IFIP WG 2.8 meeting, April 2010

## Side-Effect Localization for Lazy, Purely Functional Languages via *Aspects*

#### Kung Chen National Cheng-chi University, Taiwan

Ongoing work, partial results published in PEPM'09

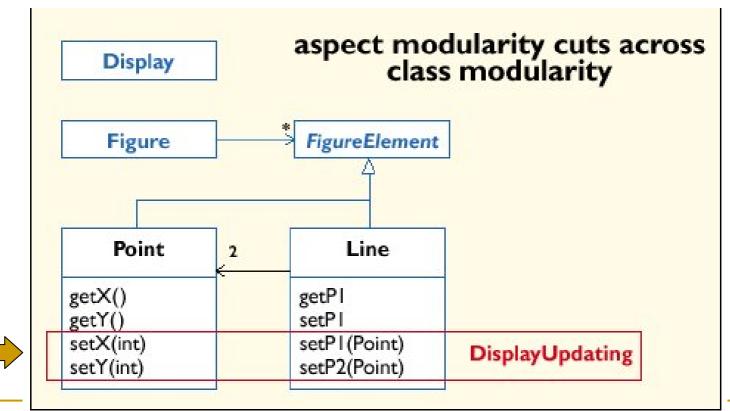
Join work with Shu-Chun Weng, Meng Wang and Siau-Cheng Khoo

#### Outline

- Introduction
  - AOP
  - Motivation
- AspectFun
  - Side-effecting aspects
- Transformations for Monad Introduction
- Issues & Extensions

# Aspect-Oriented Programming (AOP)

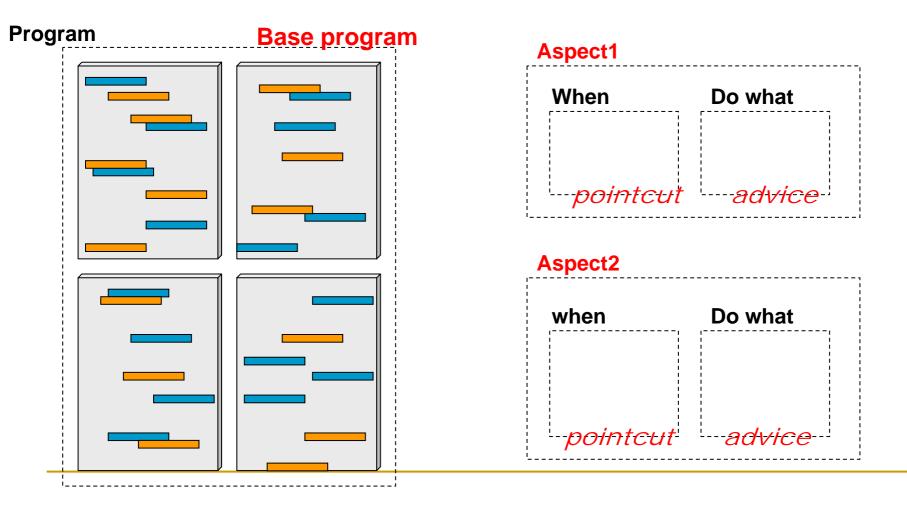
- Aims at Improving modularity by addressing crosscutting concerns; hot in SE & OO communities.
- An example:



Source: Communications of the ACM Vol. 44 No. 10, Pages 33-38

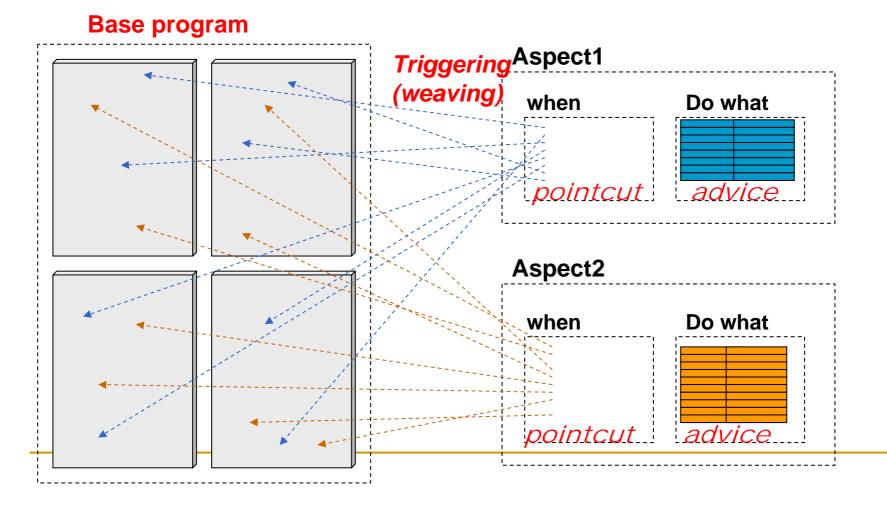
# Aspect-Oriented Programming (AOP)

AOP programs are divided into <u>base programs</u> and <u>aspects</u>



# Aspect-Oriented Programming (AOP)

When the join points specified by the pointcut is reached during program execution, the advice in the aspects is triggered for execution.



