
Composable GPU 
programming



GPUs -- what are they?
• Basic model: SIMD, SPMD, MIMD; 

• blocks of PUs with single PC, local 
memory (synchronous); warps

• many blocks (asynchronous), VRAM

• discontinuities/constraints from hardware 
implementation of memory access;

• next-generation hardware likely to 
mediate this to make programmability 
more orthogonal



GPUs -- what are they?
• Basic model: SIMD, SPMD, MIMD; 

• blocks of PUs with single PC, local 
memory (synchronous); warps

• many blocks (asynchronous), VRAM

• discontinuities/constraints from hardware 
implementation of memory access;

• next-generation hardware likely to 
mediate this to make programmability 
more orthogonal

Revenge of 
the PRAM? 



Programming GPUs
• CUDA: C-like language for general-purpose 

programming with code generated for GPUs

• previously: OpenGL for graphics programming

• coming up: OpenCL (compute language)

• foo<<m, n, k>> (args)

• Execute foo with implicit argument i, j (block, 
PU) selecting from arguments

• Care required when accessing memory: out of 
sequence accesses sequentialized!



GPU language projects
• Data parallel Haskell: 

• Programming flat PRAM level 

• Nested/compositional programming

• map (map f) (xss)

• Obsidian: Combinator language for 
generating CUDA code

• explicit synchronization

• choosing threads, mapping to blocks



How to exploit?

• Performance: If you have a data parallel 
problem, formulate it using scan, map, fold, 
permute on bulk data (arrays), have it 
shipped out to a GPU!

• If you can’t figure out how to do that, do 
not expect magic from your compiler.



Qualities

• Obsidian good candidate for capturing two-level 
model (synchronous blocks and asynchronous 
sets of blocks) and implementing APRAM model

• Excellent scan implementations

• Data parallel Haskell good model for 
programming APRAM model and for 
compositional abstraction on top of that

• NESL with h.o. functions, polymorphism



Requirements

• Need a robust performance model: NESL 
at PRAM level, sth else lower;

• Need to stay in the same programming 
model when engineering/tuning code

• Need a robust programming model (sw/
hw) -- small changes shouldn't lead to 
unpredicatable radical changes in 
performance.



(End)


