
Denotational semantics for lazy initialization of letrec
black holes as exceptions rather than divergence

Keiko Nakata
Institute of Cybernetics at Tallinn University of Technology

Abstract

We present a denotational semantics for a simply typed call-by-need letrec calculus, which dis-
tinguishes direct cycles, such as let rec x = x in x and let rec x = y and y = x+ 1 in x, and looping
recursion, such as let rec f = λx. f x in f 0. In this semantics the former denote an exception whereas
the latter denotes divergence.

The distinction is motivated by “lazy evaluation” as implemented in OCaml via lazy/force and
Racket (formerly PLT Scheme) via delay/force: when a delayed variable is dereferenced for the first
time, it is first pre-initialized to an exception-raising thunk and is updated afterward by the value
obtained by evaluating the expression bound to the variable. Any attempt to dereference the variable
during the initialization raises an exception rather than diverges. This way, lazy evaluation provides
a useful measure to initialize recursive bindings by exploring a successful initialization order of the
bindings at runtime and by signaling an exception when there is no such order. It is also used for the
initialization semantics of the object system in the F# programming language.

The denotational semantics is proved adequate with respect to a referential operational semantics.

1 Introduction

Lazy evaluation is a well-known technique in practice to initialize recursive bindings. OCaml [6] and
Racket (formerly PLT Scheme) [4], provide language constructs, lazy/force and delay/force operators
respectively, to support lazy evaluation atop call-by-value languages with arbitrary side-effects. Their
implementations are quite simple: when a delayed variable is dereferenced for the first time, it is first
pre-initialized to an exception-raising thunk and is updated afterward by the value obtained by evaluating
the expression bound to the variable. Any attempt to dereference the variable during the initialization
raises an exception rather than diverges. In other words, lazy evaluation as implemented in OCaml
and Racket distinguishes direct cycles 1, which we call “black holes”, such as let rec x = x in x and
let rec x = y and y = x+1 in x, and looping recursion, such as let rec f = λx. f x in f 0. The former raise
an exception, whereas the latter diverges.

Lazy evaluation provides a useful measure to initialize recursive bindings by exploring a successful
initialization order of the bindings at runtime and by signaling an exception when there is no such order.
In [12], Syme advocates the use of lazy evaluation for initializing mutually recursive bindings in ML-
like languages to permit a wider range of recursive bindings 2. Flexibility in handling recursive bindings
is particularly important for these languages to interface with external abstract libraries such as GUI
APIs. Syme’s proposal can be implemented using OCaml’s lazy/force operators and it underlies the
initialization semantics of the object system in F# [13].

There is a gap between lazy evaluation, as outlined above, and conventional models for lazy, or
call-by-need, computation as found in the literature. Traditionally call-by-need is understood as an eco-
nomical implementation of call-by-name, which does not distinguish black holes and looping recursion
but typically interprets both uniformly as “undefined”. The gap becomes evident when a programming
language supports exception handling, as both OCaml and Racket do — one can catch exceptions but
cannot catch divergence. Indeed catching exceptions due to black holes is perfectly acceptable, or could

1Direct cycles are also known as provable divergence.
2In ML, the right-hand side of recursive bindings is restricted to be syntactic values.

1

Denotational semantics of lazy initialization of letrec K. Nakata

Expressions M,N ::= n | x | λx.M |M N | let rec x1 beM1, . . . ,xn beMn in M | •
Results V ::= n | λx.M | •
Types τ ::= nat | τ1→ τ2

Figure 1: Syntax of λletrec

n : nat x : type(x) • : τ

x : τ1 M : τ2

λx.M : τ1→ τ2

M : τ1→ τ2 N : τ1
M N : τ2

x1 : τ1 . . . xn : τn M1 : τ1 . . . Mn : τn N : τ

let rec x1 beM1, . . . ,xn beMn in N : τ

Figure 2: Typing rules

be even desired, in practice; it is just like catching null-pointer exceptions due to object initialization
failure in object-oriented languages.