## Aspects

#### Two parts of aspects

Pointcut: The specified points where intervention of execution take place

Advice: The action taken when the specified pointcut is reached.

Three kinds: before, after, around

#### **Functional AOP**

#### Applying AOP concepts to Functional Programming?

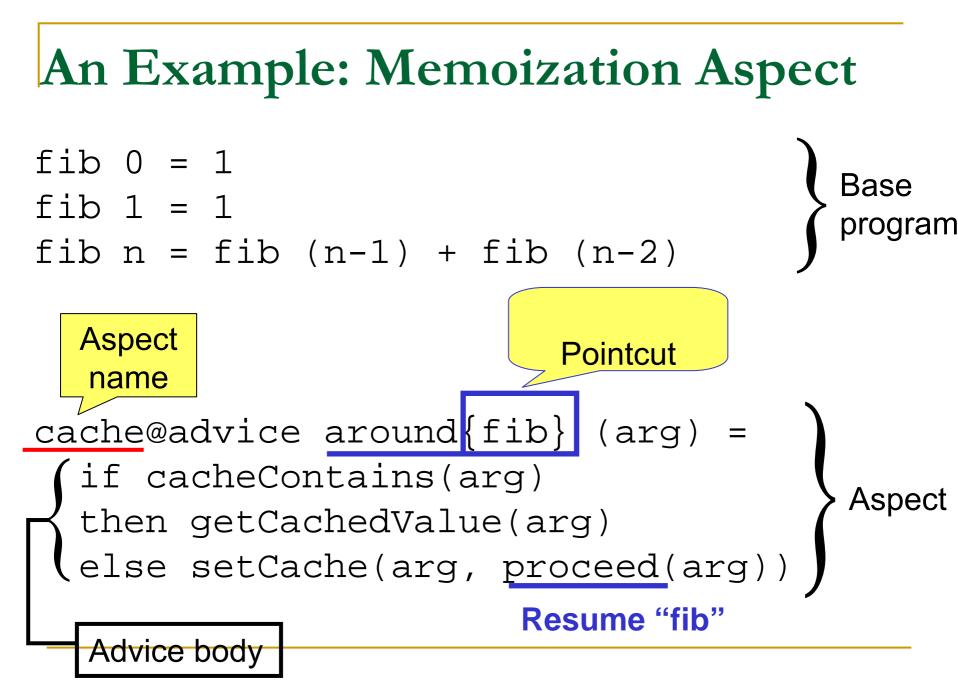
Language implementations exist:

- AspectML [Dantas et al, ICFP'05, TOPLAS'07],
- Aspectual Caml [Masuhara et al, ICFP'05],
- AspectFun [Chen et al, SAS'07, SCP'10]
   Experimental, Haskell-like syntax

+Side-effecting aspects

etc.

Reference: an extensive survey of the impacts of AOP on (purely) functional programming: What Does Aspect-Oriented Programming Mean for Functional Programmers? M. Wang and B. Oliveira, WGP 2009



## Static Weaving

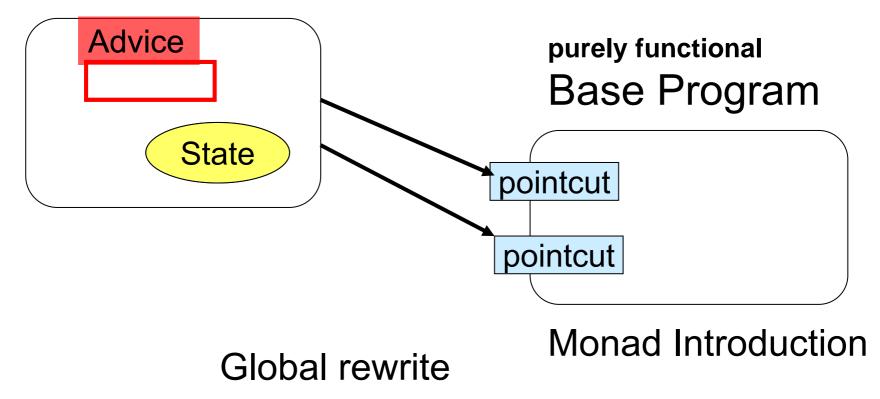
The intervening action of aspects is realized by a **weaving** process.

```
fib 0 = 1
fib 1 = 1
fib n = (cache fib) (n-1)
      + (cache fib) (n-2)
cache proceed arg =
  if cacheContains(arg)
  then getCachedValue(arg)
  else setCache(arg, proceed(arg))
```

Reference: [Chen et al, SAS'07, SCP'10]

## Weaving Side-Effecting Aspects

Aspects with a state monad



## Motivation

- Many useful aspects require side-effecting computations, but are "harmless." [Dantas'06]
   tracing, profiling, memoizaton, ...
- Support side-effecting aspects directly on the language level and automate the rewriting using source-to-source transformations.

