
Certifying OCaml type inference
(and other type systems)

Jacques Garrigue

Nagoya University

http://www.math.nagoya-u.ac.jp/~garrigue/papers/

Jacques Garrigue — Certifying OCaml type inference 1

What’s in OCaml’s type system

– Core ML with relaxed value restriction

– Recursive types

– Polymorphic objects and variants

– Structural subtyping (with variance annotations)

– Modules and applicative functors

– Private types: private datatypes, rows and

abbreviations

– Recursive modules . . .

Jacques Garrigue — Certifying OCaml type inference 2

The trouble and the solution(?)

– While most features were proved on paper, there is no overall
specification for the whole type system

– For efficiency reasons the implementation is far from the the
theory, making proving it very hard

– Actually, until 2008 there were many bug reports

A radical solution: a certified reference implementation

– The current implementation is not a good basis for certification

– One can check the expected behaviour with a (partial) reference
implementation

– Relate explicitly the implementation and the theory, by
developing it in Coq

Jacques Garrigue — Certifying OCaml type inference 3

What I have be proving in Coq

Over the last 21/2 years (on and off)

– Built a certified ML interpreter including structural polymorphism

– Proved type soundness and adequacy of evaluation

– Proved soundness and completeness (principality) of type

inference

– Can handle recursive polymorphic object and variant types

– Both the type checker and interpreter can be extracted to

OCaml and run

– Type soundness was based on “Engineering formal metatheory”

Jacques Garrigue — Certifying OCaml type inference 4

Related works

About core ML, there are already several proofs

– Type soundness was proved many times, and is included in
”Engineering formal metatheory” [2008]

– For type inference, both Dubois et al. and Nipkow et al. proved
algorithm W [1999]

– Their proofs rely on unification which was first proved by
Paulson in LCF [1985]

However, there are very few proofs including recursive types

– Lee et al. proved type soundness for Standard ML [2007,2009]

– Owens et al. proved it for core OCaml [OCamlLight 2008]

Both of them do not handle type inference

Jacques Garrigue — Certifying OCaml type inference 5

The rest of this talkexplaining the proof

– What is structural polymorphism

– Definitions using co-finite quantification (450 lines)

– Type soundness (1150+650 lines)

– Automation and generic lemmas (1300 lines)

– Polymorphic objects and variants (800 lines)

– Unification (1800 lines)

– Type inference (3100 lines)

– Interpreter (3100 lines)

– Program extraction and examples of inference

Jacques Garrigue — Certifying OCaml type inference 6

Structural polymorphism

A typing framework for polymorphic variants and records.

– Faithful description of the core of OCaml.

– Polymorphism is described by local constraints.

– Constraints are kept in a recursive kinding

environment.

– Constraints are abstract, and constraint domains with

their δ-rules can be defined independently.

Jacques Garrigue — Certifying OCaml type inference 7

Types and kinds

Types are mixed with kinds in a mutually recursive way.

T ::= α type variable
| T → T function type

σ ::= ∀ᾱ.K . T polytypes
K ::= ∅ | K, α :: κ kinding environment
κ ::= • | (C;R) kind
R ::= {a : T , . . .} relation set

Extended type judgment and kind entailment:

K;E ` e : T

(C′;R′) |= (C;R) ⇔ C′ |= C ∧ R′ ⊃ R

Jacques Garrigue — Certifying OCaml type inference 8

Example: polymorphic variants

Kinds have the form (L, U ;R), such that L ⊂ U .

Number(5) : α :: ({Number},L; {Number : int}) . α

l2 = [Number(5), Face(”King”)]
l2 : α :: ({Number , Face},L; {Number : int , Face : string}) . α list

length = function Nil() → 0 | Cons(a, l) → 1 + length l
length : α :: (∅, {Nil , Cons}; {Nil : unit , Cons : β × α}) . α → int

length ′ = function Nil() → 0 | Cons(l) → 1 + length l
length ′ : α :: (∅, {Nil , Cons}; {Nil : unit , Cons : α}) . α → int

f l = length l + length2 l
f : α :: (∅, {Nil , Cons}; {Nil : unit , Cons : β × α, Cons : α}) . α → int

Jacques Garrigue — Certifying OCaml type inference 9

Kinding environment vs. µ-recursion

Kinding environment:

– recursive types as graphs rather than infinite trees

– easy to introduce polymorphism in nodes

– close to the implementation

– a good fit with locally nameless formalization?

