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Aspect-Oriented Programming (AOP)
Aims at Improving modularity by addressing 
crosscutting concerns; hot in SE & OO communities.
An example:

Source: Communications of the ACM Vol. 44 No. 10, Pages 33-38 



Aspect-Oriented Programming (AOP)
AOP programs are divided into base programs and aspects
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Aspect-Oriented Programming (AOP)
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When the join points specified by the pointcut is reached during 
program execution, the advice in the aspects is triggered for execution.



Aspects

Two parts of aspects
Pointcut: The specified points where 
intervention of execution take place

Advice: The action taken when the 
specified pointcut is reached.

Three kinds: before, after, around



Functional AOP
Applying AOP concepts to Functional 
Programming?

Language implementations exist:
AspectML [Dantas et al, ICFP’05, TOPLAS’07], 
Aspectual Caml [Masuhara et al, ICFP’05], 
AspectFun [Chen et al, SAS’07, SCP’10] 

Experimental, Haskell-like syntax
etc. 

Reference: an extensive survey of the impacts of 
AOP on (purely) functional programming:
What Does Aspect-Oriented Programming 
Mean for Functional Programmers?

M. Wang and B. Oliveira, WGP 2009

+Side-effecting 
aspects



An Example: Memoization Aspect

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

cache@advice around{fib} (arg) =
if cacheContains(arg)
then getCachedValue(arg)
else setCache(arg, proceed(arg))

Base 
program

Aspect

Aspect 
name

Pointcut

Advice body
Resume “fib”



Static Weaving

fib 0 = 1
fib 1 = 1
fib n = (cache fib) (n-1)

+ (cache fib) (n-2)

cache proceed arg =
if cacheContains(arg)
then getCachedValue(arg)
else setCache(arg, proceed(arg))

Reference: [Chen et al, SAS’07, SCP’10]

The intervening action of aspects is realized by a weaving process.



Weaving Side-Effecting Aspects

purely functional

Base Program

Aspects with a state monad

State
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pointcut
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Motivation

Many useful aspects require side-effecting 
computations, but are “harmless.” [Dantas’06]

tracing, profiling, memoizaton, …

Support side-effecting aspects directly on the 
language level and automate the rewriting 
using source-to-source transformations.



Related works: Monadification

Automatic introduction of monads:
CPS conversions by Flanagan et al, and Hatcliff & 
Danvy
Monad introduction transformation by Lämmel
(Selective) Monadification by Erwig and Ren

•But, as far as we know, no results for 
lazy, purely functional languages.

Also related:
Purely Functional Lazy Non-deterministic Programming
by S. Fisher, O. Kiselyov, and C. C. Shan   in ICFP’09.



Our Approach

Linguistic support for side-effecting aspects
by equipping AspectFun with

Mutable variables
Output operation

A type-directed monadification scheme
that transforms woven code into to a purely 
monadic style functional code using a cache-
enabled state monad.
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AspectFun (Base programs)

Haskell-like syntax 
Purely functional
Polymorphic
Lazy

fib n = if n <= 1 then 1
else fib (n-1) + fib (n-2)

fac n acc = if n == 0 then acc
else fac (n-1) (n*acc)



AspectFun (Base programs)

Reference: [Chen et al, SAS’07, SCP’10]



Side-Effecting Aspects: mutable vars
aspect name where 

var id :: mono-type
advice around { pointcut } (arg) = exp

aspect memoFib where
var memoMap:: Map.Map Int Int

advice around {fib} (arg) =
case lookupCache arg of
Just v -> v
Nothing -> 

set! v = proceed arg ;
insertCache arg v; 
v

Example:
Two accessors:
-getMemoMap
-setMemoMap

--’;’ Sequencing
--set!:Sequenced bindings



Side-Effecting Aspects: putMsg

fac n acc = 
if n == 0 then acc
else fac (n - 1) (n * acc)

Example: a tracing aspect using set! and putMsg

aspect tracer where
var indent :: String = "“ --state
advice around{ fac, (*) } (arg) = \arg2 ->
set! ind = getIndent ;
setIndent ("| " ++ ind);
set! v1 = arg;
set! v2 = arg2;
putMsg (ind++ tjp ++" receives ["++ show v1 ++ ", " ++ show v2 ++ "]");
set! result = proceed v1 v2 ;
setIndent ind;
putMsg (ind++tjp++" returns " ++  show result);
result

tjp: this join point (function being advised)

--putMsg aString

Adapted from [Kishon 92]

call-by-value tracing

show: Int->String



Side-Effecting Aspects: Tracing

fac n acc = if n == 0 then acc
else fac (n - 1) (n * acc)

fac receives [3, 1]
|  |  times receives [3, 1]
|  |  times returns 3
|  fac receives [2, 3]
|  |  | times receives [2, 3]
|  |  | times returns 6
|  |  fac receives [1, 6]
|  |  |  | times receives [1, 6]
|  |  |  | times returns 6
|  |  |  fac receives [0, 6]
|  |  |  fac returns 6
|  |  fac returns 6
|  fac returns 6
fac returns 6