In this paper we present a denotational semantics, which matches the lazy evaluation as implemented
in OCaml and Racket and used in F#’s object initialization. In this semantics, direct cycles denote excep-
tions whereas looping recursion denotes divergence. The key observation is to think of lazy evaluation
as a most successful initialization strategy of recursive bindings: the initialization succeeds if and only if
there is a non-circular order in which the bindings can be initialized. The operational semantics searches
such an order by on-demand computation. The denotational semantics searches such one intuitively by
initializing recursive bindings in parallel and choosing the most successful result as the denotation.

The denotational semantics, proved adequate with respect to a referential operational semantics, is
the main contribution of the paper.

2 Syntax and operational semantics

The syntax of our simply typed letrec calculus, λletrec, is given in figure 1. An expression is either a natu-
ral number n∈N, variable x, abstraction λx.M, application M N, letrec let rec x1 beM1, . . . ,xn beMn in M,
or black hole •, which represents an exception. Results are natural numbers, abstraction and black holes.
A type is either a base type, nat, or a function type of shape τ1→ τ2. To simplify the calculus, we assume
each variable x is associated with a unique type, given, e.g., type(x). Typing rules are found in figure 2,
which are all straightforward.

In figure 3, we present the natural semantics. The natural semantics is identical to that given in
our previous work [8], which is very much inspired by Launchbury’s [5] and Sestoft’s [10]. Heaps,
ranged over by metavariables Ψ and Φ, are finite mappings from variables to expressions. We write
x1 7→M1, . . . ,xn 7→Mn to denote a heap whose domain is {x1, . . . ,xn}, and which maps xi’s to Mi’s. The
notation Ψ[x1 7→M1, . . . ,xn 7→Mn] denotes mapping extension. Precisely, Ψ[x1 7→M1, . . .xn 7→Mn](xi) =
Mi and Ψ[x1 7→M1, . . .xn 7→Mn](y)=Ψ(y) when y 6= xi for any i in 1, . . . ,n. We write Ψ[x 7→M] to denote
a single extension of Ψ with M at x. In rule Letrec, M′i ’s and N′ denote expressions obtained from Mi’s
and N by substituting x′i’s for xi’s, respectively. We may abbreviate 〈Ψ〉M where Ψ is an empty mapping,
i.e., the domain of Ψ is empty, to 〈〉M.

The judgment 〈Ψ〉M ⇓ 〈Φ〉V expresses that an expression M in an initial heap Ψ evaluates to a result
V with the heap being Φ. In Variable rule, the heap Ψ is updated to map x to • while the expression
bound to x is evaluated. For instance, 〈〉 let rec xbex in x ⇓ 〈x′ 7→ •〉• is deduced. This way, an attempt
to dereference a variable which is under “initialization” results in a black hole. Errorβ rule propagates
black holes. Other rules are self-explanatory.

In figure 4 we present the derivation for the expression let rec xbe f x, f beλy.y in x. We deliberately

2

Denotational semantics of lazy initialization of letrec K. Nakata

Result
〈Ψ〉V ⇓ 〈Ψ〉V

Application
〈Ψ〉M1 ⇓ 〈Φ〉λx.N 〈Φ[x′ 7→M2]〉N[x′/x] ⇓ 〈Ψ′〉V x′ fresh

〈Ψ〉M1 M2 ⇓ 〈Ψ′〉V
Variable

〈Ψ[x 7→ •]〉Ψ(x) ⇓ 〈Φ〉V
〈Ψ〉x ⇓ 〈Φ[x 7→V]〉V

Letrec
〈Ψ[x′1 7→M′1, . . . ,x

′
n 7→M′n]〉N′ ⇓ 〈Φ〉V x′1, . . . ,x

′
n fresh

〈Ψ〉 let rec x1 beM1, . . . ,xn beMn in N ⇓ 〈Φ〉V
Errorβ

〈Ψ〉M1 ⇓ 〈Φ〉•
〈Ψ〉M1 M2 ⇓ 〈Φ〉•

Figure 3: Natural semantics

〈x′ 7→ •, f ′ 7→ •〉λy.y ⇓ 〈x′ 7→ •, f ′ 7→ •〉λy.y
〈x′ 7→ •, f ′ 7→ λy.y〉 f ′ ⇓ 〈x′ 7→ •, f ′ 7→ λy.y〉λy.y

