
Kleene meets Church: Regular expressions as types

Fritz Henglein

Department of Computer Science
University of Copenhagen
Email: henglein@diku.dk

WG 2.8 meeting, Shirahama, 2010-04-11/16

Joint work with Lasse Nielsen, DIKU
TrustCare Project (trustcare.eu)

Previous WG2.8 talks

Q: Can you sort and partition generically in linear time?

A: Yes.

Q: What is a sorting function?

A: Any intrinsically parametric permutation function.

2

This talk1

Q: What is a regular expression?

A: A simple type with suitable coercions

1None of this is published! Various parts of the applications are under way.
But lots of theoretical and practical work remains to be done!

3

Most used embedded DSLs for programming

SQL

Regular expressions

4

Regular language

Definition (Regular language)

A regular language is a language (set of strings) over some finite
alphabet A that is accepted by some finite automaton.

5

Regular expression

Definition (Regular expression)

A regular expression (RE) over finite alphabet A is an expression of
the form

E ,F ::= 0 | 1 | a | E |F | EF | E∗

where a ∈ A that denotes the language L[[E]] defined by

L[[0]] = ∅
L[[1]] = {ε}
L[[a]] = {a}

L[[E |F]] = L[[E]] ∪ L[[F]]
L[[EF]] = L[[E]]� L[[F]]
L[[E∗]] =

⋃
i≥0(L[[E]])i

where S � T = {s t | s ∈ S ∧ t ∈ T}, E 0 = {ε},E i+1 = E E i .

6

Kleene’s Theorem

Theorem (Kleene 1956)

A language is regular if and only it is denoted by a regular
expression.

7

Theory: What we learn about regular expressions

They’re just a way to talk about finite state automata

All equivalent regular expressions are interchangeable since
they accept the same language.

All equivalent automata are interchangeable since they accept
the same language.

We might as well choose an efficient one (deterministic,
minimal state): it processes its input in linear time and
constant space.

Myhill-Nerode Theorem (for proving a language regular)

Pumping Lemma (for proving a language nonregular)

Equivalence is decidable: PSPACE-complete.

They are closed under complement and intersection.

Star-height problem

Good for specifying lexical scanners.

8

Practice: How regular expressions are used3

Full (partial) matching: Does the RE occur (somewhere in)
this string?

Basic grouping: Does the RE match and where in the string?

Grouping: Does the RE match and where do (some of) its
sub-REs match in the string?

Substitution: Replace matched substrings by specified other
strings

Extensions: Backreferences, look-ahead, look-behind,...

Lazy vs. greedy matching, possessive quantifiers, atomic
grouping

Optimization2

2Friedl, Mastering Regular Expressions, chapter 6: Crafting an efficient
expression

3in Perl and such
9

Optimization??

Cox (2007)

Perl-compliant regular expressions (what you get in Perl,
Python, Ruby, Java) use backtracking parsing.

Does not handle E ∗ where E contains ε – will typically crash
at run-time (stack overflow).

10

Why discrepancy between theory and practice?

Theory is extensional: About regular languages.

Does this string match the regular expression? Yes or no?

Practice is intensional: About regular expressions as
grammars.

Does this string match the regular expression and if so
how—which parts of the string match which parts of the RE?

Ideally: Regular expression matching = parsing +
“catamorphic” processing of syntax tree4

Reality: Regular expression matching = finite automaton +
opportunistic instrumentation to get some parsing information.

4Think about Shenjiang’s talk
11

Example

((ab)(c|d)|(abc))*.

Match against abdabc .
For each parenthesized group a substring is returned.a

PCRE POSIX

$1 = abc or ε(!) abc or ε(!)
$2 = ab ε
$3 = c ε
$4 = ε abc

aOr special null-value

12

Regular expression parsing

Example

Parse abdabc according to ((ab)(c|d)|(abc))*.

p1 = [inl ((a, b), inr d), inr (a, (b, c))]

p2 = [inl ((a, b), inr d), inl ((a, b), inl c)]

p1, p2 have type ((a× b)× (c + d) + a× (b × c)) list .

Compare with regular expression ((ab)(c|d)|(abc))* .

The elements of type E correspond to the syntax trees for
strings parsed according to regular expression E !

