
Side-Effect Localization for
Lazy, Purely Functional Languages
via Aspects

Kung Chen
National Cheng-chi University, Taiwan

Join work with Shu-Chun Weng, Meng Wang and Siau-Cheng Khoo

Ongoing work, partial results published in PEPM’09

IFIP WG 2.8 meeting, April 2010

Outline

Introduction
AOP
Motivation

AspectFun
Side-effecting aspects

Transformations for Monad Introduction
Issues & Extensions

Aspect-Oriented Programming (AOP)
Aims at Improving modularity by addressing
crosscutting concerns; hot in SE & OO communities.
An example:

Source: Communications of the ACM Vol. 44 No. 10, Pages 33-38

Aspect-Oriented Programming (AOP)
AOP programs are divided into base programs and aspects

Program

Aspect2

Aspect1

When

when

Do what

Do what

pointcut

pointcut

advice

advice

Base program

Aspect-Oriented Programming (AOP)

Aspect2

Aspect1

when

when

Do what

Do what

Triggering
(weaving)

pointcut

pointcut

advice

advice

Base program

When the join points specified by the pointcut is reached during
program execution, the advice in the aspects is triggered for execution.

Aspects

Two parts of aspects
Pointcut: The specified points where
intervention of execution take place

Advice: The action taken when the
specified pointcut is reached.

Three kinds: before, after, around

Functional AOP
Applying AOP concepts to Functional
Programming?

Language implementations exist:
AspectML [Dantas et al, ICFP’05, TOPLAS’07],
Aspectual Caml [Masuhara et al, ICFP’05],
AspectFun [Chen et al, SAS’07, SCP’10]

Experimental, Haskell-like syntax
etc.

Reference: an extensive survey of the impacts of
AOP on (purely) functional programming:
What Does Aspect-Oriented Programming
Mean for Functional Programmers?

M. Wang and B. Oliveira, WGP 2009

+Side-effecting
aspects

An Example: Memoization Aspect

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

cache@advice around{fib} (arg) =
if cacheContains(arg)
then getCachedValue(arg)
else setCache(arg, proceed(arg))

Base
program

Aspect

Aspect
name

Pointcut

Advice body
Resume “fib”

Static Weaving

fib 0 = 1
fib 1 = 1
fib n = (cache fib) (n-1)

+ (cache fib) (n-2)

cache proceed arg =
if cacheContains(arg)
then getCachedValue(arg)
else setCache(arg, proceed(arg))

Reference: [Chen et al, SAS’07, SCP’10]

The intervening action of aspects is realized by a weaving process.

Weaving Side-Effecting Aspects

purely functional

Base Program

Aspects with a state monad

State
pointcut

pointcut

State

Global rewrite

AdviceAdvice

Monad Introduction

Motivation

Many useful aspects require side-effecting
computations, but are “harmless.” [Dantas’06]

tracing, profiling, memoizaton, …

Support side-effecting aspects directly on the
language level and automate the rewriting
using source-to-source transformations.

Related works: Monadification

Automatic introduction of monads:
CPS conversions by Flanagan et al, and Hatcliff &
Danvy
Monad introduction transformation by Lämmel
(Selective) Monadification by Erwig and Ren

•But, as far as we know, no results for
lazy, purely functional languages.

Also related:
Purely Functional Lazy Non-deterministic Programming
by S. Fisher, O. Kiselyov, and C. C. Shan in ICFP’09.

Our Approach

Linguistic support for side-effecting aspects
by equipping AspectFun with

Mutable variables
Output operation

A type-directed monadification scheme
that transforms woven code into to a purely
monadic style functional code using a cache-
enabled state monad.

Outline

Introduction
AspectFun

Side-effecting aspects
Transformations for monad introduction

The state monad
Issues

AspectFun (Base programs)

Haskell-like syntax
Purely functional
Polymorphic
Lazy

fib n = if n <= 1 then 1
else fib (n-1) + fib (n-2)

fac n acc = if n == 0 then acc
else fac (n-1) (n*acc)

AspectFun (Base programs)

Reference: [Chen et al, SAS’07, SCP’10]

