
transpose m = 
     [:[: v :! i | v <- m  :] | i <-[:0..(length m) -1:]

• awkward for more complicated operations (e.g., relaxation)

• wasteful, error prone, inefficient
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Haskell + NDP support

Desugarer
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Code Generation

Machine Code

Vectoriser Simplifier

fusion rules
array code

DPH Compilation
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DESIGN QUESTIONS

• How much syntactic support?
• selection/indexing  of subarrays  
• array comprehension

• How much static checking of shape information?

• shape checking
• shape polymorphic operations

• Which basic operations do we need?

• Interaction between regular and irregular computations
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TRACKING AND CHECKING OF SHAPE 
INFORMATION

• Shape information:
• dimensionality and length of each dimension

• Statically checked:
• dimensionality

• Dynamically checked:
• size of each dimension
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N-DIM ARRAYS
• Arrays parametrised with shape descriptor type and element 

type:

                                         Array dim e

• dimensionality on type level, size on value level

• element type restricted to basic types and pairs thereof
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DIMENSIONALITY
• element-wise mapping works on arrays of any dim, leaves it 

unchanged:

• some operations require the array to be of a specific 
dimensionality:

 map:: (a -> b) -> Array dim a -> Array dim b

 inverse:: Array DIM2 Double -> Array DIM2 Double
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• for some operations, we want to express a more complex 
relationship between argument and result dimension

 (!:):: Array dim a -> selector -> Array (depends on selector) a
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• for some operations, we want to express a more complex 
relationship between argument and result dimension
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 (!:):: Array dim a -> selector -> Array (depends on selector) a

Thursday, 25 June 2009



• for some operations, we want to express a more complex 
relationship between argument and result dimension

(4,.,.)

 (!:):: Array dim a -> selector -> Array (depends on selector) a
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• to do type level calculations on the dimensionality, we use 
internally an inductive definition

type DIM0 = ()
type DIM1 = (DIM0, Int)
type DIM2 = (DIM1, Int)
.....

• this is only used as internal representation type, the user 
should see them as n-tuples:

 ()
 Int
(Int, Int)
.....

Representing the shape of an array:
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The Index type

• the generalised selection notation expresses an relationship 
between initial and projected dimension:

• The index type reflects this relationship on the type level:

data Index initialDim projectedDim where
  IndexNil   :: Index () ()
  IndexAll   :: Index init proj -> Index (init, Int) (proj, Int)
  IndexFixed :: Int -> Index init proj -> Index (init, Int)  proj

                             (4, 0, 3)
                             (4,  . , 3)

• terms of index typed only used internally
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The Index type

• Some examples

IndexFixed 4 (IndexAll (IndexFixed 3 ())):: Index DIM3 DIM1
                             (4,  . , 3)

IndexFixed 4 (IndexAll (IndexAll ())):: Index DIM3 DIM2
                            (4, ., .,)
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• With this definition, we can express the type of select as:

(!:):: Array dim e -> Index dim dim’ -> Array dim’

• for example

arr:: Array DIM3 Double
arr !: (IndexFixed 4 (IndexFixed 0 (IndexFixed 1 IndexNil)))
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• similarly, we can use the index type to express the type of a 
generalized replicate:

replicate:: Array dim e -> Index dim‘ dim -> Array dim‘ e                       

s:: Array DIM0 Int
replicate s (IndexFixed 5 ()) 
replicate s (IndexFixed 5 (IndexFixed 3 ())
    
v:: Array DIM1 Int
replicate v (IndexAll (IndexFixed 5 ())):: Array DIM2 Int
replicate v (IndexFixed 5 (IndexAll ())):: Array DIM2 Int

• examples:
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Mapping a reduction operation

• Collapsing all the elements along one or multiple dimensions 
into a scalar value

mapFold:: Array dim a -> Index dim dim’  -> (Array dim’ a -> b) ->  ?

(*,.,.)
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The index type revisited

• we add an additional parameter to the index type 

data Index a initialDim projectedDim where
  IndexNil   :: Index a () ()
  IndexAll   :: Index a init proj -> Index a (init, Int) (proj, Int)
  IndexFixed :: a -> Index a init proj -> Index a (init, Int)  proj

• and the type of indexing changes accordingly

(!:):: Array dim e -> Index Int dim dim’ -> Array dim’

Thursday, 25 June 2009



• but still, what is the result type?

mapFold:: (Array dim a) -> 
   Index () dim dim’ -> (Array dim’ a -> b)-> Array (dim - dim’) b 

• to perform subtraction on the type level, we define the type 
family 

type family (:-:) init proj
type instance (:-:) init () = init
type instance (:-:) (init,Int) (proj, Int) = (:-:) init proj
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• but still, what is the result type?
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BASIC OPERATIONS

• Separating reordering/extraction of array elements and 
computations on elements

• Extraction/reordering:

bpermute:: 
   Array dim a -> (dim’ -> dim) -> Array dim’ a

defaultBpermute::
   Array dim a -> b -> (dim’ -> Maybe dim) -> Array dim’ a
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OPERATIONS

• Transposing, tiling, rotation, shifts can be easily expressed in 
terms of backpermute and default backpermute

• relaxation in terms of shifts or backpermute straight 
forward

• No overhead if such a newly created array is immediately 
used as an argument to another function (stream fusion)

• element-wise map, scan, fold, zipWith to perform 
computations
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COMBINING REGULAR &
 IRREGULAR COMPUTATIONS

• Regular arrays as elements of irregular structures are useful to 
control the granularity of parallel computations

• Irregular structures insides regular arrays not allowed at the 
moment - should they be?
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STATUS

• Implementation of library in progress

• Currently implementing examples to figure out if operations 
etc appropriate

• User level syntax not fixed yet
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