
Concurrent Orchestration
in Haskell

John Launchbury
Trevor Elliott

foo :: (a -> s -> s) -> s -> Orc a -> Orc s
foo f s p = do a <- newMVarM s
 x <- p
 v <- takeMVarM a
 let w = f x v
 putMVarM a w
 return w

Code Puzzle

This code implements
a well-known idiom —

as we go on,
try to figure out what it is...

Outline

• Concurrent scripting
• Laws
• Thread management

Testing Xen Virtual Machines

Xen hypervisor

Server Client2Client1Helper Tester

• Tester talks with each of the VMs concurrently
• Many possible behaviors are “correct” / “incorrect”
• Timeouts, VMs dying, etc.
• Subtle concurrency bugs in test framework

fplang :: Orc String
fplang = return “Haskell” <|> return “ML” <|> return “Scheme”

Orc Example

“Haskell” “ML” “Scheme”

fplang

metronome :: Orc ()
metronome = return () <|> (delay 2.5 >> metronome)

Orc Example

metronome

delay 2.5
()

quotes :: Query -> Query -> Orc Quote
quotes srcA srcB = do
 quoteA <- eagerly $ getQuote srcA
 quoteB <- eagerly $ getQuote srcB
 cut ((return least <*> quoteA <*> quoteB)
 <|> (quoteA >>= threshold)
 <|> (quoteB >>= threshold)
 <|> (delay 25 >> (quoteA <|> quoteB))
 <|> (delay 30 >> return noQuote))

least x y = if price x < price y then x else y
threshold x = guard (price x < 300) >> return x

Orc Example

A

B

Need to
book a ticket,
under $300 if

possible…

quote

queens = fmap show (extend [])
 <|> return ("Computing 8-queens...")

extend :: [Int] -> Orc [Int]
extend xs = if length xs == 8
 then return xs
 else do
 j <- listOrc [1..8]
 guard $ not (conflict xs j)
 extend (j:xs)

conflict :: [Int] -> Int
conflict = ...

listOrc :: [a] -> Orc a
listOrc = foldr (<|>) stop . map return

Orc Example

*Main> printOrc (queens)
Ans = "Computing 8-queens..."
Ans = "[5,7,1,3,8,6,4,2]"
Ans = "[5,2,4,7,3,8,6,1]"
Ans = "[6,4,2,8,5,7,1,3]"
Ans = "[5,3,8,4,7,1,6,2]"
Ans = "[4,2,7,3,6,8,5,1]"
:

*Main> printOrc (queens)
Ans = "Computing 8-queens..."
Ans = "[4,2,7,3,6,8,5,1]"
Ans = "[6,4,7,1,8,2,5,3]"
Ans = "[3,6,8,1,4,7,5,2]"
Ans = "[3,6,4,2,8,5,7,1]"
Ans = "[2,7,3,6,8,5,1,4]"
:

Orc Example

baseball :: Orc (String,String)
baseball = do

 team <- prompt "Name a baseball team"
 `after` (12, return "Yankees")
 <|> prompt "Name another team"
 `notBefore` 10
 <|> (delay 8 >> return "Mariners")

 agree <- prompt ("Do you like "++team++"?")
 `after` (20, guard (team/="Mets") >> return "maybe")

 return (team, agree)

Orc Example

baseball :: Orc (String,String)
baseball = do

 team <- prompt "Name a baseball team"
 `after` (12, return "Yankees")
 <|> prompt "Name another team"
 `notBefore` 10
 <|> (delay 8 >> return "Mariners")

 agree <- prompt ("Do you like "++team++"?")
 `after` (20, guard (team/="Mets") >> return "maybe")

 return (team, agree)

Orc Example

Name a baseball team
Mets_

Name another team
_

baseball :: Orc (String,String)
baseball = do

 team <- prompt "Name a baseball team"
 `after` (12, return "Yankees")
 <|> prompt "Name another team"
 `notBefore` 10
 <|> (delay 8 >> return "Mariners")

 agree <- prompt ("Do you like "++team++"?")
 `after` (20, guard (team/="Mets") >> return "maybe")

 return (team, agree)

