Edit distance

dist

Main>

4

Main>

Main>

Main>

Eq a => [a] —> [a]

dist

dist

dist

dist

”ade” leabyll

»” » Ilmonkeyll

”HaSkell » »” »

"hello” ”hello”

-> Int

smallest number of
Inserts/deletes to turn
arg#1 into arg#2




Edit distance implementation

dist :: Eq a => [a] -> [a]
dist [] VA = leng

challenge #0:
iImplement a polynomial

dist xs [] = lengtl time version
dist (x:xs) (y:ys)

| x ==y = dist xs ys

| otherwise = (1 + dist (Q:::3 ys)

N\

min (1 + dist<§f>(y:ys))

>

two recursive calls:
exponential time

either insert y or
delete x




How to test? -- "Test Oracle”

o think
Formal specification QuickCheck
Executable
Efficient (polynomial time) comparing
8 against naive dist
O IS N0 good...

challenge #1: find an
practical way to test
your implementation!



(answer)



An efficient dist dynamic

programming

dist :: Eq a => [a] -> [a] -> Int
dist xs ys = head (dists xs ys)

dists :: Eq a => [a] -> [a] -> [Int]
dists [] ys = [n,n-1..0] where n = length ys
dists (x:xs) ys = line x ys (dists xs ys)
line :: Eg a => a => [a] -> [Int] -> [Int]
line x [] [d] = [d+1]
line x (y:ys) (d:ds)
| x ==y = head ds : ds' //\\x\\\
| otherwise = (1+(d min’~ _
testing
where _ upper-bound: easy,
ds' = line x ys ds lower-bound: hard




Naive dist

dist :: Eq a => [a] -> [a] —-> Int
dist [] ys = length ys base case #1
dist xs [] = length xs

base case #2

dist (x:xs) (y:ys)
|x==y

dist xs ys step case #1

dist (x:xs) (y:ys)
| otherwise

(1 + dist (x:xs) ys)
‘min’ (1 + dist xs (y:ys))

step case #2




“Inductive Testing”

prop_BaseXs (ys :: String)
dist [] ys == length ys

prop_BaseYs (xs :: String)
dist xs [] == length xs

prop_StepSame x xs (ys :: String)
dist (x:xs) (x:ys) == dist xs ys specialization

prop_StepDiff x y xs (ys :: String)
x /=y ==>
dist (x:xs) (y:ys) == (1 + dist (x:xs) ys) min
(1 + dist xs (y:ys))

N\



(Alternative)

distFix :: Eqg a => ([a] -> [a] —> Int)
-> ([a] -> [a] —-> Int)
distFix £ [] ys = length ys
distFix f xs [] = length xs 6 eEuTEler
distFix £ (x:xs) (y:ys)
| x == = £ xs ys
| otherwise = (1 + £ (x:xs) ys)

N\ - N\

min (1 + £ xs (y:ys))

prop_Dist xs (ys :: String)
dist xs ys == distFix dist xs ys



What is happening?




Applications

Search algorithms

SAT-solvers
other kinds of solvers

Optimization algorithms

LP-solvers
(edit distance)

Symbolic algorithms?

substitution, unification, anti-unification, ...



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

