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Effect-dependent program equivalences

x = e; y = e; e ′(x , y) is equivalent to x = e; e ′(x , x)

provided that x , y are fresh and

e’s reads and writes are disjoint and

e does not allocate, or

none of the above, but somehow e ′ doesn’t care.

Ongoing research programme:

Justify such conditional equivalences by interpreting effectful types as
relations (“logical relation”)

Global integer references (APLAS06)

Dynamically allocated integer references with regions (PPDP07)

Ultimate goal: Dynamically allocated references of arbitrary type.

Acknowledgements: Nick Benton, Lennart Beringer, Andrew Kennedy
(collaborators)
MOBIUS (IST-FET-15905).
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This talk

Global references of arbitrary (including functional) type

Relational semantics requires solving mixed-variance equations.

Existing solution theory found insufficient.

Extension to solution theory

Definition of logical relation that proves soundness of
effect-dependent program equivalences

Fly in the ointment: in latent effects of stored functions we cannot
distinguish reading and writing.
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Syntax

e ::= x | n | true | false | x1 op x2 | () | (x1, x2) | x .1 |
x .2 | x1 x2 | let x⇐e1 in e2 |!` | ` := x |
if x then e2 else e3 | rec f x .e | λx .e

In examples we use ML notation such as this

val f = fn g => fn n =>
if n=0 then 1 else n * g (n-1);

val r = ref (fn x => 0);
val fac = fn n => (r := (fn x => f (!r) x); !r n);
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Denotational semantics

V ∼= {wrong}+ unit(1) + int(Z) + bool(B) +

pair(V × V) + fun(V→ C)

C = S→ (S× V)⊥

S = L→V

V is the least predomain solving this. Predomain: CPO not nec. with ⊥.
NB C happens to have least element λx .⊥.
We have retracts pi : ♠ → ♠ where ♠ ∈ {V,S,C}.
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Properties of the retracts

pi (wrong) = wrong
pi (int(n)) = int(n)
pi (unit()) = unit()

pi (bool(x)) = bool(x)
pi (pair(v1, v2)) = pair(pi (v1), pi (v2))

pi (fun(f )) = fun(pi ; f ; pi )
p0(f )(s) = ⊥

pi+1(f )(s) = ⊥ if f (pi (s)) = ⊥
pi+1(f )(s) = (pi (s1), pi (v)) if f (pi (s)) = (s1, v)

pi (s)(`) = pi (s(`))

Moreover, pi v pi+1 and pi ; pj = pmin(i ,j) and
⊔

i pi (x) = x for all
x ∈ V ∪ S ∪ C.

Useful for proving properties/defining functions over V.
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Semantics of untyped language

JeKθ ∈ C when θ : FV(e)→ V

JxKθ s = (s, θ(x))
Jx yKθ s = f (θ(y))s where θ(x) = fun(f )
Jlet x⇐e1 in e2Kθ s = Je2Kθ[x 7→v ] s1when Je1Kθ s = (s1, v)
Jif x then e2 else e3Kθ = Je2Kθ, when θ(x) = bool(true)
J!`Kθ s = (s, s.`)
J` := yKθ s = (s[ 7̀→θ(y)], unit())
Jrec f x .eKθ s = (s, fun(g)) where g =

⊔
i gi and

g0 = λx .λs.⊥ and
gi+1 = λv .JeKθ[x 7→v , f 7→fun(gi )]

Jλx .eKθ s = (s, fun(f )) where f v = JeKθ[x 7→v ]
JeKθ s = wrong, if no clause applies
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Types

Effects (ε): Finite subsets of {rd`,wr ` | ` ∈ L}.

Types:

A,B,C ::= int | unit | bool | A× B | A ε→ B

Store type (Σ): `1:A1, . . . , `n:An.

Typing context (Θ): x1:A1, . . . , xm:Am.