Orc Example

Do you like Mariners?
_

Name a baseball team
Mets_

Name another team
_

baseball :: Orc (String,String)
baseball = do

 team <- prompt "Name a baseball team"
 `after` (12, return "Yankees")
 <|> prompt "Name another team"
 `notBefore` 10
 <|> (delay 8 >> return "Mariners")

 agree <- prompt ("Do you like "++team++"?")
 `after` (20, guard (team/="Mets") >> return "maybe")

 return (team, agree)

Orc Example

Do you like Mariners?
_

Name a baseball team
Mets_

Name another team
_

Do you like Mets?
_

baseball :: Orc (String,String)
baseball = do

 team <- prompt "Name a baseball team"
 `after` (12, return "Yankees")
 <|> prompt "Name another team"
 `notBefore` 10
 <|> (delay 8 >> return "Mariners")

 agree <- prompt ("Do you like "++team++"?")
 `after` (20, guard (team/="Mets") >> return "maybe")

 return (team, agree) Do you like

_

Orc Example

Do you like Mariners?
_

Name a baseball team
Mets_

Name another team
_

Do you like Mets?
_

foo :: (a -> s -> s) -> s -> Orc a -> Orc s
foo f s p = do a <- newMVarM s
 x <- p
 v <- takeMVarM a
 let w = f x v
 putMVarM a w
 return w

Code Puzzle

scan :: (a -> s -> s) -> s -> Orc a -> Orc s
scan f s p = do a <- newMVarM s
 x <- p
 v <- takeMVarM a
 let w = f x v
 putMVarM a w
 return w

% printOrc (scan (+) 0 $ listOrc [1,2,3,4,5])

Orc Code

P

f
f

f

a

scan :: (a -> s -> s) -> s -> Orc a -> Orc s
scan f s p = do a <- newMVarM s
 x <- p
 v <- takeMVarM a
 let w = f x v
 putMVarM a w
 return w

% printOrc (scan (+) 0 $ listOrc [1,2,3,4,5])
Ans = 1
Ans = 3
Ans = 6
Ans = 11
Ans = 15
%

Orc Code

P

f
f

f

a

Layered Implementation

• Layered implementation —
layered semantics
– Properties at one level depend

on properties at the level below

• What properties should Orc terms
satisfy?
– Hence, what properties should

be built into HIO?

• Unresolved question: what laws
should the basic operations of the
IO monad satisfy?

Transition Semantics

IO Monad

HIO Monad

Orc Monad

Orc Scripts

external effects

thread control

multiple results

type Orc a = (a -> HIO ()) -> HIO ()

return x = \k -> k x
p >>= h = \k -> p (\x -> h x k)
p <|> q = \k -> fork (p k) >> q k

stop = \k -> return ()

runOrc p = p (\x -> return ())

Key Definitions

type Orc a = (a -> HIO a) -> HIO a

return x = \k -> k x
p >>= h = \k -> p (\x -> h x k)
p <|> q = \k -> fork (p k) >> q k

Bind

k

p >>= h

=

type Orc a = (a -> HIO a) -> HIO a

return x = \k -> k x
p >>= h = \k -> p (\x -> h x k)
p <|> q = \k -> fork (p k) >> q k

Bind

k

p >>= h

= h

p

k

type Orc a = (a -> HIO a) -> HIO a

return x = \k -> k x
p >>= h = \k -> p (\x -> h x k)
p <|> q = \k -> fork (p k) >> q k

Par

k

p <|> q

=

type Orc a = (a -> HIO a) -> HIO a

return x = \k -> k x
p >>= h = \k -> p (\x -> h x k)
p <|> q = \k -> fork (p k) >> q k

Par

k

p <|> q

k

p

k

q

=

Eagerly

• Give p a continuation that will store its result

• Return the “value” that accesses that result for
the then current continuation

eagerly :: Orc a -> Orc (Orc a)
eagerly p = \k -> do
 r <- newEmptyMVarM
 forkM (p (putMVarM r))
 k (\k’ -> readMVarM r >>= k’)

put r

p

k

?