Side-Effecting Aspects: mutable vars
aspect name where

var id :: mono-type
advice around { pointcut } (arg) = exp

aspect memoFib where
var memoMap:: Map.Map Int Int

advice around {fib} (arg) =
case lookupCache arg of
Just v -> v
Nothing ->

set! v = proceed arg ;
insertCache arg v;
v

Example:
Two accessors:
-getMemoMap
-setMemoMap

--’;’ Sequencing
--set!:Sequenced bindings

Side-Effecting Aspects: putMsg

fac n acc =
if n == 0 then acc
else fac (n - 1) (n * acc)

Example: a tracing aspect using set! and putMsg

aspect tracer where
var indent :: String = "“ --state
advice around{ fac, (*) } (arg) = \arg2 ->
set! ind = getIndent ;
setIndent ("| " ++ ind);
set! v1 = arg;
set! v2 = arg2;
putMsg (ind++ tjp ++" receives ["++ show v1 ++ ", " ++ show v2 ++ "]");
set! result = proceed v1 v2 ;
setIndent ind;
putMsg (ind++tjp++" returns " ++ show result);
result

tjp: this join point (function being advised)

--putMsg aString

Adapted from [Kishon 92]

call-by-value tracing

show: Int->String

Side-Effecting Aspects: Tracing

fac n acc = if n == 0 then acc
else fac (n - 1) (n * acc)

fac receives [3, 1]
| | times receives [3, 1]
| | times returns 3
| fac receives [2, 3]
| | | times receives [2, 3]
| | | times returns 6
| | fac receives [1, 6]
| | | | times receives [1, 6]
| | | | times returns 6
| | | fac receives [0, 6]
| | | fac returns 6
| | fac returns 6
| fac returns 6
fac returns 6

Example: call-by-value trace of “fac 3 1”

fac 3 1 A lazy trace?
We’ll give one later.

Outline

Introduction
AspectFun

Side-effecting aspects
Transformations for monad introduction

The state monad
Issues

Lazy evaluation
Higher-Order functins

Transformations for monad introduction

1. Apply A-normalization to woven code

2. Perform Type-directed monadification
Monadify woven code w.r.t
(m, return, >>=) in a type context Γ
[| e |] = eM

3. Specialized m to a state monad with a
cache facility

Γ

1) A-normalization: every intermediate computation
is assigned a name by a LET expression;
applications become (e a) – a: an atomic exp (var or const)

fac n acc = --woven code
if n == 0 then acc
else (tracer fac) (n-1) ((tracer (mul)) n acc)

facA :: Int -> Int -> Int
facA n acc =

let nleq0 = n == 0 in
if nleq0 then acc
else let nmacc = (tracer (mul)) n acc in

let nm1 = n – 1 in
(tracer facA) nm1 nmacc

2) Monadification (later)

3) The State Monad

Concrete monad to support side-effecting
aspects:
data State s a = State

{ runState :: s -> (a, s) }

type M a =
State (UserVar, OutBuf) a

A record of mutable variables Output buffer for putMsg

(2)Type-directed monadification
Rewriting function [| |]Γ:: exp expm

that lifts computations in the input expression to a
designated monad of (m, return, >>).

The def of [| |] is guided by the monadic types
assigned by the following monadification operator,
M:: Type Type

Type t ::= Int | Bool | a | t -> t

Ex: fac :: Int->Int->Int , [| fac |] Γ :: M(Int->Int->Int)

• Goal: If Γ├ e : t,
then M(Γ)├ [|e|]Γ : M(t)

(2)Type-directed monadification
The def of [| |] is guided by the monadic types

assigned by the following monadification
operator,

M:: Type Type
M(t1 → t2) ⇒M(t1) →M(t2)
M(t) ⇒ m t if t is non-functional (atomic)

M(a.t) ⇒ a.M(t)

Type t ::= Int | Bool | a | t -> t

Ex: fac :: Int->Int->Int , M(Int->Int->Int) = m Int -> m Int -> m Int

Monadification (First try)
[|e|]Γ lifts expressions to monadic space

[|a|];

Sequencings and set!