#### **Related works: Monadification**

- Automatic introduction of monads:
  - CPS conversions by Flanagan et al, and Hatcliff & Danvy
  - Monad introduction transformation by Lämmel
  - Gelective) Monadification by Erwig and Ren
  - •But, as far as we know, no results for lazy, purely functional languages.

Also related: Purely Functional Lazy Non-deterministic Programming by S. Fisher, O. Kiselyov, and C. C. Shan in ICFP'09.

# **Our Approach**

- Linguistic support for side-effecting aspects
- by equipping AspectFun with
  - Mutable variables
  - Output operation
- A type-directed monadification scheme that transforms *woven code* into to a purely monadic style functional code using a cacheenabled state monad.

### Outline

#### Introduction

- AspectFun
  - Side-effecting aspects

#### Transformations for monad introduction

- The state monad
- Issues

## AspectFun (Base programs)

- Haskell-like syntax
- Purely functional
- Polymorphic
- Lazy

fib n = if n <= 1 then 1 else fib (n-1) + fib (n-2)

fac n acc = if n == 0 then acc else fac (n-1) (n\*acc)

## AspectFun (Base programs)

Programs  $\pi ::= d \text{ in } \pi \mid e$ Declarations  $d ::= x = e \mid f \overline{x} = e \mid f :: t \to t \mid$  $n@advice around \{\overline{pc}\}(arg) = e$ Arguments  $arg ::= x \mid x :: t$ Pointcuts pc ::= ppc | pc + cf | pc - cfPrimitive PC's  $ppc ::= f \overline{x} \mid any \mid any \setminus [\overline{f}] \mid n$ cf ::= cflow $(f) \mid cflow(f(\_::t)) \mid$ Cflows  $cflowbelow(f) \mid cflowbelow(f(::t))$ Expressions  $e ::= c \mid x \mid proceed \mid \lambda x.e \mid e \mid e \mid e \mid x$ if e then e else e | let x = e in e Types  $t ::= Int \mid Bool \mid a \mid t \rightarrow t \mid [t]$ Predicates p ::= (f:t)Advised Types  $\rho$  ::=  $p.\rho \mid t$ Type Schemes  $\sigma ::= \forall \bar{a}. \rho$ Reference: [Chen et al, SAS'07, SCP'10] Side-Effecting Aspects: mutable vars

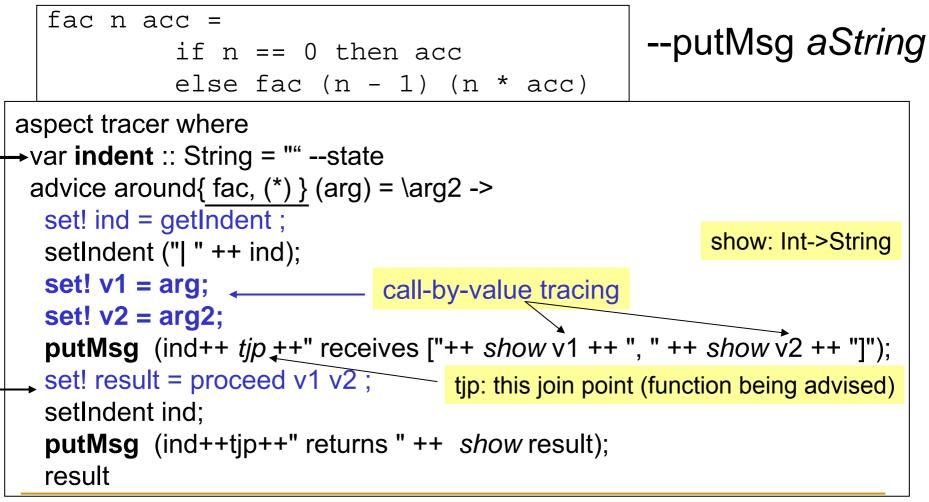
aspect name where
var id :: mono-type
advice around { pointcut } (arg) = exp