13

Type interpretation

Definition (Type interpretation)

The type interpretation T [[.]] compositionally maps a regular
expression E to the corresponding simple type:

T [[0]] = ∅ empty type
T [[1]] = {()} unit type
T [[a]] = {a} singleton type

T [[E + F]] = T [[E]] + T [[F]] sum type
L[[E × F]] = T [[E]]× T [[F]] product type
T [[E ∗]] = {[v1, . . . , vn] | vi ∈ T [[E]]} list type

14

Flattening

Definition

The flattening function flat(.) : Val(A)→ Seq(A) is defined as
follows:

flat(()) = ε flat(a) = a
flat(inl v) = flat(v) flat(inr w) = flat(w)

flat((v ,w)) = flat(v) flat(w)

flat([v1, . . . , vn]) = flat(v1) . . . flat(vn)

Example

flat([inl ((a, b), inr d), inr (a, (b, c))]) = abdabc

flat([inl ((a, b), inr d), inl ((a, b), inl c)]) = abdabc

15

Regular expressions as types

Informally:

string s with syntax tree p according to regular expression E
∼=

string flat(v) of value v element of simple type E

Theorem

L[[E]] = {flat(v) | v ∈ T [[E]]}

16

Membership testing versus parsing

Example

E = ((ab)(c|d)|(abc))* Ed = (ab(c|d))*

Ed is unambiguous: If v ,w ∈ T [[Ed]] and flat(v) = flat(w)
then v = w . (Each string in Ed has exactly one syntax tree.)

E is ambiguous. (Recall p1 and p2.)

E and Ed are equivalent: L[[E]] = L[[Ed]]

Ed “represents” the minimal deterministic finite automaton
for E .

Matching (membership testing): Easy—use Ed .

But: How to parse according to E using Ed?

17

Regular expression equivalence and containment

Sometimes we are interested in regular expression containment or
equivalence.5

Definition

E is contained in F if L[[E]] ⊆ L[[F]].

E is equivalent to F if L[[E]] = L[[F]].

Regular expression equivalence and containment are easily related:
E ≤ F ⇔ E + F = F and E = F ⇔ (E ≤ F ∧ F ≤ E).

5See e.g. Yasuhiko’s talk.
18

Coercion

Definition (Coercion)

Partial coercion: Function f : T [[E]]→ T [[F]]⊥ such that f (v) = ⊥
or flat(v) = flat(f (v)).

Coercion: Function f : T [[E]]→ T [[F]] such that
flat(v) = flat(f (v)).

Intuition:

A coercion is a syntax tree transformer.

It maps a syntax tree under regular expression E to a syntax
tree under regular expression F for same string.

19

Example

f : ((a× b)× (c + d) + a× (b × c)) list→ (a× (b × (c + d))) list

f ([]) = []
f (inl ((x , y), z) :: l) = (x , (y , z)) :: f (l)
f (inr (x , (y , z)) :: l) = (x , (y , inl z)) :: f (l)

flat(f (v)) = flat(v) for all
v : ((a× b)× (c + d) + a× (b × c)) list.

So f defines a coercion from E = ((ab)(c|d)|(abc))* to
Ed = (ab(c|d))*.

f maps each proof of membership (= syntax tree) of a string
s in regular language L[[E]] to a proof of membership of string
s in regular language L[[E]].

So f is a constructive proof that L[[E]] is contained in L[[F]]!

20

Regular expression containment by coercion

Proposition

L[[E]] ⊆ L[[F]]
if and only if

there exists a coercion from T [[E]] to T [[F]].

Idea:

Come up with a sound and complete inference system for
proving regular expression containments.

Interpret it as a language for definining coercions:

Soundness: Each proof term defines a coercion.
Completeness: For each valid regular expression containment
there is at least one proof term.

21

A crash course on regular expression containment

All classical sound and complete axiomatizations basically
start with the axioms for idempotent semirings.

Then they add various inference rules to capture the
semantics of Kleene star.

Algorithms for deciding containment are “coinductive” in
nature:

transformation to automata or
regular expression containment rewriting

The algorithms have little to do with the axiomatizations!

They do not produce a proof (derivation)
They cannot be thought of proof search in an axiomatization.

22

Our approach

Idea:

Axiomatization =
Idempotent semiring
+ finitary unrolling for Kleene-star
+ general coinduction rule (for completeness)
- restriction on coinduction rule (for soundness)

Each rule can be interpreted as natural coercion constructor.

Algorithms for deciding containment can be thought of as
strategies for proof search. They yield coercions, not just
decisions (yes/no).

23

Idempotent semiring axioms
Proviso: + for alternation, × for concatenation, ∗ for Kleene-star.

E + (F + G) = (E + F) + G

E + F = F + E

E + 0 = E

E + E = E

E × (F × G) = (E × F)× G

1× E = E

E × 1 = E

E × (F + G) = (E × F) + (E × G)

(E + F)× G = (E × G) + (F × G)

0× E = 0

E × 0 = 0

24

Kleene-star

Finitary unrolling:

E ∗ = 1 + E × E ∗

General coinduction rule:

[E = F]
· · ·

E = F

E = F

Fantastically powerful rule!