〈x′ 7→ •, f ′ 7→ λy.y,y′ 7→ •〉• ⇓ 〈x′ 7→ •, f ′ 7→ λy.y,y′ 7→ •〉•
〈x′ 7→ •, f ′ 7→ λy.y,y′ 7→ •〉x′ ⇓ 〈x′ 7→ •, f ′ 7→ λy.y,y′ 7→ •〉•
〈x′ 7→ •, f ′ 7→ λy.y,y′ 7→ x′〉y′ ⇓ 〈x′ 7→ •, f ′ 7→ λy.y,y′ 7→ •〉•

〈x′ 7→ •, f ′ 7→ λy.y〉 f ′ x′ ⇓ 〈x′ 7→ •, f ′ 7→ λy.y,y′ 7→ •〉•
〈x′ 7→ f ′ x′, f ′ 7→ λy.y〉x′ ⇓ 〈x′ 7→ •, f ′ 7→ λy.y,y′ 7→ •〉•

〈〉 let rec xbe f x, f beλy.y in x ⇓ 〈x′ 7→ •, f ′ 7→ λy.y,y′ 7→ •〉•

Figure 4: The derivation for let rec xbe f x, f beλy.y in x

chose a black hole producing expression.

3 Denotational semantics

We proceed to the denotational semantics. An expression M of type τ denotes an element of (Vτ +Errτ)⊥,
where (·)⊥ is lifting and Errτ is a singleton, whose only element is •τ . Vτ denotes proper values of type
τ and is defined by induction on τ:

Vnat = N Vτ0→τ1 = [(Vτ0 +Errτ0)⊥→ (Vτ1 +Errτ1)⊥]

We omit injections for both the lifting and the sum. A metavariable ϕ ranges over proper function
values, i.e., elements of Vτ0→τ1 for some τ0 and τ1. For d ∈ (Vτ0→τ1 +Errτ0→τ1)⊥ and d′ ∈ (Vτ0 +Errτ0)⊥,
application of d to d′ is defined by

d(d′) =

{ ⊥τ1 when d =⊥τ0→τ1
•τ1 when d = •τ0→τ1
ϕ(d′) when d = ϕ

Moreover we write (d)∗ to denote the strict version of d on both ⊥τ0 and •τ0 , i.e.,

(d)∗(d′) =

{ ⊥τ1 when d = ϕ and d′ =⊥τ0
•τ1 when d = ϕ and d′ = •τ0
d(d′) otherwise

3

Denotational semantics of lazy initialization of letrec K. Nakata

[[n : τ]]ρ = n
[[x : τ]]ρ = ρ(x)
[[• : τ]]ρ = •τ

[[λx.M : τ0→ τ1]]ρ = λν .[[M : τ1]]ρ[x 7→ν]

[[Mτ0→τ1 Nτ0 : τ1]]ρ = ([[M : τ0→ τ1]]ρ)([[N : τ0]]ρ)
[[let rec x1 beMτ1

1 , . . . ,xn beMτn
n in N : τ]]ρ = [[N : τ]]

{{x1 7→M
τ1
1 ,...,xn 7→Mτn

n }}
(n)
ρ

{{x1 7→Mτ1
1 , . . . ,xn 7→Mτn

n }}
(m+1)
ρ = µρ ′.ρ[x1 7→ [[M1 : τ1]]ρm · [[M1 : τ1]]ρ ′ , . . . ,xn 7→ [[Mn : τn]]ρm · [[Mn : τn]]ρ ′]

where ρm = {{x1 7→Mτ1
1 , . . . ,xn 7→Mτn

n }}
(m)
ρ

{{x1 7→Mτ1
1 , . . . ,xn 7→Mτn

n }}
(0)
ρ = ρ[x1 7→ •τ1 , . . . ,xn 7→ •τn]

Figure 5: Denotational semantics of λletrec

An environment, ρ , is a function from variables to denotations, which respects types, i.e., ρ(x) ∈ (Vτ +
Errτ)⊥ where x : τ . The least environment, ρ⊥, maps all variables to bottom elements.