#### Example:

```
aspect memoFib where
var memoMap:: Map.Map Int Int
advice around {fib} (arg) =
case lookupCache arg of
Just v -> v
Nothing ->
set! v = proceed arg ;
insertCache arg v;
v
Two accessors:
-getMemoMap
-setMemoMap
-setMemoMap
-setMemoMap
-setMemoMap
```

## Side-Effecting Aspects: putMsg

#### Example: a tracing aspect using set! and putMsg



Adapted from [Kishon 92]

## Side-Effecting Aspects: Tracing

Example: call-by-value trace of "fac 3 1"

|    | fac n acc | = if n == 0 then acc<br>else fac (n - 1) (n * acc)                                                                                                                                                                                                                                                           |                                        |
|----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| fa | ac 3 1 →  | <ul> <li>  times receives [3, 1]</li> <li>  times returns 3</li> <li>  fac receives [2, 3]</li> <li>  times receives [2, 3]</li> <li>  times returns 6</li> <li>  fac receives [1, 6]</li> <li>  times returns 6</li> <li>  fac receives [0, 6]</li> <li>  fac returns 6</li> <li>  fac returns 6</li> </ul> | A lazy trace?<br>We'll give one later. |
|    |           | fac returns 6<br>fac returns 6                                                                                                                                                                                                                                                                               |                                        |

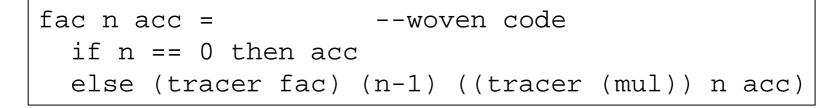
## Outline

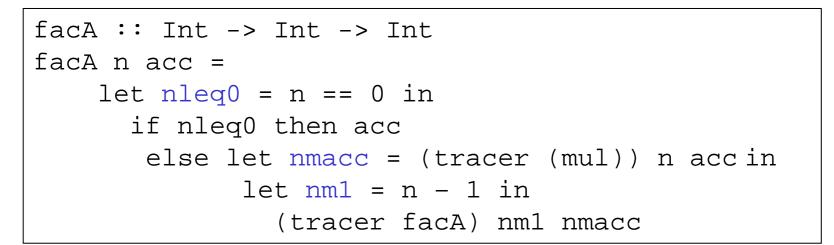
- Introduction
- AspectFun
  - Side-effecting aspects
- Transformations for monad introduction
  - The state monad
- Issues
  - Lazy evaluation
  - Higher-Order functions

#### **Transformations for monad introduction**

- 1. Apply A-normalization to woven code
- 2. Perform Type-directed monadification
  - Monadify woven code w.r.t
     (*m*, *return*, >>=) in a type context Γ
     [|e|]<sub>Γ</sub>= e<sub>M</sub>
- 3. Specialized *m* to a state monad with a cache facility

#### 1) A-normalization: every intermediate computation is assigned a name by a LET expression; applications become (e a) – a: an atomic exp (var or const)





2) Monadification (later)

### 3) The State Monad

- Concrete monad to support side-effecting aspects:
- data State s a = State
  { runState :: s -> (a, s) }
- type M a = State (UserVar, OutBuf) a A record of mutable variables
  Output buffer for putMsg

# (2) Type-directed monadification

- Rewriting function [] /]<sub>Γ</sub>:: exp → exp<sup>m</sup> that lifts computations in the input expression to a designated monad of (*m*, return, >>).
- The def of [| |] is guided by the monadic types assigned by the following monadification operator,
   M:: Type → Type

• Goal: If  $\Gamma \vdash e:t$ , then  $\mathcal{M}(\Gamma) \vdash [|e|]_{\Gamma} : \mathcal{M}(t)$ 

Ex: fac :: Int->Int->Int , [| fac |]  $_{\Gamma}$  ::  $\mathcal{M}(Int->Int->Int)$ 

(2) Type-directed monadification

- The def of [| |] is guided by the *monadic types* assigned by the following *monadification operator*, Type t ::= Int | Bool | a | t -> t
  - $\mathcal{M}:: \text{Type} \rightarrow \text{Type}$   $\mathcal{M}(t_1 \rightarrow t_2) \Rightarrow \mathcal{M}(t_1) \rightarrow \mathcal{M}(t_2)$   $\mathcal{M}(t) \qquad \Rightarrow m t \qquad \text{if t is non-functional (atomic)}$   $\mathcal{M}(\forall \overline{a}.t) \qquad \Rightarrow \forall \overline{a}.\mathcal{M}(t)$

Ex: fac :: Int->Int->Int ,  $\mathcal{M}(Int->Int->Int) = m Int -> m Int -> m Int$ 