Example: call-by-value trace of “fac 3 1”

fac 3  1 A lazy trace?
We’ll give one later.
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Transformations for monad introduction

1. Apply A-normalization to woven code 

2. Perform Type-directed monadification
Monadify woven code w.r.t
(m, return, >>=) in a type context Γ
[| e |] =  eM

3. Specialized m to a state monad with a 
cache facility

Γ



1) A-normalization: every intermediate computation 
is assigned a name by a LET expression; 
applications become  (e a) – a: an atomic exp (var or const)

fac n acc =          --woven code
if n == 0 then acc
else (tracer fac) (n-1) ((tracer (mul)) n acc)

facA :: Int -> Int -> Int
facA n acc =

let nleq0 = n == 0 in
if nleq0 then acc
else let nmacc = (tracer (mul)) n acc in

let nm1 = n – 1 in
(tracer facA) nm1 nmacc

2) Monadification (later)



3) The State Monad

Concrete monad to support side-effecting 
aspects:
data State s a = State

{ runState :: s -> (a, s) }

type M a =
State (UserVar, OutBuf) a

A record of mutable variables Output buffer for putMsg



(2)Type-directed monadification
Rewriting function [| |]Γ:: exp expm

that lifts computations in the input expression to a 
designated monad of (m, return, >>).

The def of [| |] is guided by the monadic types
assigned by the following monadification operator,
M:: Type Type

Type t ::= Int | Bool | a | t -> t

Ex: fac :: Int->Int->Int ,      [| fac |] Γ :: M(Int->Int->Int)

• Goal:  If            Γ├ e : t,  
then  M(Γ)├ [|e|]Γ : M(t)



(2)Type-directed monadification
The def of [| |] is guided by the monadic types

assigned by the following monadification
operator,

M:: Type Type
M(t1 → t2)  ⇒M(t1) →M(t2)
M(t) ⇒ m t        if t is non-functional (atomic)

M( a.t)    ⇒ a.M(t) 

Type t ::= Int | Bool | a | t -> t

Ex: fac :: Int->Int->Int ,   M(Int->Int->Int) = m Int -> m Int -> m Int



Monadification (First try)
[|e|]Γ lifts expressions to monadic space

[|a|];



Sequencings and set!

[| set! x = e1 ;  e2 |] =



The Monadification Operator

Previous works:
M(t1 → t2) ⇒ t1 →M(t2)

Ours (Call-By-Name)
M(t1 → t2) ⇒M(t1) →M(t2)
(m a) is an action as well as a thunk

• An alternative: 
M(t1 → t2)  ⇒ m (M(t1) →M(t2))



2) Monadification w.r.t (m, return, >>=)

facM :: m Int -> m Int -> m Int
facM n acc =
do let n_eq_0 = (liftM2 (==)) n (return 0)

neq0 <- n_eq_0
if neq0 then acc
else

do let nmacc = (tracerM (liftM2 (mul)) n acc
let nm1 = (liftM2 (-)) n (return 1)
(tracerM facM) nm1 nmacc

facA :: Int -> Int -> Int
facA n acc =

let nleq0 = n == 0 in
if nleq0 then acc
else let nmacc = (tracer (mul)) n acc in

let nm1 = n – 1 in
(tracer facA) nm1 nmacc
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Issues of the Monadification Scheme

Preserving lazy evaluation order

Higher-Order functions

…



A Lazy Tracer?

aspect tracer where
var indent :: String = "“ --state
advice around{ fac, (*) } (arg) = \arg2 ->
set! ind = getIndent ;
setIndent ("| " ++ ind);
set! v1 = arg;
set! v2 = arg2;
putMsg (ind++ tjp ++" receives ["++ show v1 ++ ", " ++ show v2 ++ "]");
set! result = proceed v1 v2 ;
setIndent ind;
putMsg (ind++tjp++" returns " ++  show result);
result

•Revise the call-by-value tracing aspect:

putMsg (ind++ tjp ++" receives ["++ show arg ++ ", " ++ show arg2 ++ "]");
set! result = proceed arg arg2 ;



Monadified code (Not so “Lazy” tracer)
tracer@advice around{fac, (*)} (arg) =
\arg2 -> let! ind = getIndent in
setIndent ("| " ++ ind);
putMsg (ind++tjp++" receives ["++show arg++", "++show arg2++"]");
set! result = proceed arg arg2;
setIndent ind;
putMsg (ind ++ tjp ++ " returns " ++ show result);
result

tracerM proceed arg arg2 =
do getIndentResult <- getIndentM

let ind = return getIndentResult
let ind' = (liftM2 (++)) (return "| ") ind
setIndentM ind'
let show_arg2 = (liftM show) arg2
let str_1 = (liftM2 (++)) show_arg2 (return "]")
let str_2 = (liftM2 (++)) (return ",") str_1
let show_arg = (liftM show) arg
…
putMsgM str_5
proceedResult <- proceed arg arg2
…