Typing judgement: Π; Σ; Θ ` e : A, ε. Here Π ⊆ L, all ` appearing in
jugement are listed in Π.

mh (lmumun) Relational semantics for effects IFIP 2.8 8 / 22



Typing rules

Π; Σ; Θ ` n : int
(t-int)

x ∈ dom(Θ) Π ` Θ ok

Π; Σ; Θ ` x : Θ(x)
(t-var)

Π; Σ; Θ

Π; Σ; Θ `!` : Σ(`), {rd`}
(t-read)

Π; Σ; Θ ` y : Σ(`)

Π; Σ; Θ ` ` := y : unit, {wr `}
(t-write)

Π; Σ; Θ ` e : A, ε1 A <: B ε1 ⊆ ε2
Π; Σ; Θ ` e : B, ε2

(t-sub)

Π; Σ; Θ ` x : A
ε→ B Π; Σ; Θ ` y : A

Π; Σ; Θ ` x y : B, ε
(t-app)
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Typing rules, cont’d

Π; Σ; Θ, x :A ` e : B, ε

Π; Σ; Θ ` λx .e : A
ε→ B

(t-lam)

Π; Σ; Θ ` x : bool
Π; Σ; Θ ` e1 : A, ε Π; Σ; Θ ` e2 : A, ε

Π; Σ; Θ ` if x then e1 else e2 : A, ε
(t-if)

Π; Σ; Θ ` e1 : A1, ε1 Π; Σ; Θ, x :A1 ` e2 : A2, ε2

Π; Σ; Θ ` let x⇐e1 in e2 : A2, ε1 ∪ ε2
(t-let)

Π; Σ; Θ ` x : A Π; Σ; Θ ` y : B

Π; Σ; Θ ` (x , y) : A× B
(t-pair)

Π; Σ; Θ, f :A
ε→ B, x :A ` e : B, ε

Π; Σ; Θ ` rec f x .e : A
ε→ B

(t-rec)
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Subtyping

A <: A
(s-refl)

A1 <: A2 B1 <: B2

A1 × B1 <: A2 × B2
(s-prod)

A2 <: A1 B1 <: B2 ε1 ⊆ ε2
A1

ε1→ B1 <: A2
ε2→ B2

(s-arr)
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Example again

val f = fn g => fn n =>
if n=0 then 1 else n * g (n-1);

val r = ref (fn x => 0);
val fac = fn n => (r := (fn x => f (!r) x); !r n);

r; r : int
rdr→ int; ∅ ` f : (int

rdr→ int)→ int
rdr→ int

r; r : int
rdr→ int; ∅ ` fac : int

rdr,wrr→ int.

More examples: Vector multiplication, event handling.
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Equational theory

∀θ.Je1Kθ = Je2Kθ Π; Σ; Θ ` ei : A, ε

Π; Σ; Θ ` e1 = e2 : A, ε
(e-basic)

Sym,Trans,Cong.

Π; Σ; Θ ` e : A, ε rds(ε) ∩ wrs(ε) = ∅ x /∈ dom(Θ)

Π; Σ; Θ ` let x⇐e in pair(x , x) =
let x⇐e in let y⇐e in pair(x , y) : A× A, ε

(e-dup)
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Typing rules cont’d

Π; Σ; Θ ` ei : Ai , εi ∀i = 1, 2.rds(εi ) ∩ wrs(ε3−i ) = ∅
wrs(εi ) ∩ wrs(ε3−i ) = ∅

xi ∩ (dom(Θ) ∪ {x3−i}) = ∅
Π; Σ; Θ ` let x1⇐e1 in let x2⇐e2 in pair(x1, x2) =

let x2⇐e2 in let x1⇐e1 in pair(x1, x2) : A1 × A2, ε1 ∪ ε2

(e-swap)

Π; Σ; Θ ` e1 : A, ∅ Π; Σ; Θ, x :A, y :B ` e2 : C , ε x 6= y

Π; Σ; Θ ` let ⇐e1 in λy :B.let x⇐e1 in e2 =

let x⇐e1 in λy :B.e2 : B
ε→ C , ∅

(e-hoist)

Goal: Semantic interpretation of eq.thy as logical relation.