#### Monadification (First try)

#### • [ $|e/]_{\Gamma}$ lifts expressions to monadic space

|         | <b>[.]</b> Γ                                                                      | :   | $e \longrightarrow e^M$                                                          |
|---------|-----------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------|
| (Const) | $\llbracket c \rrbracket_{\Gamma}$                                                | =   | return c                                                                         |
| (Prim)  | $\llbracket p \rrbracket_{\Gamma}$                                                | =   | $\texttt{liftMn} \ p$ where n is the arity of primitive function $p$             |
| (VAR)   | $\llbracket x \rrbracket_{\Gamma}$                                                | =   | x                                                                                |
| (IF)    | [[if $a$ then $e_1$ else $e_2$ ]] $_{\Gamma}$                                     | =   | $let \ e_1^M \ = \ \llbracket e_1 \rrbracket_{\Gamma}$                           |
|         |                                                                                   |     | $e_2^M = \llbracket e_2 \rrbracket_{\Gamma}$                                     |
|         |                                                                                   |     | in if $isConst(a)$ then if a then $e_1^M$ else $e_2^M$                           |
|         |                                                                                   |     | else do $\{x' \in [a]; \text{ if } x' \text{ then } e_1^M \text{ else } e_2^M\}$ |
|         |                                                                                   |     | where $x'$ is fresh                                                              |
| (LAM)   | $[\lambda x.e]_{\Gamma}$                                                          | =   | $\lambda x. \llbracket e \rrbracket_{\Gamma}$                                    |
| (APP)   | $\llbracket e \ a \rrbracket_{\Gamma}$                                            | =   | $\llbracket e \rrbracket_{\Gamma} \llbracket a \rrbracket_{\Gamma}$              |
| (Let)   | $\llbracket \operatorname{let} x = e_1 \operatorname{in} e_2 \rrbracket_{\Gamma}$ | =   | $let \ e_1^M = \llbracket e_1 \rrbracket_{\Gamma}$                               |
|         |                                                                                   |     | $e_2^M = \llbracket e_2 \rrbracket_{\Gamma}$                                     |
|         |                                                                                   |     | $in \operatorname{do} \{ \operatorname{let} x = e_1^M; e_2^M \}$                 |
|         | where $a \in \operatorname{Atoms}$                                                | ::= | $c \mid x$                                                                       |

Sequencings and set!

$$\llbracket e_1; e_2 \rrbracket_{\Gamma} = \mathsf{do} \{\llbracket e_1 \rrbracket_{\Gamma}; \llbracket e_2 \rrbracket_{\Gamma} \}$$

$$\begin{bmatrix} | \text{ set! } \mathbf{x} = \mathbf{e1} ; \mathbf{e2} | \end{bmatrix} = \\ \begin{array}{l} let \ e_1^M \ = \ \llbracket e_1 \rrbracket_{\Gamma} \\ e_2^M \ = \ \llbracket e_2 \rrbracket_{\Gamma} \\ in \ \text{do} \ \{x' \leftarrow e_1^M; \ \text{let} \ x = \text{return} \ x'; \ e_2^M \} \\ where \ x' \text{ is a fresh identifier} \\ \end{array}$$

#### The Monadification Operator

Previous works:

 $\mathcal{M}(t_1 \rightarrow t_2) \Rightarrow t_1 \rightarrow \mathcal{M}(t_2)$ 

• Ours (Call-By-Name)  $\mathcal{M}(t_1 \rightarrow t_2) \Rightarrow \mathcal{M}(t_1) \rightarrow \mathcal{M}(t_2)$ 

(m a) is an action as well as a thunk

• An alternative:  $\mathcal{M}(t1 \rightarrow t2) \Rightarrow m(\mathcal{M}(t1) \rightarrow \mathcal{M}(t2))$ 

# 2) Monadification w.r.t (m, return, >>=) facA :: Int -> Int facA n acc = let nleq0 = n == 0 in if nleq0 then acc else let nmacc = (tracer (mul)) n acc in let nml = n - 1 in (tracer facA) nml nmacc

```
facM :: m Int -> m Int -> m Int
facM n acc =
  do let n_eq_0 = (liftM2 (==)) n (return 0)
    neq0 <- n_eq_0
    if neq0 then acc
    else
       do let nmacc = (tracerM (liftM2 (mul)) n acc
       let nm1 = (liftM2 (-)) n (return 1)
        (tracerM facM) nm1 nmacc</pre>
```