“Mechanized metatheory of SML” [Lee et al. 2007] uses

µ-recursive types.

Jacques Garrigue — Certifying OCaml type inference 10

Typing rules

Variable
K, K0 ` θ : K dom(θ) ⊂ B

K;E, x : ∀B.K0 . T ` x : θ(T)

Abstraction
K;E, x : T ` e : T ′

K;E ` fun x → e : T → T ′

Application
K;E ` e1 : T → T ′ K;E ` e2 : T

K;E ` e1 e2 : T ′

Generalize
K;E ` e : T B ∩ FVK(E) = ∅
K|B;E ` e : ∀B.K|B . T

Let
K;E ` e1 : σ K;E, x : σ ` e2 : T

K;E ` let x = e1 in e2 : T

Constant
K0 ` θ : K type(c) = K0 . T

K;E ` c : θ(T)

K0 ` θ : K iff α :: κ ∈ K0 implies θ(α) :: κ′ ∈ K and κ′ |= θ(κ)

Jacques Garrigue — Certifying OCaml type inference 11

Engineering formal metatheory

Aydemir, Charguéraud, Pierce, Pollack, Weirich [POPL08]

Soundness for various type systems (F≤, ML, CoC).

Two main ideas to avoid renaming:

– Locally nameless definitions

Use de-bruijn indices inside terms and types,

but named variables for environments.

– Co-finite quantification

Variables local to a branch are quantified universally.

This allows reuse of derivations in different contexts.

Formalization is not always intuitive, but streamlines proofs of type

soundness.

Jacques Garrigue — Certifying OCaml type inference 12

Typing rules (co-finite)

Variable

K ` T̄ :: κ̄T̄

K;E, x : κ̄ . T1 ` x : T T̄
1

Abstraction
∀x 6∈ L K;E, x : T ` ex : T ′

K;E ` λe : T → T ′

Application
K;E ` e1 : T → T ′ K;E ` e2 : T

K;E ` e1 e2 : T ′

Generalize
∀ᾱ /∈ L K, ᾱ :: κ̄ᾱ;E ` e : T

K;E ` e : κ̄ . T

Let ∀x 6∈ L
K;E ` e1 : σ K;E, x : σ ` ex

2 : T

K;E ` let e1 in e2 : T

Constant

K ` T̄ :: κ̄T̄ Tconst(c) = κ̄ . T1

K;E ` c : T T̄
1

K ` α :: κ when α :: κ′ ∈ K and κ′ |= κ
K ` T :: • always

Jacques Garrigue — Certifying OCaml type inference 13

Soundness results

Started from Engineering formal metatheory ML proof,

with many modifications to accomodate mutual recursion.

No renaming needed for soundness!

Lemma preservation : ∀ K E e e’ T,
K ; E |= e ~: T →
e --> e’ →
K ; E |= e’ ~: T.

Lemma progress : ∀ K e T,
K ; empty |= e ~: T →
value e ∨ exists e’, e --> e’.

Lemma value_irreducible : ∀ e e’,
value e → ~(e --> e’).

Jacques Garrigue — Certifying OCaml type inference 14

Extent of changes

Need simultaneous substitutions rather than iterated.

As a consequence, freshness of sequences of variables (ᾱ /∈ L) is

insufficient, and we need disjointness conditions (L1 ∩ L2 = ∅).

Also added a framework for constants and δ-rules.

Overall size just doubled, with no significant jump in complexity.