Expected trace result

fac receives [3, 1]
| fac receives [2, 3]
| | fac receives [1, 6]
| | | fac receives [0, 6]
| | | | (*) receives [1, 6]
| | | | | (*) receives [2, 3]
| | | | | | (*) receives [3, 1]
| | | | | | (*) returns 3
| | | | | (*) returns 6
| | | | (*) returns 6
| | | fac returns 6
| | fac returns 6
| fac returns 6
fac returns 6

(*) are all done 
at the end 
according to 
lazy semantics

fac n acc = if n == 0 then acc
else fac (n-1) (n*acc)



Actual trace result: duplicate evaluation 
and wrong order
fac receives [3, 1]
| | (*) receives [3, 1]
| | (*) returns 3
| fac receives [2, 3]
| | | | (*) receives [3, 1]
| | | | (*) returns 3
| | | (*) receives [2, 3]
| | | | (*) receives [3, 1]
| | | | (*) returns 3
| | | (*) returns 6
| | fac receives [1, 6]
: : 
| | | | | | (*) receives [3, 1]
| | | | | | (*) returns 3
| | | | | (*) returns 6
| | | | (*) returns 6
| | | fac returns 6
| | fac returns 6
| fac returns 6
fac returns 6

Showing arg2 forces the 
multiplication being called
(Premature evaluation)

It is evaluated every time 
whenever (3*1) is needed
(Duplicate evaluation)

fac n acc = if n == 0 then acc
else fac (n-1) (n*acc)

accumulating parameter



Our Solution, 1

Wrap the State monad with a cache facility to 
support lazy evaluation: CState monad

Insert “add2cache” for thunkifying function 
arguments 

facM n acc =
do eq_n_zero <- add2Cache $ (liftM2 (==)) n (return 0)

neq0 <- eq_n_zero
if neq0 then acc
else do nmacc <-

add2Cache $ (tracerMulM (liftM2 (*)) n acc
nm1 <-

add2Cache $ (liftM2 (-)) n (return 1)
(tracerFacM facM) nm1 nmacc



CState: Cache-Enabled State Monad

-- Cells: thunks or values
data Cell = forall s a. Cell Bool (CState s a) 
type Cache = Map.Map Int (Maybe Cell)

newtype CState s a = CState{ realrunCState :: 
(s, Cache) -> (Either a Int, (s, Cache))}

type M a = CState (UserVar, OutputBuf) a



Our Solution, 2

Provide a special showM to replace ordinary 
show function
showM :: m Int -> m String
return the thunk cell without forccing its evaluation

Post-process the output
tracerFacM proceed arg arg2 =
do getIndentResult <- getIndentM

let ind = return getIndentResult
let ind' = (liftM2 (++)) (return "| ") ind
setIndentM ind'
let show_arg2 = showM arg2
…



Issues with Higher-Order Functions

The monadification, [| e |], does not work for 
higher-order functions.

The case of “(Var) [| x |] = x” is to blame.
Example:  [| ( id1 id2 ) |] 

[| ( id1 id2 ) |] =  [| id1 |]  [| id2 |] = ( id1 id2 )

Because this does not type check!

id1 :: (I->I)->(I->I) [| id1 |] :: m (m I -> m I) ->m (m I -> m I)
id2 :: (I->I)

[| id |] :: m a -> m a       If we specialize id2 to Int->Int:

[| id2 |] :: (m I -> m I)

S=[I->I/a]



M and S do Not distribute with each other

t M(t)

St M(St)

S M(S)

S: type substitution
M(S): Monadified sub

M(St) != M(S)M(t)



Need Boilerplate Code to Make it Work

[| ( id1 id2 ) |]
(I->I)

= [| id1|] (I->I)->(I->I) id2



Type-Directed Monadification (Second try)

[| e |]tΓ Note: t is the type of e



The Var case: 
[| x |]t

Γ
=   posS (x)

t’

join :: m (m a) -> m a

[type indexed]



Type Correctness

• Theorem:  If            Γ├ e : t,  
then  M(Γ)├ [|e|]Γ : M(t)t

•Dynamic Semantics and Value Preservation issue 
is not covered in this talk.



More Issues

Lifting higher-order primitives, such as ‘$’
Related: library functions without source code
Example:

A type-indexed “liftM[…](e)” ?

Monadifying constructed data types such as lists
m [a] vs.
MList a = MNil | MCons (m a) (m (Mlist a))

…

liftM2 ($) :: m (a->b)      -> m a -> m b
But we need        (m a -> m b) -> m a -> m b



Extension: Monadic base programs

M(t1 → t2) ⇒M(t1) →M(t2)
M(a) ⇒ MT N a
M(N (t1 → t2)) ⇒ MT N (M(t1) →M(t2))
M(N a) ⇒ MT N a

type CStateT s m a =
CacheT (StateT s m) a

Use monad transformers:



Summary

Extending AspectFun with side-effecting 
aspects
Type-directed monadification scheme
Working on issues with higher-order functions



Thank you for listening.
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