
Relational semantics for effect-based program
transformations: higher-order store

Martin Hofmann

Ludwig-Maximilians-Universität München

IFIP Working Group 2.8, June 2009

mh (lmumun) Relational semantics for effects IFIP 2.8 1 / 22

Effect-dependent program equivalences

x = e; y = e; e ′(x , y) is equivalent to x = e; e ′(x , x)

provided that x , y are fresh and

e’s reads and writes are disjoint and

e does not allocate, or

none of the above, but somehow e ′ doesn’t care.

Ongoing research programme:

Justify such conditional equivalences by interpreting effectful types as
relations (“logical relation”)

Global integer references (APLAS06)

Dynamically allocated integer references with regions (PPDP07)

Ultimate goal: Dynamically allocated references of arbitrary type.

Acknowledgements: Nick Benton, Lennart Beringer, Andrew Kennedy
(collaborators)
MOBIUS (IST-FET-15905).

mh (lmumun) Relational semantics for effects IFIP 2.8 2 / 22

Effect-dependent program equivalences

x = e; y = e; e ′(x , y) is equivalent to x = e; e ′(x , x)

provided that x , y are fresh and

e’s reads and writes are disjoint and

e does not allocate, or

none of the above, but somehow e ′ doesn’t care.

Ongoing research programme:

Justify such conditional equivalences by interpreting effectful types as
relations (“logical relation”)

Global integer references (APLAS06)

Dynamically allocated integer references with regions (PPDP07)

Ultimate goal: Dynamically allocated references of arbitrary type.

Acknowledgements: Nick Benton, Lennart Beringer, Andrew Kennedy
(collaborators)
MOBIUS (IST-FET-15905).

mh (lmumun) Relational semantics for effects IFIP 2.8 2 / 22

This talk

Global references of arbitrary (including functional) type

Relational semantics requires solving mixed-variance equations.

Existing solution theory found insufficient.

Extension to solution theory

Definition of logical relation that proves soundness of
effect-dependent program equivalences

Fly in the ointment: in latent effects of stored functions we cannot
distinguish reading and writing.

mh (lmumun) Relational semantics for effects IFIP 2.8 3 / 22

Syntax

e ::= x | n | true | false | x1 op x2 | () | (x1, x2) | x .1 |
x .2 | x1 x2 | let x⇐e1 in e2 |!` | ` := x |
if x then e2 else e3 | rec f x .e | λx .e

In examples we use ML notation such as this

val f = fn g => fn n =>
if n=0 then 1 else n * g (n-1);

val r = ref (fn x => 0);
val fac = fn n => (r := (fn x => f (!r) x); !r n);

mh (lmumun) Relational semantics for effects IFIP 2.8 4 / 22

Denotational semantics

V ∼= {wrong}+ unit(1) + int(Z) + bool(B) +

pair(V × V) + fun(V→ C)

C = S→ (S× V)⊥

S = L→V

V is the least predomain solving this. Predomain: CPO not nec. with ⊥.
NB C happens to have least element λx .⊥.
We have retracts pi : ♠ → ♠ where ♠ ∈ {V,S,C}.

mh (lmumun) Relational semantics for effects IFIP 2.8 5 / 22

Properties of the retracts

pi (wrong) = wrong
pi (int(n)) = int(n)
pi (unit()) = unit()

pi (bool(x)) = bool(x)
pi (pair(v1, v2)) = pair(pi (v1), pi (v2))

pi (fun(f)) = fun(pi ; f ; pi)
p0(f)(s) = ⊥

pi+1(f)(s) = ⊥ if f (pi (s)) = ⊥
pi+1(f)(s) = (pi (s1), pi (v)) if f (pi (s)) = (s1, v)

pi (s)(`) = pi (s(`))

Moreover, pi v pi+1 and pi ; pj = pmin(i ,j) and
⊔

i pi (x) = x for all
x ∈ V ∪ S ∪ C.