This does not include:

Additions to the metatheory, with tactics for finite set inclusion,

disjointness, etc... (1300 lines)

Domain proofs, for concrete constraints and constants. (800)

Jacques Garrigue — Certifying OCaml type inference 15

Constraint domain proofs

Instantiation of the framework to a constraint domain results in the
following “dialog”. This was done for the domain of polymorphic
variants and records.

Module Cstr. (* Define constraints *) End Cstr.

Module Const. (* Constants and arities *) End Const.

Module Sound1 := MkSound(Cstr)(Const).

Import Sound1 Infra Defs.

Module Delta. (* Constant types and delta-rules *) End Delta.

Module Sound2 := Mk2(Delta).

Import Sound2 JudgInfra Judge.

Module SndHyp. (* Domain proofs *) End SndHyp.

Module Soundness := Mk3(SndHyp).

Jacques Garrigue — Certifying OCaml type inference 16

Adding a non-structural rule

Kind GC
FVK(E, T) ∩ dom(K′) = ∅
K, K′;E ` e : T
K;E ` e : T

cofinite Kind GC
∀ᾱ 6∈ L

K, ᾱ :: κ̄ᾱ;E `GC e : T
K;E `GC e : T

– Formalizes the intuition that kinds not appearing in either E or

T are not relevant to the typing judgment.

– Good for modularity.

– Not derivable in the original type system, as all kinds used in a

derivation must be in K from the beginning.

– Again, the co-finite version is implicit.

Jacques Garrigue — Certifying OCaml type inference 17

Working with Kind GC

Framework proofs are still easy (induction on derivations), but
domain proofs become much harder (inversion no longer works).

One would like to prove the following lemma:

K;E `GC e : T ⇒ ∃K′, K, K′;E ` e : T

I got completely stuck in the co-finite system, as co-finite
quantification in Generalize does not commute with Kind GC.

I could finally prove it in more than 1300 lines, including
renaming lemmas for both terms and types.

Afterwards, I realized that I only needed canonicization of proofs,
which is only 100 lines, as it does not require renaming.

Jacques Garrigue — Certifying OCaml type inference 18

Type inference

Type inference is done in the usual ML way:

– W-like algorithm relying on type unification.

– All functions return both a normalized substitution

and an updated kinding environment.

– Statements of inductive theorems become much more

complex.

– Simpler statements as corrolary.

– Renaming lemmas are needed.

Jacques Garrigue — Certifying OCaml type inference 19

Unification

Formal proofs in LCF by Paulson as early as 1985.

Here we also need to handle the kinding environment, making the

algorithm much more complicated.

Rather than θ is more general than θ′ (∃θ1, θ′ = θ1 ◦ θ) used the

simpler θ′ extends θ (θ′ ◦ θ = θ′). They are equivalent when θ is

idempotent.

900 lines for definitions and soundness, thanks to an induction

lemma exploiting symmetries. 1000 more lines for completeness,

with a large part for termination.

Jacques Garrigue — Certifying OCaml type inference 20

Type inference

For core ML, W’s correctness was proved about 10 years ago, both
in Isabelle and Coq.

The original paper on type inference structural polymorphism
contained only proofs about unification.

The practical type inference alorithm is very complex, due to
subtleties of generalize.

Both soundness and principality require renaming. Soundness of
generalize renames type variables twice!

More than 3000 lines of proof, with lots of lemmas about free
variables.

Jacques Garrigue — Certifying OCaml type inference 21

Type inference (let case)

generalize(K, E, T , L) =
let A = FVK(E) and B = FVK(T) in
let K′ = K|A in let ᾱ :: κ̄ = K′|B in
let {ᾱ′} = B \ (A ∪ {ᾱ}) in let κ̄′ = map (λ .•) ᾱ′ in
〈(K|A, K′|L), [ᾱᾱ′](κ̄κ̄′ . T)〉

typinf(K, E, let e1 in e2, T , θ, L) =
let α = fresh(L) in
match typinf(K, E, e1, α, θ, L ∪ {α}) with
| 〈K′, θ′, L′〉 ⇒

let 〈K′′, σ〉 = generalize(θ′(K′), θ′(E), θ′(T), θ′(dom(K))) in
let x = fresh(dom(E) ∪ FV(e1) ∪ FV(e2)) in
typinf(K′′, (E, x : σ), ex