The semantic function [[M : τ]]ρ assigns a denotation to a typing derivation M : τ under an environ-
ment ρ and is defined in figure 5 by induction on the derivation 3. µ stands for the least fixed point
operator. ρ[x1 7→ d1, . . . ,xn 7→ dn] stands for extension of ρ with di’s at xi’s. For d,d′ ∈ (Vτ +Errτ)⊥,
the notation d ·d′ abbreviates ((λy.λx.x)∗(d))(d′). The semantic function, being defined using only con-
tinuous operations, is continuous and mostly standard (c.f., [14]) except for letrec. The denotation of
let rec x1 beMτ1

1 , . . . ,xn beMτn
n in N : τ is defined with the help of a semantic function for (typed) heaps.

The function {{x1 7→Mτ1
1 , . . . ,xn 7→Mτn

n }}
(m)
ρ takes three parameters, a heap x1 7→Mτ1

1 , . . . ,xn 7→Mτn
n , an

environment ρ and a natural number m, and returns an environment. It is defined by induction on m, with
semantic functions for Mi : τi’s given by the outer induction.

We compute the denotation of a heap Ψ = x1 7→ Mτ1
1 , . . . ,xn 7→ Mτn

n under an environment ρ as
follows. Let ρm = {{Ψ}}(m)

ρ . The variables xi’s are first pre-initialized to black holes, that is, ρ0 = ρ[x1 7→
•τ1 , . . . ,xn 7→ •τn]. Next we compute the denotation [[Mi : τi]]ρ0 of Mi : τi for each i under the initial
environment ρ0, so that we take the fixed-point semantics for the recursive bindings whose initialization
was successful. That is, ρ1 = µρ ′.ρ[x1 7→ d1, . . . ,xn 7→ dn] where

di =

{
•τi when [[Mi : τi]]ρ0 = •τi

[[Mi : τi]]ρ ′ otherwise

Indeed it follows from lemmata 3.1 and 3.2 below that this is equivalent to defining ρ1 = µρ ′.ρ[x1 7→
[[M1 : τ1]]ρ0 · [[M1 : τ1]]ρ ′ , . . . ,xn 7→ [[Mn : τn]]ρ0 · [[Mn : τn]]ρ ′]. Generally, ρm+1 is given by taking the fixed-
point semantics for the recursive bindings whose initialization is successful under the environment ρm;
i.e., ρm+1 = µρ ′.ρ[x1 7→ d1, . . . ,xn 7→ dn] where

di =

{
•τi when [[Mi : τi]]ρm = •τi

[[Mi : τi]]ρ ′ otherwise

This process is iterated for n times, where n is the length of the heap Ψ. The number of the iteration is jus-
tified, as it converges by then: {{Ψ}}(n)ρ = {{Ψ}}(n+m)

ρ for any m (lemma 3.3 below). Let us define {{x1 7→
Mτ1

1 , . . . ,xn 7→ Mτn
n }}ρ = {{x1 7→ Mτ1

1 , . . . ,xn 7→ Mτn
n }}

(n)
ρ . For instance, we have {{x 7→ xnat}}ρ⊥(x) =

•nat, {{ f 7→ (λx. f x)nat→nat}}ρ⊥(f) = λx.⊥nat, and {{x 7→ (f x)nat, f 7→ (λy.y)nat→nat}}ρ⊥ = ρ⊥[x 7→
•nat, f 7→ λy.y] therefore [[let rec xbe(f x)nat, f be(λy.y)nat→nat in x : nat]]ρ⊥ = •nat.