Useful for proving properties/defining functions over V.

mh (lmumun) Relational semantics for effects IFIP 2.8 6 / 22

Semantics of untyped language

JeKθ ∈ C when θ : FV(e)→ V

JxKθ s = (s, θ(x))
Jx yKθ s = f (θ(y))s where θ(x) = fun(f)
Jlet x⇐e1 in e2Kθ s = Je2Kθ[x 7→v] s1when Je1Kθ s = (s1, v)
Jif x then e2 else e3Kθ = Je2Kθ, when θ(x) = bool(true)
J!`Kθ s = (s, s.`)
J` := yKθ s = (s[7̀→θ(y)], unit())
Jrec f x .eKθ s = (s, fun(g)) where g =

⊔
i gi and

g0 = λx .λs.⊥ and
gi+1 = λv .JeKθ[x 7→v , f 7→fun(gi)]

Jλx .eKθ s = (s, fun(f)) where f v = JeKθ[x 7→v]
JeKθ s = wrong, if no clause applies

mh (lmumun) Relational semantics for effects IFIP 2.8 7 / 22

Types

Effects (ε): Finite subsets of {rd`,wr ` | ` ∈ L}.

Types:

A,B,C ::= int | unit | bool | A× B | A ε→ B

Store type (Σ): `1:A1, . . . , `n:An.

Typing context (Θ): x1:A1, . . . , xm:Am.

Typing judgement: Π; Σ; Θ ` e : A, ε. Here Π ⊆ L, all ` appearing in
jugement are listed in Π.

mh (lmumun) Relational semantics for effects IFIP 2.8 8 / 22

Typing rules

Π; Σ; Θ ` n : int
(t-int)

x ∈ dom(Θ) Π ` Θ ok

Π; Σ; Θ ` x : Θ(x)
(t-var)

Π; Σ; Θ

Π; Σ; Θ `!` : Σ(`), {rd`}
(t-read)

Π; Σ; Θ ` y : Σ(`)

Π; Σ; Θ ` ` := y : unit, {wr `}
(t-write)

Π; Σ; Θ ` e : A, ε1 A <: B ε1 ⊆ ε2
Π; Σ; Θ ` e : B, ε2

(t-sub)

Π; Σ; Θ ` x : A
ε→ B Π; Σ; Θ ` y : A

Π; Σ; Θ ` x y : B, ε
(t-app)

mh (lmumun) Relational semantics for effects IFIP 2.8 9 / 22

Typing rules, cont’d

Π; Σ; Θ, x :A ` e : B, ε

Π; Σ; Θ ` λx .e : A
ε→ B

(t-lam)

Π; Σ; Θ ` x : bool
Π; Σ; Θ ` e1 : A, ε Π; Σ; Θ ` e2 : A, ε

Π; Σ; Θ ` if x then e1 else e2 : A, ε
(t-if)

Π; Σ; Θ ` e1 : A1, ε1 Π; Σ; Θ, x :A1 ` e2 : A2, ε2

Π; Σ; Θ ` let x⇐e1 in e2 : A2, ε1 ∪ ε2
(t-let)

Π; Σ; Θ ` x : A Π; Σ; Θ ` y : B

Π; Σ; Θ ` (x , y) : A× B
(t-pair)

Π; Σ; Θ, f :A
ε→ B, x :A ` e : B, ε

Π; Σ; Θ ` rec f x .e : A
ε→ B

(t-rec)

mh (lmumun) Relational semantics for effects IFIP 2.8 10 / 22

Subtyping

A <: A
(s-refl)

A1 <: A2 B1 <: B2

A1 × B1 <: A2 × B2
(s-prod)

A2 <: A1 B1 <: B2 ε1 ⊆ ε2
A1

ε1→ B1 <: A2
ε2→ B2

(s-arr)

mh (lmumun) Relational semantics for effects IFIP 2.8 11 / 22

Example again

val f = fn g => fn n =>
if n=0 then 1 else n * g (n-1);

val r = ref (fn x => 0);
val fac = fn n => (r := (fn x => f (!r) x); !r n);

r; r : int
rdr→ int; ∅ ` f : (int

rdr→ int)→ int
rdr→ int

r; r : int
rdr→ int; ∅ ` fac : int

rdr,wrr→ int.