Justifies soundness eq.thy for obs.eq.

Allows for semantic reasoning (justify obs.eq using the log.rel rather
than rules)
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The logical relation

Define
JΠ; Σ ` AK ⊆ V × V

JΠ; Σ ` A, εK ⊆ C× C

JΠ; Σ ` εK ⊆ sets of relations on S

JΠ; Σ ` A, εK = per(TO
E (A))

(f , f ′) ∈ TO
E (A) ⇐⇒ ∀s s ′ s1 s ′1 v v ′.∀R ∈ E .(sRs ′ ⇒

(f s = ⊥ ⇔ f ′ s ′ = ⊥)∧
((f s) = (s1, v) ∧ (f ′ s ′) = (s ′1, v

′)⇒ s1Rs ′1 ∧ (v , v ′) ∈ JΠ; Σ ` AK)
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Logical relation cont’d

JΠ; Σ ` unitK = Unit

JΠ; Σ ` intK = Int

JΠ; Σ ` boolK = Bool

JΠ; Σ ` A× BK = ProdJΠ; Σ ` AK, JΠ; Σ ` BK
JΠ; Σ ` A

ε→ BK = ArrJΠ; Σ ` AK, JΠ; Σ ` B, εK)

Problem: It is not clear whether J. . .K satisfying these exists!

We can show existence for a special case: latent effects of stored functions
“storable”, i.e. both rd`,wr ` or ` not mentioned at all.

We can “define” log.rel. even for dynamic allocation
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Hereditarily pure

Consider
V ∼= V × V→ (V × V)⊥

models untyped functional programs with one global reference.
Retracts:

p0(f )(s, x) = ⊥
pi+1(f )(s, x) = ⊥, if f (pi (s), pi (x)) = ⊥
pi+1(f )(s, x) = (pi (s1), pi (y)), if

f (pi (s), pi (x)) = (s1, y)

We seek P ⊆ V such that:

f ∈ P ⇐⇒ ∀x ∈ P. (∀s ∈ V.f (s, x) = ⊥)∨
(∃u ∈ P.∀s ∈ V.f (s, x) = (s, u))

Does such P exist?
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Problem with existing solution theory

A. Pitts (1996) (“minimal invariants”): Essentially define
Pi := P ∩ Im(pi ) by induction on i . Then define P = {x | ∀i .pi (x) ∈ Pi}.

Problem: the predicate P so obtained is closed under the pi .
However, fun(id) should be in P, yet fun(pi ) = pi (fun()id) should not.
Projecting down the store isn’t “pure”.
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Our solution

Replace the pi with qi given by:

q0(f )(s, x) = ⊥
qi+1(f )(s, x) = ⊥, if f (s, qi (x)) = ⊥
qi+1(f )(s, x) = (s1, qi (y)), if f (s, qi (x)) = (s1, y)

We can thus establish the existence of P.
This also allows us to establish the existence of the desired logical relation.
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Challenge: Hereditarily read only commands

Consider V ∼= V→ V⊥.
Think of f : V→ V⊥ as stateful function of type unit->unit
(“command”) manipulating single untyped reference.
We want to single out hereditarily read only, i.e., define P such that

f ∈ P ⇐⇒ ∀x ∈ P.f x ∈ {x ,⊥}

Note that ∇ = λx .xx would be in P if P exists.
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Not all predicates exist!

Same predomain V as before. Want to define “hereditarily total”:

f ∈ T ⇐⇒ ∀x∈T .f (x) 6= ⊥ ∧ f (x) ∈ T

If T existed then ∇ ∈ T , yet ∇∇ = ⊥. A contradiction.
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Conclusion

Slogan “Boldly define mixed-variance predicates and appeal to
“minimal invariants” is dangerous.

Open problem: Existence of hereditarily read-only.

If we succeed in showing existence: we obtain powerful equational
theory to reason about effectful programs.

Partial solution: global references with restriction on effects of stored
functions.
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