3We use the lambda notation to express (mathematical) functions on domains.

4

Denotational semantics of lazy initialization of letrec K. Nakata

3.1 Adequacy

The denotational semantics is adequate with respect to the natural semantics. An important fact, to
be stated in lemma 3.4, is that, as we iteratively compute denotations of (typed) heaps Ψ under an
environment ρ , we reach a fixed point: {{Ψ}}ρ(x) = [[Ψ(x)]]{{Ψ}}ρ

.
We define a relation <<τ⊆ (Vτ +Errτ)⊥× (Vτ +Errτ)⊥ by induction on τ:

•τ <<τ d for any d ∈ (Vτ +Errτ)⊥
⊥τ <<τ ⊥τ

n <<nat n
ϕ <<τ1→τ2 ϕ ′ iff d <<τ1 d′ implies ϕ(d) <<τ2 ϕ ′(d′)

Then a relation << on environments is defined such that ρ << ρ ′ iff for any x, ρ(x) <<τ ρ ′(x) where
x : τ . It captures a relationship between (intermediate) denotations of a heap at different iterations (see
lemma 3.2 below).

Lemma 3.1. For any ρ,ρ ′,M : τ , if ρ << ρ ′, then [[M : τ]]ρ <<τ [[M : τ]]ρ ′

Lemma 3.2. For any x1 : τ1, . . . ,xn : τn,M1 : τ1, . . . ,Mn : τn,m and ρ , {{x1 7→Mτ1
1 , . . . ,xn 7→Mτn

n }}
(m)
ρ <<

{{x1 7→Mτ1
1 , . . . ,xn 7→Mτn

n }}
(m+1)
ρ .

Lemma 3.3. For any x1 : τ1, . . . ,xn : τn,M1 : τ1, . . . ,Mn : τn,m and ρ , {{x1 7→Mτ1
1 , . . . ,xn 7→Mτn

n }}
(n)
ρ =

{{x1 7→Mτ1
1 , . . . ,xn 7→Mτn

n }}
(n+m)
ρ .

Lemma 3.4. For any x1 : τ1, . . . ,xn : τn,M1 : τ1, . . . ,Mn : τn,ρ and i∈ 1..n, {{x1 7→Mτ1
1 , . . . ,xn 7→Mτn

n }}
(n)
ρ (xi)=

[[Mi : τi]]{{x1 7→Mτ1
1 ,...,xn 7→Mτn

n }}(n)ρ

.

The natural semantics is correct with respect to the denotational semantics in that evaluations pre-
serve the denotations of expressions.

Proposition 3.1. For any typed expression M : τ , if 〈〉M ⇓ 〈Ψ〉V , then V : τ and [[M : τ]]ρ⊥ = [[V :
τ]]{{Ψ}}ρ⊥

.

Moreover an expression evaluates to a result if and only if its denotation is non-bottom.

Proposition 3.2. For any typed expression M : τ , [[M : τ]]ρ⊥ 6=⊥τ iff there are Φ and V such that 〈〉M ⇓
〈Φ〉V .

4 Related work

The natural semantics used in the paper is very much inspired by those of Launchbury [5] and Ses-
toft [10]. Ariola and Felleisen gave a reduction semantics for λletrec [2], which is proved equivalent to
our natural semantics [8]. Our denotational semantics is also influenced by Launchbury’s, except that his
semantics assigns a bottom element to both black holes and looping recursion; the distinction of the two
is at the heart of our work.

Ariola and Klop [3] studied equational theories of cyclic lambda calculi by means of cyclic lambda
graphs and observed that having non-restricted substitution leads to non-confluence. Ariola and Blom [1]
and Schmidt-Schauß et al. [9] use infinite lambda terms to reason about call-by-need letrec; it is not
obvious if their techniques can be adapted so that black holes are distinguished from divergence.

Viewing black holes as exceptions is not new. For instance, Moggi and Sabry’s monadic operational
semantics for value recursion signals a monadic error when a black hole is encountered [7]. The idea
seems to be ascribed to the backpatching semantics of Scheme [11].