## Outline

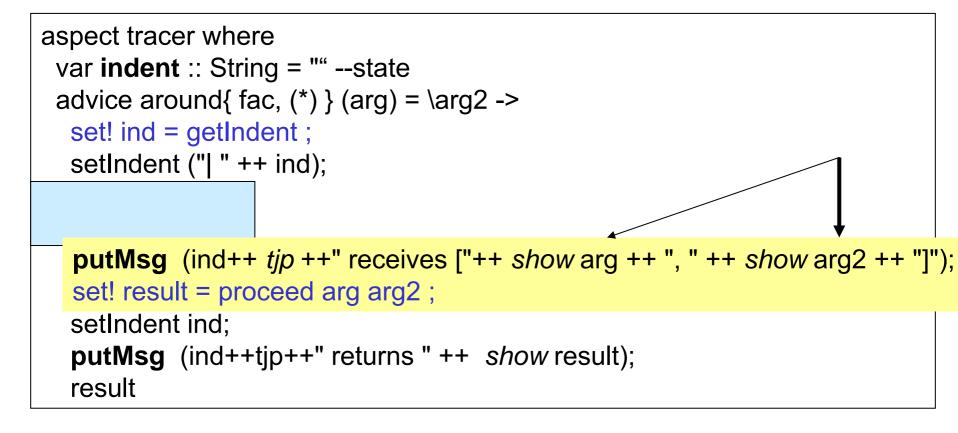
- Introduction
- AspectFun
  - Side-effecting aspects
- Transformations for monad introduction
  - The state monad
- Issues
  - Lazy evaluation
  - Higher-Order functions

#### **Issues of the Monadification Scheme**

- Preserving lazy evaluation order
- Higher-Order functions

## A Lazy Tracer?

•Revise the call-by-value tracing aspect:



#### Monadified code (Not so "Lazy" tracer)

```
tracer@advice around{fac, (*)} (arg) =
  \arg2 -> let! ind = getIndent in
   setIndent ("| " ++ ind);
   putMsg (ind++tjp++" receives ["++show arg++", "++show arg2++"]");
   set! result = proceed arg arg2;
   setIndent ind;
   putMsg (ind ++ tjp ++ " returns " ++ show result);
   result
```

```
tracerM proceed arg arg2 =
 do getIndentResult <- getIndentM
   let ind = return getIndentResult
   let ind' = (liftM2 (++)) (return "|") ind
   setIndentM ind'
   let show_arg2 = (liftM show) arg2
   let str 1 = (liftM2 (++)) show arg2 (return "]")
   let str 2 = (liftM2 (++)) (return ",") str 1
   let show arg = (liftM show) arg
   . . .
   putMsgM str 5
   proceedResult <- proceed arg arg2
```

```
. . .
```

#### Expected trace result

fac n acc = if n == 0 then acc else fac (n-1) (n\*acc)

```
fac receives [3, 1]
  fac receives [2, 3]
    fac receives [1, 6]
      fac receives [0, 6]
        (*) receives [1, 6]
          (*) receives [2, 3]
          (*) receives [3, 1]
          (*) returns 3
          (*) returns 6
        (*) returns 6
      fac returns 6
    fac returns 6
  fac returns 6
fac returns 6
```

(\*) are all done at the end according to lazy semantics

#### Actual trace result: duplicate evaluation and wrong order accumulating parameter

```
fac receives [3, 1]
   (*) receives [3, 1]
   (*) returns 3
 fac receives [2, 3]
      (*) receives [3, 1]
      (*) returns 3
     (*) receives [2, 3]
      (*) receives [3, 1]
     (*) returns 3
    (*) returns 6
   fac receives [1, 6]
           (*) receives [3, 1]
           (*) returns 3
          (*) returns 6
        (*) returns 6
      fac returns 6
    fac returns 6
 fac returns 6
```

fac returns 6

Showing arg2 forces the multiplication being called (Premature evaluation)

It is evaluated every time whenever (3\*1) is needed (Duplicate evaluation)

fac n acc = if n == 0 then acc else fac (n-1) (n\*acc)

## **Our Solution, 1**

- Wrap the State monad with a cache facility to support lazy evaluation: CState monad
  - Insert "add2cache" for thunkifying function arguments

```
facM n acc =
   do eq_n_zero <- add2Cache $ (liftM2 (==)) n (return 0)
        neq0 <- eq_n_zero
        if neq0 then acc
        else do nmacc <-
            add2Cache $ (tracerMulM (liftM2 (*)) n acc
            nm1 <-
                add2Cache $ (liftM2 (-)) n (return 1)
            (tracerFacM facM) nml nmacc</pre>
```

#### **CState: Cache-Enabled State Monad**

# **Our Solution**, 2

. . .