read r

k

eagerly p

=

eagerly p
p

 a

Eagerly

• Give p a continuation that will store its result (but
once only even if duplicated)

• Return the “value” that accesses that result for
the then current continuation

eagerly :: Orc a -> Orc (Orc a)
eagerly p = \k -> do
 r <- newEmptyMVarM

 forkM (p `saveOnce` (r))
 k (\k’ -> readMVarM r >>= k’)

saveOnce :: Orc a -> (MVar a) -> HIO ()
p `saveOnce` (r) = do

 p (\x -> putMVarM r x)

Eagerly

• Give p a continuation that will store its result (but
once only even if duplicated)

• Return the “value” that accesses that result for
the then current continuation

eagerly :: Orc a -> Orc (Orc a)
eagerly p = \k -> do
 r <- newEmptyMVarM

 forkM (p `saveOnce` (r))
 k (\k’ -> readMVarM r >>= k’)

saveOnce :: Orc a -> (MVar a) -> HIO ()
p `saveOnce` (r) = do
 ticket <- newMVarM ()
 p (\x -> takeMVarM ticket >> putMVarM r x)

Eagerly

• Give p a continuation that will store its result (but
once only even if duplicated)

• Return the “value” that accesses that result for
the then current continuation

• Thread management can be carried over too

eagerly :: Orc a -> Orc (Orc a)
eagerly p = \k -> do
 r <- newEmptyMVarM
 e <- newLocality
 local e $ forkM (p `saveOnce` (r,e))
 k (\k’ -> readMVarM r >>= k’)

saveOnce :: Orc a -> (MVar a,Locality) -> HIO ()
p `saveOnce` (r,e) = do
 ticket <- newMVarM ()
 p (\x -> takeMVarM ticket >> putMVarM r x >> close e)

sync :: (a->b->c) -> Orc a -> Orc b -> Orc c
sync f p q = do
 po <- eagerly p
 qo <- eagerly q
 return f <*> po <*> qo

notBefore:: Orc a -> Float -> Orc a
p `notBefore` w = sync const p (delay w)

Eagerly

• Entering the handle waits
for the result

• Synchronization
• cut

sync :: (a->b->c) -> Orc a -> Orc b -> Orc c
sync f p q = do
 po <- eagerly p
 qo <- eagerly q
 return f <*> po <*> qo

notBefore:: Orc a -> Float -> Orc a
p `notBefore` w = sync const p (delay w)

Eagerly

• Entering the handle waits
for the result

• Synchronization
• cut

cut:: Orc a -> Orc a
cut p = do
 po <- eagerly p
 po

sync :: (a->b->c) -> Orc a -> Orc b -> Orc c
sync f p q = do
 po <- eagerly p
 qo <- eagerly q
 return f <*> po <*> qo

notBefore:: Orc a -> Float -> Orc a
p `notBefore` w = sync const p (delay w)

Eagerly

• Entering the handle waits
for the result

• Synchronization
• cut

cut:: Orc a -> Orc a
cut = join . eagerly

cut:: Orc a -> Orc a
cut p = do
 po <- eagerly p
 po

Orc Laws

Left-Return: (return x >>= k) = k x
Right-Return: (p >>= return) = p
Bind-Associativity: ((p >>= k) >>= h) = (p >>= (k >=> h))

Stop-Identity: p <|> stop = p
Par-Commutativity: p <|> q = q <|> p
Par-Associativity: p <|> (q <|> r) = (p <|> q) <|> r

Left-Zero: (stop >>= k) = stop
Par-Bind: ((p <|> q) >>= k) = ((p >>= k) <|> (q >>= k))

Non-Laws

Bind-Par?: p >>= (\x -> h x <|> k x) = (p >>= h) <|> (p >>= k)
Right-Zero?: p >> stop = stop