More examples: Vector multiplication, event handling.

mh (lmumun) Relational semantics for effects IFIP 2.8 12 / 22

Equational theory

∀θ.Je1Kθ = Je2Kθ Π; Σ; Θ ` ei : A, ε

Π; Σ; Θ ` e1 = e2 : A, ε
(e-basic)

Sym,Trans,Cong.

Π; Σ; Θ ` e : A, ε rds(ε) ∩ wrs(ε) = ∅ x /∈ dom(Θ)

Π; Σ; Θ ` let x⇐e in pair(x , x) =
let x⇐e in let y⇐e in pair(x , y) : A× A, ε

(e-dup)

mh (lmumun) Relational semantics for effects IFIP 2.8 13 / 22

Typing rules cont’d

Π; Σ; Θ ` ei : Ai , εi ∀i = 1, 2.rds(εi) ∩ wrs(ε3−i) = ∅
wrs(εi) ∩ wrs(ε3−i) = ∅

xi ∩ (dom(Θ) ∪ {x3−i}) = ∅
Π; Σ; Θ ` let x1⇐e1 in let x2⇐e2 in pair(x1, x2) =

let x2⇐e2 in let x1⇐e1 in pair(x1, x2) : A1 × A2, ε1 ∪ ε2

(e-swap)

Π; Σ; Θ ` e1 : A, ∅ Π; Σ; Θ, x :A, y :B ` e2 : C , ε x 6= y

Π; Σ; Θ ` let ⇐e1 in λy :B.let x⇐e1 in e2 =

let x⇐e1 in λy :B.e2 : B
ε→ C , ∅

(e-hoist)

Goal: Semantic interpretation of eq.thy as logical relation.

Justifies soundness eq.thy for obs.eq.

Allows for semantic reasoning (justify obs.eq using the log.rel rather
than rules)

mh (lmumun) Relational semantics for effects IFIP 2.8 14 / 22

The logical relation

Define
JΠ; Σ ` AK ⊆ V × V

JΠ; Σ ` A, εK ⊆ C× C

JΠ; Σ ` εK ⊆ sets of relations on S

JΠ; Σ ` A, εK = per(TO
E (A))

(f , f ′) ∈ TO
E (A) ⇐⇒ ∀s s ′ s1 s ′1 v v ′.∀R ∈ E .(sRs ′ ⇒

(f s = ⊥ ⇔ f ′ s ′ = ⊥)∧
((f s) = (s1, v) ∧ (f ′ s ′) = (s ′1, v

′)⇒ s1Rs ′1 ∧ (v , v ′) ∈ JΠ; Σ ` AK)

mh (lmumun) Relational semantics for effects IFIP 2.8 15 / 22

Logical relation cont’d

JΠ; Σ ` unitK = Unit

JΠ; Σ ` intK = Int

JΠ; Σ ` boolK = Bool

JΠ; Σ ` A× BK = ProdJΠ; Σ ` AK, JΠ; Σ ` BK
JΠ; Σ ` A

ε→ BK = ArrJΠ; Σ ` AK, JΠ; Σ ` B, εK)

Problem: It is not clear whether J. . .K satisfying these exists!

We can show existence for a special case: latent effects of stored functions
“storable”, i.e. both rd`,wr ` or ` not mentioned at all.

We can “define” log.rel. even for dynamic allocation

mh (lmumun) Relational semantics for effects IFIP 2.8 16 / 22

Logical relation cont’d

JΠ; Σ ` unitK = Unit

JΠ; Σ ` intK = Int

JΠ; Σ ` boolK = Bool

JΠ; Σ ` A× BK = ProdJΠ; Σ ` AK, JΠ; Σ ` BK
JΠ; Σ ` A

ε→ BK = ArrJΠ; Σ ` AK, JΠ; Σ ` B, εK)

Problem: It is not clear whether J. . .K satisfying these exists!

We can show existence for a special case: latent effects of stored functions
“storable”, i.e. both rd`,wr ` or ` not mentioned at all.