- Provide a special showM to replace ordinary show function
  - □ showM :: m Int -> m String
  - return the thunk cell without forccing its evaluation
- Post-process the output

```
tracerFacM proceed arg arg2 =
  do getIndentResult <- getIndentM
  let ind = return getIndentResult
  let ind' = (liftM2 (++)) (return "| ") ind
  setIndentM ind'
  let show_arg2 = showM arg2</pre>
```

# **Issues with Higher-Order Functions**

- The monadification, [| e |], does not work for higher-order functions.
  - The case of "(Var) [| x |] = x" is to blame.
- Example:  $[|(id_1 id_2)|]$

$$[|(id_1 id_2)|] = [|id_1|] [|id_2|] = (id_1 id_2)$$

 Because this does not type check!
 S=[I->I/a] 

 [| id |] :: m a -> m a
 If we specialize id\_2 to Int->Int:

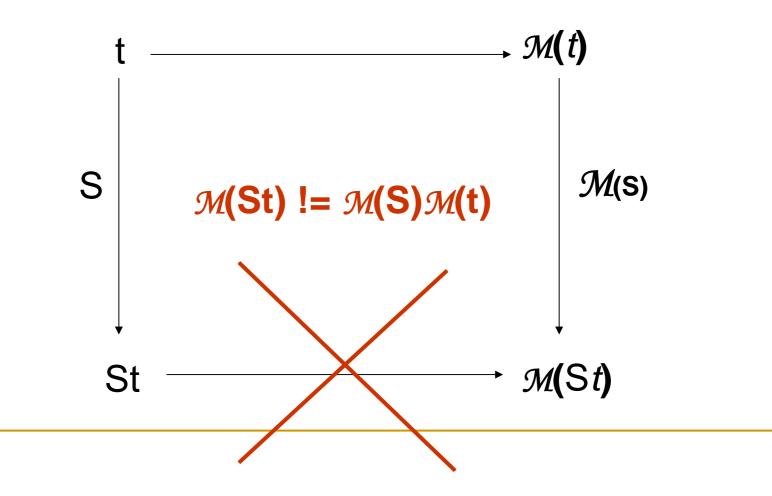
 id\_1 :: (I->I)->(I->I)
 [| id\_1 |] :: m (m I -> m I)

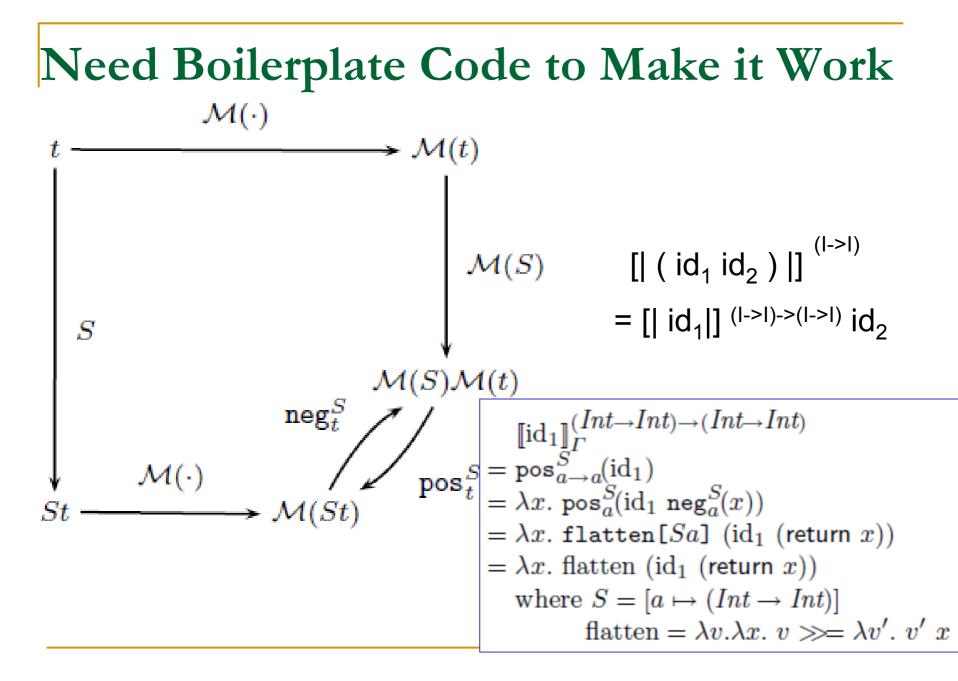
 id\_2 :: (I->I)
 [| id\_2 |] :: (m I -> m I)

#### M and S do Not distribute with each other

S: type substitution  $\mathcal{M}(S)$ : Monadified sub

 $\mathcal{M}(S)(a) = \begin{cases} Sa & \text{if } Sa \text{ is an atomic type} \\ \mathcal{M}(Sa) \text{ otherwise} \end{cases}$ 