5

Denotational semantics of lazy initialization of letrec K. Nakata

5 Conclusion

We have presented a denotational semantics for lazy initialization of letrec. The semantics interprets
direct cycles, called black holes, as exceptions, which fits lazy evaluation as implemented in OCaml and
Racket and which underlies the initialization semantics of F#’s object system. We think signaling an
exception for these “non-sense recursion” is natural and useful in practice; we believe it is also natural
in theory.

Acknowledgments I thank Matthias Felleisen and Olivier Danvy for valuable exchanges, Eijiro Sumii,
Makoto Tatsuta, Masahito Hasegawa, Yukiyoshi Kameyama and Yasuhiko Minamide for discussions.

This research was supported by the Estonian Centre of Excellence in Computer Science, EXCS,
funded by the European Regional Development Fund, and the Estonian Science Foundation grant no. 6940.

References
[1] Z. Ariola and S. Blom. Cyclic lambda calculi. In M. Abadi and T. Ito, editors, Proc. of 3rd Int. Symp. on

Theoretical Aspects of Computer Software (TACS 1997), volume 1281 of Lect. Notes in Comput. Sci., pages
77–106. Springer, 1997.

[2] Z. Ariola and M. Felleisen. The call-by-need lambda calculus. J. Funct. Program., 7(3):265–301, 1997.
[3] Z. Ariola and J. Klop. Cyclic lambda graph rewriting. In Proc. of 9th Symp. on Logic in Computer Science

(LICS 1994), pages 416–425. IEEE Computer Society, 1994.
[4] Matthew Flatt and PLT. Reference: PLT Scheme. Technical Report PLT-TR2010-reference-v4.2.5, PLT

Scheme Inc., April 2010. http://plt-scheme.org/techreports/ (PLT Scheme is now Racket.).
[5] J. Launchbury. A natural semantics for lazy evaluation. In Conf. Record of 20th ACM SIGPLAN-SIGACT

Symp. on Principles of Programming Languages (POPL 1993), pages 144–154. ACM Press, 1993.
[6] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml system, release 3.11,

November 2008. http://caml.inria.fr/.
[7] E. Moggi and A. Sabry. An abstract monadic semantics for value recursion. Informatique Théorique et

Applications, 38(4):375–400, 2004.
[8] K. Nakata and M. Hasegawa. Small-step and big-step semantics for call-by-need. J. Funct. Program.,

19(6):699–722, 2009.
[9] M. Schmidt-Schauß, D. Sabel, and E. Machkasova. Simulation in the call-by-need lambda-calculus with

letrec. In C. Lynch, editor, Proc. of 21st Int. Conf. on Rewriting Techniques and Applications (RTA 2010),
volume 6 of LIPIcs, pages 295–310. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

[10] P. Sestoft. Deriving a lazy abstract machine. J. Funct. Program., 7(3):231–264, 1997.
[11] M. Sperber, K. Dybvig, M. Flatt, A. Straaten, R. Findler, and J. Matthews. Revised6 report on the algorithmic

language scheme. J. Funct. Program., 19(S1):1–301, 2009.
[12] D. Syme. Initializing mutually referential abstract objects: The value recursion challenge. In N. Benton and

X. Leory, editors, Proc. of the ACM-SIGPLAN Workshop on ML (ML 2005), volume 148 of Electr. Notes
Theor. Comput. Sci., pages 3–25. Elsevier, 2006.

[13] D. Syme and the MSR F# team. The F# programming language, version 2.0.0.0, April 2010. http://

research.microsoft.com/en-us/um/cambridge/projects/fsharp/.
[14] G. Winskel. The Formal Semantics of Programming Languages: An Introduction. The MIT Press, 1993.

6

http://plt-scheme.org/techreports/
http://caml.inria.fr/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/

	Introduction
	Syntax and operational semantics
	Denotational semantics
	Adequacy

	Related work
	Conclusion