Non-Laws

Bind-Par?: p >>= (\x -> h x <|> k x) = (p >>= h) <|> (p >>= k)
Right-Zero?: p >> stop = stop

p `until` done = cut (silent p <|> done)
silent p = p >> stop

Non-Laws

Bind-Par?: p >>= (\x -> h x <|> k x) = (p >>= h) <|> (p >>= k)
Right-Zero?: p >> stop = stop

p `until` done = cut (silent p <|> done)
silent p = p >> stop

hassle = (metronome >> email("Simon","Hey!"))
 `until`
 (delay 60 >> return ())

Eagerly Laws

Eagerly-Par: eagerly p >>= (\x -> k x <|> h) = (eagerly p >>= k) <|> h

Eagerly-Swap:
do y <- eagerly p = do x <- eagerly q
 x <- eagerly q y <- eagerly p
 return (x,y) return (x,y)

Eagerly-IO: eagerly (ioOrc m) >> p = (ioOrc m >> stop) <|> p

Val

• The implementation of val (the alternative that
uses lazy thunks) is almost identical

val :: Orc a -> Orc a
val p = \k -> do
 r <- newEmptyMVarM
 e <- newLocality
 local e $ forkM (p `saveOnce` (r,e))
 k (unsafePerformIO $ readMVarM r)

saveOnce :: Orc a -> (MVar a,Locality) -> HIO ()
p `saveOnce` (r,e) = do
 ticket <- newMVarM ()
 p (\x -> takeMVarM ticket >> putMVarM r x >> close e)

val p
p

a

quotesVal :: Query -> Query -> Orc Quote
quotesVal srcA srcB = do
 quoteA <- val $ getQuote srcA
 quoteB <- val $ getQuote srcB
 cut (publish (least quoteA quoteB)
 <|> (threshold quoteA)
 <|> (threshold quoteB)
 <|> (delay 25 >> (publish quoteA <|> publish quoteB))
 <|> (delay 30 >> return noQuote))

publish :: NFData a => a -> Orc a
publish x = deepseq x $ return x

Example

• Good: use the lazy values directly
• Bad: have to be careful about evaluation

HIO Monad

• Don’t want the programmer to have to do
explicit thread management
– Nested groups of threads

• Want richer equational theory than IO
– e.g. by managing asynchronous exceptions

~~~~
~~~
~~
~~~~

~~~~
~~~
~~

~~~~~
~~
~~
~~~~~
~~~
~~~~

~~~
~
~~
~~~~

~~
~
~~
~~~~

~~~~
~~~
~~

~~~~
~
~~

~~~~
~
~~

HIO Monad

• Don’t want the programmer to have to do
explicit thread management
– Nested groups of threads

• Want richer equational theory than IO
– e.g. by managing asynchronous exceptions

~~~~
~~~
~~
~~~~

~~~~
~~~
~~

~~~~~
~~
~~
~~~~~
~~~
~~~~

~~~
~
~~
~~~~

~~
~
~~
~~~~

~~~~
~~~
~~

~~~~
~
~~

~~~~
~
~~

newtype HIO a = HIO {inGroup :: Locality -> IO a}
type Group {- abstract -}
data Entry = Thread ThreadId
 | Group Group

newGroup :: IO Group
register :: Entry -> Group -> IO ()
killGroup :: Group -> IO ()

first :: Int -> Orc a -> Orc a
first n p = do
 vals <- newEmptyMVarM
 end <- newEmptyMVarM
 echo n vals end
 <|> silent (generate p vals end)

generate p vals end =
 (p >>= putMVarM vals) `until` takeMVarM end

echo n vals end = loop n
 where loop 0 = silent $ putMVarM end ()
 loop n = do x <- takeMVarM vals
 return x <|> loop (n-1)

Orc Example

• Use MVars to communicate
• Use `until` to kill-off work when finished

generate p

vals

echo n

end

a

baz :: [a] -> Orc [a]
baz xs = filterM pred xs

pred x = return False <|> return True

Final Fun

This code implements
a well-known function —

what is it?

Standard function:
filterM _ [] = return []
filterM p (x:xs) = do
 b <- p x
 ys <- filterM p xs
 return (if b then x:ys else ys)