**Type-Directed Monadification (Second try)**  

$$\begin{bmatrix} | e | \end{bmatrix}_{\Gamma}^{t} \qquad \text{Note: t is the type of e}$$

$$\begin{bmatrix} \cdot t_{\Gamma} & \cdot e^{t} \longrightarrow e \\ \text{(CONST) } [c]_{\Gamma}^{t} & = \text{return } c \\ \text{(PRIM) } [p]_{\Gamma}^{t} & = \text{liftMn } p \quad where n is the arity of primitive function } p \\ \text{(IF-C) } [if a then e_{1} else e_{2}]_{\Gamma}^{t} = if a then } [e_{1}]_{\Gamma}^{t} else [e_{2}]_{\Gamma}^{t} \quad if a is constant \\ \text{(IF) } [if a then e_{1} else e_{2}]_{\Gamma}^{t} = [a]_{\Gamma}^{Bool} \gg \lambda a'. if a' then } [e_{1}]_{\Gamma}^{t} else [e_{2}]_{\Gamma}^{t} \quad otherwise, a' is fresh \\ \text{(LAM) } [\lambda x.e]_{\Gamma}^{t \to t_{2}} & = \lambda x.[e]_{\Gamma}^{t_{2}} \\ \text{(APP) } [e a]_{\Gamma}^{t} & = [e]_{\Gamma}^{t_{\alpha} \to t} [a]_{\Gamma}^{t_{\alpha}} \\ \text{(LET) } [let x = e_{1} in e_{2}]_{\Gamma}^{t} & = let x = [e_{1}]_{\Gamma}^{t_{1}} \implies \lambda x'. let x = return x' in } [e_{2}]_{\Gamma}^{t} \\ \text{(SEQ) } [e_{1}; e_{2}]_{\Gamma}^{t} & = [e_{1}]_{\Gamma}^{t_{1}} \gg \lambda x'. let x = return x' in } [e_{2}]_{\Gamma}^{t} \\ \text{(VAR) } [x]_{\Gamma}^{t} & = \text{pos}_{t}^{S}(x) \\ \text{where } \forall \overline{a}.t' = \Gamma(x) \text{ and } S \text{ is a substitution such that } t = St' \\ \end{bmatrix}$$

# The Var case:

#### $[|x|]_{\Gamma}^{t} = pos_{t'}^{s}(x)$

where  $\forall \bar{a}.t' = \Gamma(x)$  and S is a substitution such that t = St'

join :: m (m a) -> m a

$$\begin{array}{cccc} \operatorname{pos}_{t_1 \to t_2}^S(e) &= \lambda x. \ \operatorname{pos}_{t_2}^S(e \ \operatorname{neg}_{t_1}^S(x)) \ x \notin fv(e) \\ \operatorname{pos}_a^S(e) &= \operatorname{flatten}[Sa](e) & \text{if } a \in \operatorname{dom}(S) \\ \operatorname{pos}_t^S(e) &= e & \operatorname{otherwise} \\ \\ \operatorname{neg}_{t_1 \to t_2}^S(e) &= \lambda x. \ \operatorname{neg}_{t_2}^S(e \ \operatorname{pos}_{t_1}^S(x)) \ x \notin fv(e) \\ \operatorname{neg}_a^S(e) &= \operatorname{return}(e) & \text{if } a \in \operatorname{dom}(S) \ \text{and } Sa \ \text{is not an atomic type} \\ \operatorname{neg}_t^S(e) &= e & \operatorname{otherwise} \end{array}$$

$$\begin{array}{c} \\ \operatorname{flatten}[t_1 \to t_2 \cdots t_n \to t](e) &= (\lambda x_1 \cdots x_n. \ e \gg = \lambda e'. \ e' \ x_1 \cdots x_n) \ \text{where } n \ \text{is the arity of the} \\ \\ \\ \\ \\ \operatorname{flatten}[t](e) &= e & & & & & \\ \end{array}$$



• Theorem: If  $\Gamma \vdash e:t$ , then  $\mathcal{M}(\Gamma) \vdash [|e|]_{\Gamma}^{t} : \mathcal{M}(t)$ 

•Dynamic Semantics and Value Preservation issue is not covered in this talk.

### **More Issues**

- Lifting higher-order primitives, such as '\$'
  - Related: library functions without source code
  - Example:

liftM2 (\$) :: m (a->b) -> m a -> m b But we need (m a -> m b) -> m a -> m b

A type-indexed "liftM[...](e)" ?

- Monadifying constructed data types such as lists
   m [a] vs.
  - MList a = MNil | MCons (m a) (m (Mlist a))

Extension: Monadic base programs Use monad transformers:

- $\mathcal{M}(a) \qquad \qquad \rightarrow MT N a$

type CStateT s m a = CacheT (StateT s m) a

# Summary

- Extending AspectFun with side-effecting aspects
- Type-directed monadification scheme
- Working on issues with higher-order functions

# Thank you for listening.