2, T , θ′, L′)
| 〈〉 ⇒ 〈〉

Jacques Garrigue — Certifying OCaml type inference 22

Properties of type inference

Soundness
typinf ′(E, e) = 〈K, T 〉 → FV(E) = ∅ → K;E ` e : T

typinf(K, E, e, T, θ, L) = 〈K′, θ′, L′〉 →
dom(θ) ∩ dom(K) = ∅ → FV(θ, K, E, T) ⊂ L →
θ′(K′); θ′(E) ` e : θ′(T) ∧ θ′ v θ ∧ K ` θ′ : θ′(K′) ∧
dom(θ′) ∩ dom(K′) = ∅ ∧ FV(θ′, K′, E) ∪ L ⊂ L′

Principality

K;E ` e : T → FV(E) = ∅ →
∃K′T ′, typinf ′(E, e) = 〈K′, T ′〉 ∧ ∃θ, T = θ(T ′) ∧ K′ ` θ : K

K;E ` e : θ(T) → K ` θ(E1) ≤ E → θ v θ1 → K1 ` θ : K →
dom(θ1) ∩ dom(K1) = ∅ → dom(θ) ∪ FV(θ1, K1, E1, T) ⊂ L →
∃K′θ′L′, typinf(K1, E1, e, T, θ1, L) = 〈K′, θ′, L′〉 ∧
∃θ′′, θθ′′ v θ′ ∧ K′ ` θθ′′ : K ∧ dom(θ′′) ⊂ L′ \ L

Jacques Garrigue — Certifying OCaml type inference 23

Interpreter

Defined a stack based abstract machine.
Since variables are de Bruijn indices, we can use terms as code.

Theorem eval_sound_rec :

∀ (h:nat) (fl:list frame) (benv args:list clos) K t T,

closed_n (length benv) t ->

K ; E |= stack2trm (app2trm (inst t benv) args) fl ~: T ->

K ; E |= res2trm (eval fenv h benv args t fl) ~: T.

Theorem eval_complete : ∀ K t t’ T,

K ; E |= t ~: T ->

clos_refl_trans_1n _ red t t’ -> value t’ ->

∃h : nat,∃cl : clos,

eval fenv h [] [] t [] = Result 0 cl ∧ t’ = clos2trm cl.

Jacques Garrigue — Certifying OCaml type inference 24

Impact of locally nameless and co-finite

Since local and global variables are distinct, many definitions must

be duplicated, and we need lemmas to connect them.

– This is particularly painful for kinding environments, as they are

recursive.

– Yet having to handle explicitly names of bound type variables

would probably be even more painful.

Co-finite approach seems to be always a boon. Even for type

inference, only few proofs use renaming lemmas:

– principality only requires term variable renaming once.

– soundness requires both term and type variables renaming, not

surprising since we build a co-finite proof from a finite one.

Jacques Garrigue — Certifying OCaml type inference 25

Dependent types in values

They are used in the “engineering metatheory” framework only
when generating fresh variables:

Lemma var_fresh : ∀ L : vars, { x : var | x 6∈ L }.
I used dependent types in values in one other place: all kinds are
valid and coherent by construction.

– A bit more complexity in

domain proofs.

– But a big win since this

property is kept by sub-

stitution.

Record ckind : Set := Kind {
kcstr : Cstr.cstr;

kvalid : Cstr.valid kcstr;

krel : list (Cstr.attr×typ);

kcoherent : coherent kcstr krel }.

Also attempted to use dependent types for schemes (enforcing that
they are well-formed), but dropped them as it made proofs about
the type inference algorithm more complex.

Jacques Garrigue — Certifying OCaml type inference 26

What could be improved?