[| set! x = e1 ; e2 |] =

The Monadification Operator

Previous works:
M(t1 → t2) ⇒ t1 →M(t2)

Ours (Call-By-Name)
M(t1 → t2) ⇒M(t1) →M(t2)
(m a) is an action as well as a thunk

• An alternative:
M(t1 → t2) ⇒ m (M(t1) →M(t2))

2) Monadification w.r.t (m, return, >>=)

facM :: m Int -> m Int -> m Int
facM n acc =
do let n_eq_0 = (liftM2 (==)) n (return 0)

neq0 <- n_eq_0
if neq0 then acc
else

do let nmacc = (tracerM (liftM2 (mul)) n acc
let nm1 = (liftM2 (-)) n (return 1)
(tracerM facM) nm1 nmacc

facA :: Int -> Int -> Int
facA n acc =

let nleq0 = n == 0 in
if nleq0 then acc
else let nmacc = (tracer (mul)) n acc in

let nm1 = n – 1 in
(tracer facA) nm1 nmacc

Outline

Introduction
AspectFun

Side-effecting aspects
Transformations for monad introduction

The state monad
Issues

Lazy evaluation
Higher-Order functins

Issues of the Monadification Scheme

Preserving lazy evaluation order

Higher-Order functions

…

A Lazy Tracer?

aspect tracer where
var indent :: String = "“ --state
advice around{ fac, (*) } (arg) = \arg2 ->
set! ind = getIndent ;
setIndent ("| " ++ ind);
set! v1 = arg;
set! v2 = arg2;
putMsg (ind++ tjp ++" receives ["++ show v1 ++ ", " ++ show v2 ++ "]");
set! result = proceed v1 v2 ;
setIndent ind;
putMsg (ind++tjp++" returns " ++ show result);
result

•Revise the call-by-value tracing aspect:

putMsg (ind++ tjp ++" receives ["++ show arg ++ ", " ++ show arg2 ++ "]");
set! result = proceed arg arg2 ;

Monadified code (Not so “Lazy” tracer)
tracer@advice around{fac, (*)} (arg) =
\arg2 -> let! ind = getIndent in
setIndent ("| " ++ ind);
putMsg (ind++tjp++" receives ["++show arg++", "++show arg2++"]");
set! result = proceed arg arg2;
setIndent ind;
putMsg (ind ++ tjp ++ " returns " ++ show result);
result

tracerM proceed arg arg2 =
do getIndentResult <- getIndentM

let ind = return getIndentResult
let ind' = (liftM2 (++)) (return "| ") ind
setIndentM ind'
let show_arg2 = (liftM show) arg2
let str_1 = (liftM2 (++)) show_arg2 (return "]")
let str_2 = (liftM2 (++)) (return ",") str_1
let show_arg = (liftM show) arg
…
putMsgM str_5
proceedResult <- proceed arg arg2
…

Expected trace result

fac receives [3, 1]
| fac receives [2, 3]
| | fac receives [1, 6]
| | | fac receives [0, 6]
| | | | (*) receives [1, 6]
| | | | | (*) receives [2, 3]
| | | | | | (*) receives [3, 1]
| | | | | | (*) returns 3
| | | | | (*) returns 6
| | | | (*) returns 6
| | | fac returns 6
| | fac returns 6
| fac returns 6
fac returns 6

(*) are all done
at the end
according to
lazy semantics

fac n acc = if n == 0 then acc
else fac (n-1) (n*acc)

Actual trace result: duplicate evaluation
and wrong order
fac receives [3, 1]
| | (*) receives [3, 1]
| | (*) returns 3
| fac receives [2, 3]
| | | | (*) receives [3, 1]
| | | | (*) returns 3
| | | (*) receives [2, 3]
| | | | (*) receives [3, 1]
| | | | (*) returns 3
| | | (*) returns 6
| | fac receives [1, 6]
: :
| | | | | | (*) receives [3, 1]
| | | | | | (*) returns 3
| | | | | (*) returns 6
| | | | (*) returns 6
| | | fac returns 6
| | fac returns 6
| fac returns 6
fac returns 6

Showing arg2 forces the
multiplication being called
(Premature evaluation)

It is evaluated every time
whenever (3*1) is needed
(Duplicate evaluation)

fac n acc = if n == 0 then acc
else fac (n-1) (n*acc)

accumulating parameter

Our Solution, 1

Wrap the State monad with a cache facility to
support lazy evaluation: CState monad

Insert “add2cache” for thunkifying function
arguments

facM n acc =
do eq_n_zero <- add2Cache $ (liftM2 (==)) n (return 0)

neq0 <- eq_n_zero
if neq0 then acc
else do nmacc <-

add2Cache $ (tracerMulM (liftM2 (*)) n acc
nm1 <-

add2Cache $ (liftM2 (-)) n (return 1)
(tracerFacM facM) nm1 nmacc

CState: Cache-Enabled State Monad

-- Cells: thunks or values
data Cell = forall s a. Cell Bool (CState s a)
type Cache = Map.Map Int (Maybe Cell)

newtype CState s a = CState{ realrunCState ::
(s, Cache) -> (Either a Int, (s, Cache))}

type M a = CState (UserVar, OutputBuf) a

Our Solution, 2

Provide a special showM to replace ordinary
show function
showM :: m Int -> m String
return the thunk cell without forccing its evaluation