Unfortunately unsound

But “right idea” – just needs controlling.

25

Type-theoretic formulation: Idempotent semiring
With explicit proof terms, using judgement form (due to dispatch
in coinduction rule) and containment instead of equivalence:

Γ ` shuffle : E + (F + G) ≤ (E + F) + G
Γ ` shuffle−1 : E + (F + G) ≤ (E + F) + G

Γ ` retag : E + F ≤ F + E

Γ ` untag : E + E ≤ E
Γ ` tagL : E ≤ E + F

. . .
Γ ` proj : E × 1 ≤ E
Γ ` proj−1 : E ≤ E × 1

Γ ` distL : E × (F + G) ≤ (E × F) + (E × G)
Γ ` distL−1 : (E × F) + (E × G) ≤ E × (F + G)
. . .

26

Primitive coercions

Each axiom can be interpreted as a coercion; e.g.,

shuffle(inl x) = inl (inl x)

shuffle(inr (inl y)) = inl (inr y)

shuffle(inr (inr z)) = inr z

The (p, p−1) pairs denote type isomorphisms:
p ◦ p−1 = id and p−1 ◦ p = id.

(tagL ,untag) is an embedding-projection pair, but not an
isomorphism even for E ≡ F :
untag ◦ tagL = id, but tagL ◦ untag 6= id.

27

Type-theoretic formulation: Kleene-star, coinduction

Γ ` wrap : 1 + E × E ∗ ≤ E ∗

Γ ` wrap−1 : E ∗ ≤ 1 + E × E ∗

Γ, f : E ≤ F ` c : E ≤ F

Γ ` fixf .c : E ≤ F
(Sx)

Interpret (wrap ,wrap−1) as isomorphism in accordance with
isorecursive interpretation of lists.

Interpret fix as least fixed point operator; that is, as
recursively defined coercion: fix = Y (λf .c).

Add side-condition (Sx) that ensures that recursively defined
coercions terminate.

28

The mother of all side conditions

Definition

Coercion c in Γ ` c : E ≤ F is hereditarily total if whenever its free
variables are bound to (total!) coercions then it denotes a (total!)
coercion.

Side condition S1 (Total): fixf .c is hereditarily total

Proposition

It is decidable whether Γ ` c : E ≤ F is hereditarily total.

29

Other side conditions

Definition

(Informally) Coercion c is guarded if all fix-bound variable
occurrences are guarded by × and no proj−1 is applied before
recursive calls.

Side condition S2 (Guarded): fixf .c is guarded

Side condition S3 (constant guarded):

fixf .c has the form fixf .a1 × c1 + . . .+ an × cn

if A = {a1, . . . , an}.
Side condition S4: . . .

30

Soundness and completeness

Theorem

For any of the side conditions Sx:

L[[E]] ⊆ L[[F]]
if and only if

there exists c such that ` c : E ≤ F

31

So what?

Summary so far:

A regular expression denotes a type (“regular type”).

A proof of regular expression containment denotes a coercion
from one regular expression interpreted as a type to the other.

What good is this?

32

Applications6

1 Parametric completeness

2 Coercion synthesis

3 Oracle coding

4 Fast parsing

5 Ambiguity resolution

6 Regular expressions as refinement types for strings

6Disclaimer: Some checked work, much belief, everything informal from now
on

33

Parametric completeness
Our side conditions (S1 and S2) are essentially different from
previous axiomatizations:

No insistence on “no empty word” property.

Instead control application of proj−1.

Theorem

Assume L[[E [G/X]]] ⊆ L[[F [G/X]]] for all RE G where E ,F
contain a regular expression variable X . Then there exists a
parametrically polymorphic coercion c such that
` c : ∀X .E [X] ≤ F [X].

This does not hold of Salomaa (1966) and Grabmeyer (2005).
They only work for “closed” regular expressions. (Kozen’s
axiomatization seems to be parametrically complete in the same
sense.)

34

Parametric completeness

The theorem holds if A is infinite or there exists at least one a ∈ A
that does not occur in E or F .

Open problem

Find a parametrically complete axiomatization for finite A and all
E ,F .

Open problem

Consider functions typed in a substructural version of System F:
linear, no commutativity of assumptions; alphabet symbols
modeled by quantified type variables; lists Church-coded. Does this
yield only coercions? All of them? (And what does “all” mean?)

35

Coercion synthesis
Our axiomatization under S1 (and as far as we have seen
practically also for S2) admits “many” coercions terms. It appears
to contain practically more efficient ones than what is derivable in
other axiomatizations.
Think of coercion synthesis as a functional programming problem.