Some proofs are still much bigger than expected: eval complete,
type inference, . . .

– The value predicate is complex, as it handles constant arity.

It might have been better to define constants as n-ary
constructors from the start.

This would require writing the induction principles by hand;
already done for closures.

– Using functions to represent algorithms is dirty.

In some cases, adding input-output inductive relations helped,
but in general it does not change the proof size significantly.

Could I switch to adaptive proof scripts [Chlipala]?

Jacques Garrigue — Certifying OCaml type inference 27

Using the algorithm

Once the framework is instantiated, one can extract the type

inference algorithm to ocaml, and run it.

(* This example is equivalent to the ocaml term [fun x -> ‘A0 x] *)

typinf1 (Coq_trm_cst (Const.Coq_tag (Variables.var_of_nat O)));;

- : (var * kind) list * typ =

([(1, None);

(2,

Some

{kind_cstr = {cstr_low = {0}; cstr_high = None};
kind_rel = Cons (Pair (0, Coq_typ_fvar 1), Nil)})],

Coq_typ_arrow (Coq_typ_fvar 1, Coq_typ_fvar 2))

Jacques Garrigue — Certifying OCaml type inference 28

A more complete example

let rev_append =

recf (abs (abs (abs

(matches [0;1] [abs (bvar 1);

abs(apps(bvar 3)[sub 1 (bvar 0);cons(sub 0 (bvar 0))(bvar 1)]);

bvar 1])))) ;;

val rev_append : trm = ...

typinf2 Nil rev_append;;

- : (var * kind) list * typ = (* using pretty printer *)

([(10, <Ksum, {}, {0; 1}, {0 => tv 15; 1 => tv 34}>);
(29, <Ksum, {1}, any, {1 => tv 26}>);
(34, <Kprod, {1; 0}, any, {0 => tv 30; 1 => tv 10}>); (30, any);

(26, <Kprod, {}, {0; 1}, {0 => tv 30; 1 => tv 29}>); (15, any)],

tv 10 @> tv 29 @> tv 29)

Jacques Garrigue — Certifying OCaml type inference 29

Path Resolution for Recursive Modules

(work done with Keiko Nakata)

– Problem: deciding path equality for recursive modules.

– Undecidable for a combination of first order strongly applicative

functors and nested modules, allowing arbitrary recursive paths.

– Decidable by restricting submodule access in arguments to finite

depth.

– The proof is by very involved induction, so that we decided to

prove some lemmas in Coq.

– By choosing to have all recursive paths start from the root, we

could avoid handling binders, and the proof is much easier.

Jacques Garrigue — Certifying OCaml type inference 30

Path normalization

The following language describes recursive signatures for a

language with first-order functors.

Access signatures S ::= {m1 : S1 · · ·mn : Sn}
Expressions e ::= {m1 = e1 · · ·mn = en} | λ(x : S)e | p
Paths p ::= vp | rp
Variable paths vp ::= x | vp.m
Rooted paths rp ::= ε | rp(p) | rp.m

We want to prove that for any program the normalizability of paths

is decidable.

Jacques Garrigue — Certifying OCaml type inference 31

Enforcing restrictions

Enforcing that functor arguments are correctly accessed

is not easy.

m1 = λ(x : {}){m2 = x m3 = ε.m1(x).m2.m4} m5 = {}}

This program is incorrect

ε.m1(x).m2.m4 → x.m4 → error

but all ground paths exhibit no problem.

