
Doing dependent types wrong 
without going wrong 

Stephanie Weirich, University of Pennsylvania 
Work in Progress with Limin Jia, Jianzhou Zhao, and Vilhelm Sjöberg 



What are dependent types? 

Types that depend on elements of other types.  
  Examples: 

  vec n – type of lists of length in 
  Generalized tries 
  PADS 
  Type of ASTs that represent well-typed code 

  Statically enforce expressive program properties 
  BST ops preserve BST invariants 
  CompCert compiler 



Two sorts 

Full Spectrum Phase-sensitive 

Types indexed by actual 
computations 

Types indexed by a pure language, 
separate from computations 

Easier to connect type system to 
actual computation, harder to 
extend computation language 

Index language may have minimal 
similarity to computation language 

Includes "strong eliminators"  
if x=3 then Bool else Int 

May or may not not include strong 
eliminators 

Examples: Cayenne, Coq, Epigram, 
Agda2, Guru 

Examples: DML,  ATS, Ωmega, 
Haskell 



Let’s do it wrong… 

  Cayenne is only language that deliberately allows 
nonterminating terms in types  
  Nothing proved about it! 

  Primary Goal: prove type soundness for a language with 
impure computations in types. 
  Note:  type checking may be undecidable 

  Secondary Goals: 
  CBV language 
  "Modular" metatheory 



Full spectrum: Pure type system 

  No distinction between types and terms 
 s,t,A,B,k ::=  x | \x.t | s t | (x:A) -> B | T	

              | * | [] | c | case s { c x => t }	
  One set of formation rules 
                   Γ |- t : A	

  Conversion rule uses type equivalence 
Γ |- t : A    Γ |- B : s    A ~ B	

Γ |- t : B	
  Term equivalence is fixed by type system (and defined to 

be the same as type equivalence). 

A and B are 
beta-

convertible 



New vision 

  Syntactic distinction between terms and types, but still full 
spectrum 
k ::=  * | (x:A) -> k	
A ::= (x:A1) -> A2 | T | A w | let x = t in A  	
   | case t of { c x => A }	
t ::= x | \x. t | t w | let x = t in t  	
   | c w | case t of { c x => t } 	
   | fix f(x). t	
w ::= x | \x. t | fix f(x). t | c w  

  Key changes:  
  Term language explicitly includes non-termination  
  CBV – only pure terms (w) substituted for variables 
  Type system parameterized by term equality 



Parameterized term equality 

  Given a list of equality assumptions about terms: 
  Δ ::= . | Δ , t1 = t2	

  Assume the existence of two functions: 
  con (Δ) in { maybe, false }	
  isEq (Δ, t1, t2)  in { true, maybe }	

   Equality is untyped  
  No guarantee that t1 and t2 have the same type 
  No assumptions about the types of the free variables 
  Types don’t require terms appearing in them to be well-typed 



Type equivalence (excerpt) 

con (Δ) = false	
Δ |- A1 = A2	

Δ |- A1 = A2   isEq (Δ, w1 w2) = true	
Δ |- A1 w1 = A2 w2	

isEq (Δ, t, ci wi) = true	
Δ |- case t of { ci xi => Ai } = Ai { wi / xi }	

Δ, x = t |- A = B       x notin Δ, B	
Δ |- let x = t in A = B	



Typing rules (excerpt) 

Γ Δ |- t : (x:A) -> B    Γ Δ |- w : A	
Γ Δ |- t w : B { w / x }	

Γ Δ |- t1 : A   Γ,x:A  Δ,x=t1 |- t2 : B 	
Γ Δ |- let x = t1 in t2 : B 	

Γ Δ |- t : T t'    Δ |- B : *	
ci : (xi : Ai) -> T ti'	

Γ, xi:Ai  Δ, t = ci xi, ti' = t' |- ti : B	
Γ Δ |- case t of { ci xi => ti } : B	

Γ Δ |- t : A   Δ |- A = B     Δ |- B : *	
Γ Δ |- t : B	



Questions to answer 

  What properties of isEq & Con must we assume to 
show preservation & progress? 

  What instantiations of isEq & Con satisfy these 
properties? 



Necessary assumptions (con) 

  Don’t start inconsistent 
con( . ) = maybe	

  Once inconsistent, stay inconsistent through 
weakening, substitution, cut and conversion 

•  con (Δ) = false => con (Δ Δ’) = false	

•  con (Δ) = false => con (Δ {w/x} ) = false	

•  con (Δ (e1 = e2) Δ’) = false & isEq (Δ, e1, e2) => 	
	con (Δ Δ’) = false 

•  con(Δ) = false & (Δ = Δ’) => con(Δ’) = false	



Necessary assumptions (isEq) 

  isEq is an equivalence class 
  Holds for evaluation: If  e -> e’ then isEq (Δ, e, e’)	
  Constructors are injective, for (possibly) consistent 

contexts 
con(Δ) = maybe & isEq(Δ, ci e1, cj e2) => 	
isEq(Δ, e1, e2) & i=j	

  Preserved by substitution 
isEq(ΔΔ’, e1, e2) => isEq(Δ, w, w’) =>  	
isEq (ΔΔ’{w/x}, e1{w/x}, e2{w’/x})	

  Preserved under contextual operations (weakening, cut, 
conversion)   
isEq (Δ (e = e’) Δ’, e1, e2)  & isEq(Δ, e, e’) => 	
isEq (Δ Δ’,  e1, e2)   	



What satisfies these properties? 

  Compare normal forms, ignoring equalities in the context  
  Above plus equalities in the context 

  Contextual equivalence 
  Contextual equivalence modulo Δ 

  Some strange equalities that identify nonterminating 
terms with terminating terms 
  Sound to conclude isEq(let x = loop in 3, 3) as long as we  

don’t conclude isEq(let x = loop in 3, loop) 
  Sound to say isEq(loop,3) as long as we don’t say isEq(loop, 4) 



What about termination? 

  Termination analysis not required for type soundness 
  Decidable approximation of isEq is type sound, but doesn’t 

satisfy preservation 
  Any types system that checks strictly fewer terms than a sound 

type system is sound. 

  However, like most type systems, only get partial 
correctness results: 
  “If this expression terminates, then it produces a value of 

type t” 

  Termination analysis permits proof erasure 



More questions 

  Is untyped equivalence strong enough? 
  Have we accomplished anything? 

  Can we give more information about typing to Con and  
isEq? 
  For now, we want to make axiomatization of isEq independent 

of the type system, but does that buy us anything? 
  Can we add a predicate to control what expressions are 

compared for equality? 
  Limit domain of isEq for stronger properties 

  What about more computational effects: state/control 
effects? 
  Can we use effect typing to strengthen equivalence? 