We can “define” log.rel. even for dynamic allocation

mh (lmumun) Relational semantics for effects IFIP 2.8 16 / 22

Logical relation cont’d

JΠ; Σ ` unitK = Unit

JΠ; Σ ` intK = Int

JΠ; Σ ` boolK = Bool

JΠ; Σ ` A× BK = ProdJΠ; Σ ` AK, JΠ; Σ ` BK
JΠ; Σ ` A

ε→ BK = ArrJΠ; Σ ` AK, JΠ; Σ ` B, εK)

Problem: It is not clear whether J. . .K satisfying these exists!

We can show existence for a special case: latent effects of stored functions
“storable”, i.e. both rd`,wr ` or ` not mentioned at all.

We can “define” log.rel. even for dynamic allocation

mh (lmumun) Relational semantics for effects IFIP 2.8 16 / 22

Hereditarily pure

Consider
V ∼= V × V→ (V × V)⊥

models untyped functional programs with one global reference.
Retracts:

p0(f)(s, x) = ⊥
pi+1(f)(s, x) = ⊥, if f (pi (s), pi (x)) = ⊥
pi+1(f)(s, x) = (pi (s1), pi (y)), if

f (pi (s), pi (x)) = (s1, y)

We seek P ⊆ V such that:

f ∈ P ⇐⇒ ∀x ∈ P. (∀s ∈ V.f (s, x) = ⊥)∨
(∃u ∈ P.∀s ∈ V.f (s, x) = (s, u))

Does such P exist?

mh (lmumun) Relational semantics for effects IFIP 2.8 17 / 22

Problem with existing solution theory

A. Pitts (1996) (“minimal invariants”): Essentially define
Pi := P ∩ Im(pi) by induction on i . Then define P = {x | ∀i .pi (x) ∈ Pi}.

Problem: the predicate P so obtained is closed under the pi .
However, fun(id) should be in P, yet fun(pi) = pi (fun()id) should not.
Projecting down the store isn’t “pure”.

mh (lmumun) Relational semantics for effects IFIP 2.8 18 / 22

Our solution

Replace the pi with qi given by:

q0(f)(s, x) = ⊥
qi+1(f)(s, x) = ⊥, if f (s, qi (x)) = ⊥
qi+1(f)(s, x) = (s1, qi (y)), if f (s, qi (x)) = (s1, y)

We can thus establish the existence of P.
This also allows us to establish the existence of the desired logical relation.

mh (lmumun) Relational semantics for effects IFIP 2.8 19 / 22

Challenge: Hereditarily read only commands

Consider V ∼= V→ V⊥.
Think of f : V→ V⊥ as stateful function of type unit->unit
(“command”) manipulating single untyped reference.
We want to single out hereditarily read only, i.e., define P such that

f ∈ P ⇐⇒ ∀x ∈ P.f x ∈ {x ,⊥}

Note that ∇ = λx .xx would be in P if P exists.

mh (lmumun) Relational semantics for effects IFIP 2.8 20 / 22

Not all predicates exist!

Same predomain V as before. Want to define “hereditarily total”:

f ∈ T ⇐⇒ ∀x∈T .f (x) 6= ⊥ ∧ f (x) ∈ T

If T existed then ∇ ∈ T , yet ∇∇ = ⊥. A contradiction.

mh (lmumun) Relational semantics for effects IFIP 2.8 21 / 22

Not all predicates exist!

Same predomain V as before. Want to define “hereditarily total”:

f ∈ T ⇐⇒ ∀x∈T .f (x) 6= ⊥ ∧ f (x) ∈ T

If T existed then ∇ ∈ T , yet ∇∇ = ⊥. A contradiction.

mh (lmumun) Relational semantics for effects IFIP 2.8 21 / 22

Conclusion

Slogan “Boldly define mixed-variance predicates and appeal to
“minimal invariants” is dangerous.

Open problem: Existence of hereditarily read-only.

If we succeed in showing existence: we obtain powerful equational
theory to reason about effectful programs.

Partial solution: global references with restriction on effects of stored
functions.

mh (lmumun) Relational semantics for effects IFIP 2.8 22 / 22

	Introduction
	Language