Post-process the output
tracerFacM proceed arg arg2 =
do getIndentResult <- getIndentM

let ind = return getIndentResult
let ind' = (liftM2 (++)) (return "| ") ind
setIndentM ind'
let show_arg2 = showM arg2
…

Issues with Higher-Order Functions

The monadification, [| e |], does not work for
higher-order functions.

The case of “(Var) [| x |] = x” is to blame.
Example: [| (id1 id2) |]

[| (id1 id2) |] = [| id1 |] [| id2 |] = (id1 id2)

Because this does not type check!

id1 :: (I->I)->(I->I) [| id1 |] :: m (m I -> m I) ->m (m I -> m I)
id2 :: (I->I)

[| id |] :: m a -> m a If we specialize id2 to Int->Int:

[| id2 |] :: (m I -> m I)

S=[I->I/a]

M and S do Not distribute with each other

t M(t)

St M(St)

S M(S)

S: type substitution
M(S): Monadified sub

M(St) != M(S)M(t)

Need Boilerplate Code to Make it Work

[| (id1 id2) |]
(I->I)

= [| id1|] (I->I)->(I->I) id2

Type-Directed Monadification (Second try)

[| e |]tΓ Note: t is the type of e

The Var case:
[| x |]t

Γ
= posS (x)

t’

join :: m (m a) -> m a

[type indexed]

Type Correctness

• Theorem: If Γ├ e : t,
then M(Γ)├ [|e|]Γ : M(t)t

•Dynamic Semantics and Value Preservation issue
is not covered in this talk.

More Issues

Lifting higher-order primitives, such as ‘$’
Related: library functions without source code
Example:

A type-indexed “liftM[…](e)” ?

Monadifying constructed data types such as lists
m [a] vs.
MList a = MNil | MCons (m a) (m (Mlist a))

…

liftM2 ($) :: m (a->b) -> m a -> m b
But we need (m a -> m b) -> m a -> m b

Extension: Monadic base programs

M(t1 → t2) ⇒M(t1) →M(t2)
M(a) ⇒ MT N a
M(N (t1 → t2)) ⇒ MT N (M(t1) →M(t2))
M(N a) ⇒ MT N a

type CStateT s m a =
CacheT (StateT s m) a

Use monad transformers:

Summary

Extending AspectFun with side-effecting
aspects
Type-directed monadification scheme
Working on issues with higher-order functions

Thank you for listening.

	Side-Effect Localization for �Lazy, Purely Functional Languages via Aspects
	Outline
	Aspect-Oriented Programming (AOP)
	Aspect-Oriented Programming (AOP)
	Aspect-Oriented Programming (AOP)
	Aspects
	Functional AOP
	An Example: Memoization Aspect
	Static Weaving
	Weaving Side-Effecting Aspects
	Motivation
	Related works: Monadification
	Our Approach
	Outline
	AspectFun (Base programs)
	AspectFun (Base programs)
	Side-Effecting Aspects: mutable vars
	Side-Effecting Aspects: putMsg
	Side-Effecting Aspects: Tracing
	Outline
	Transformations for monad introduction
	1) A-normalization: every intermediate computation is assigned a name by a LET expression; �applications become (e a) – a: an
	3) The State Monad
	(2)Type-directed monadification
	(2)Type-directed monadification
	Monadification (First try)
	Sequencings and set!
	The Monadification Operator
	2) Monadification w.r.t (m, return, >>=)
	Outline
	Issues of the Monadification Scheme
	A Lazy Tracer?
	Monadified code (Not so “Lazy” tracer)
	Expected trace result
	Actual trace result: duplicate evaluation and wrong order
	Our Solution, 1
	CState: Cache-Enabled State Monad
	Our Solution, 2
	 Issues with Higher-Order Functions
	M and S do Not distribute with each other
	Need Boilerplate Code to Make it Work
	Type-Directed Monadification (Second try)
	The Var case:
	Type Correctness
	More Issues
	Extension: Monadic base programs
	Summary
	Thank you for listening.