Example

Prove that |= (G + 1)∗ ≤ G ∗ for all G .
Approach: Find list function of type ∀α.(α+ 1) list→ α list. Make
sure you haven’t permuted, discarded or duplicated input elements.

f ([]) = []

f (inl x :: l) = x :: f (l)

f (inr () :: l) = f (l)

Try to find a proof of |= (G + 1)∗ ≤ G ∗ in Kozen’s axiomatization!
36

Oracle coding (bit-coding)
Recall syntax trees p1, p2 for abdabc under
E = ((a× b)× (c + d) + a× (b × c))∗.

p1 = [inl ((a, b), inr d), inr (a, (b, c))]

p2 = [inl ((a, b), inr d), inl ((a, b), inl c)]

We can code them by storing only their inl , inr occurrences:

code(p1) = 011

code(p2) = 0100

There is a type-directed function decode that can reconstitute the
syntax trees:

decodeE (011) = [inl ((a, b), inr d), inr (a, (b, c))]

decodeE (0100) = [inl ((a, b), inr d), inl ((a, b), inl c)]

37

Oracle coding (bit-coding)

Oracle coding combines orthogonally with ordinary string
compression: Compression of bitcoded syntax trees can be
substantially better than compression of the string.

Coercion judgements can be interpreted directly into bit string
transformations without explicit application of code,decode;
e.g.

retag(0d) = 1d

retag(1d) = 0d

assoc(d) = d

For coding purposes it is better to use right-regular grammars
as a formalism for regular expressions.

38

Ambiguity resolution

All regular expression equivalences yield coercion
isomorphisms, except for one: (tagL , untag) : E = E + E .

This is where ambiguity is introduced/eliminated! Always
choosing tagL (from left to right) favors the left alternative,
as in Perl.

Eager matching seems to correspond to choosing the right
alternative in E ∗ = 1 + E × E∗; lazy matching to choosing
the left alternative.

Open problem

Design an expressive annotation for regular expressions that
specifies a choice function for deterministically choosing one of
potentially multiple syntax trees for a string and that can (at a
minimum) express POSIX and PCRE rules.

39

Fast parsing

Recall E = ((ab)(c|d)|(abc))* Ed = (ab(c|d))*.
Perform fast parsing as follows:

1 Construct c : Ed ≤ E (with suitable ambiguity resolution
principle applied in c)

2 Use deterministic automaton for Ed to build a syntax tree for
input string in linear time.

3 Apply c to the syntax tree.

4 Generate and operate on bit-coded representation of syntax
trees.

Implemented by Brabrand/Thomsen (2010, unpublished). Dube et
al. (2000-) and Frisch/Cardelli (2004) seem to be doing something
that can be understood as the above. (They do not operate on bit
codes, however.)

40

Regular expressions as refinement types for strings

Add regular expressions as refinement types

They’re already there: Regular types! What needs to be
added is coercion synthesis (∼ deciding regular expression
containment).

Use bit coding for run-time representations and bit-coded
coercions for bit transformations.

Open problem

Polymorphic regular type and coercion inference.

Related to Hosoya/Frisch/Castagna (2005), which is for regular
expression types, however.

41

Related work

Frisch, Cardelli (2004): Regular types corresponding to regular
expressions, linear-time parsing for REs;

Hosoya et al. (2000-): Regular expression types, proper
extension of regular types (!), axiomatization of tree
containment

Aanderaa (1965), Salomaa (1966), Krob (1990), Pratt
(1990), Kozen (1994, 2008), Grabmeyer (2005), Rutten et al.
(2008): RE axiomatizations (extensional)

Rutten et al. (1998-): Coalgebraic approach to systems,
including finite automata, extensional—does not distinguish
between equivalent REs (important for parsing)

Brandt/Henglein (1998): Coinduction rule and computational
interpretation for recursive types

Necula/Rahul (2001): Oracle coding in PCC

Cox (2010): RE2 regular expression library

42

Future work

Projection/substitution: efficient composition of parsing,
containment (coercions) and catamorphic postprocessing.

Build a PCRE- and RE2-killer library.

43

Summary

Regular expressions denote types, not languages, when used
grammatically. Apart from singletons no special type
constructions are needed – they’re already present in a typed
programming language.

Regular expression containment proofs denote coercions, not
just yes/no answers (with or without logical certificate).

Sound and complete axiomatization with computational
interpretation of proofs as coercions.

Applications for regular expressions as types: Parsing (not just
membership testing), bit coding, fast parsing, parametricity,
ambiguity resolution, refinement type system for strings.

44