Jacques Garrigue — Certifying OCaml type inference 32

Safe path normalization : 3 different judgments.

r-src
P ` p 7→ (θ, e) P ` θ safe e not a path

P ` p ↓ p
r-vp

ap ∈ sigP (x)

P ` x.ap ↓ x.ap

r-exp
P ` p 7→ (θ, p′) P ` θ safe P ` θ(p′) ↓ q

P ` p ↓ q

r-dot
P ` p ↓ p′ P ` p′.m ↓ q

P ` p.m ↓ q
r-app

P ` p1 ↓ p′1 P ` p′1(p2) ↓ q

P ` p1(p2) ↓ q

s-rec
P ` p ↓ q P ` q.mi : Si (1 ≤ i ≤ n)

P ` p : {m1 : S1 . . . mn : Sn}

s-subst
P ` pi : sigP (xi) (1 ≤ i ≤ n)

P ` [x1 7→ p1, . . . , xn 7→ pn] safe

Jacques Garrigue — Certifying OCaml type inference 33

Formally proved

Lemma 2 (substitution) If P ` p : S and P ` θ safe,

then P ` θ(p) : S.

Proof by mutual induction on safe reduction, safety for a signature,
and safe substitutions.

The formalization

– uses de Bruijn indices for functor arguments

– uses local environments rather than a global mapping to
association signatures to arguments

Jacques Garrigue — Certifying OCaml type inference 34

Lemma substitution : ∀ p S s e,
safe p S →safe_subs s e → closed e p → safe (subst s p) S.

Proof. ...

refine (safe_ind3

(fun p1 p2 ⇒ closed e p1 →
if rooted_path p2 then red (subst s p1) (subst s p2)

else ∀ S, safe p1 S → safe (subst s p1) S) _

(fun s’ e’ ⇒ list_forall (closed e) s’ →
safe_subs (map (subst s) s’) e’) _ _ _ _ _ _ _ _ _);

intros.

(* 87 more lines to prove all the cases *)

Qed.

Note that the property to prove by induction on safe reduction
depends on whether the form of the resulting path.

The whole formalization is 600 lines, using standard tactics, and was
written in less than 1 week.

Jacques Garrigue — Certifying OCaml type inference 35

Conclusion

– Formalized completely structural polymorphism.

– Proved not only type soundness, but also soundness and
principality of inference, and correctness of evaluation through
an abstract machine.

– First step towards a certified reference implementation of
OCaml. Next step might be type constructors and the relaxed
value restriction.

– The techniques in Engineering formal metatheory proved useful,
but had to redo the automation.

– Draft and extractable proof scripts at
http://www.math.nagoya-u.ac.jp/~garrigue/papers/

Jacques Garrigue — Certifying OCaml type inference 36

Dependent types for termination

In Coq all functions must use structural induction.

– Straightforward approach

◦ Add a dummy decreasing argument, raising error if 0.

◦ Then prove that one can always build a sufficiently big value.

◦ Works, but the value must be built in the extracted code too.

– Alternative approach

◦ Work by induction on a proof of termination, given as extra
argument to the function.

◦ Proofs are discarded during extraction.

◦ One must use dependent types heavily inside functions.

Jacques Garrigue — Certifying OCaml type inference 37

Dependent types for termination (2)

Fixpoint unify pairs K S (HS:is_subst S) (HK:ok K)

(h:Accu S K pairs) {struct h} : option (kenv * subs) :=

match pairs as pairs0

return pairs = pairs0 -> option (kenv * subs) with

| nil => fun _ => Some (K, S)

| (T1, T2) :: pairs => fun eq =>

match unify1_dep T1 T2 K S HS HK with

| inright _ => None

| inleft (exist (pairs’, K’, S’)

(conj _ (conj HK’ (conj HS’ lt’)))) =>

unify (pairs’ ++ pairs) K’ S’ HS’ HK’

(Acc_inv h _ (lt’ _ _ eq))

end

end (refl_equal pairs).

Jacques Garrigue — Certifying OCaml type inference 38

Working with functions containing proofs

Two difficulties

– Evaluation may unroll huge proof terms

◦ Need to change evaluation strategy:
lazy [unify]; fold unify rather than simpl

◦ Normalize proof terms with a lemma, using proof irrelevance
rewrite normalize typinf

– Case analysis must not break proof hypotheses

◦ Wrap some computations in dependently typed functions

◦ Proof premises obtained as result of these functions

◦ This allows to break dependencies on actual values

