
Higher-Order Model Checking
and Applications to Program Verification

Naoki Kobayashi
Tohoku University

In collaboration with
Luke Ong (University of Oxford),
Ryosuke Sato, Naoshi Tabuchi, Takeshi Tsukada, Hiroshi Unno
(Tohoku University)

Program Verification Techniques
Finite state/pushdown model checking
– Applicable to first-order procedures (pushdown

model checking), but not to higher-order
programs

Type-based program analysis
– Applicable to higher-order programs
– Sound but imprecise
Dependent types/theorem proving
– Requires human intervention

Sound and precise verification technique for
higher-order programs (e.g. ML/Java programs)?

This Talk
New program verification method based
on higher-order model checking
[POPL 2009/2010, LICS 2009, ICALP 2009, PPDP 2009]

– Sound, complete, and automatic for
• A large class of higher-order programs
• A large class of verification problems

– Built on recent/new advances in
• Type theories
• Automata/formal language theories
(esp. higher-order recursion schemes)

• Model checking

Outline
Higher-order recursion schemes
From program verification to model checking
recursion schemes
From model checking to type checking
Type checking (=model checking) algorithm
TRecS: Type-based RECursion Scheme model checker
Ongoing work
Discussion

Higher-Order Recursion Scheme
Grammar for generating an infinite tree
Order-0 scheme
(regular tree grammar)

S → a c B
B → b S

→ a

c B c b

→ a

S

c b

→ a

a

c B

→ ... →
c b

a

c b

a

c b

a

S

S → a
c B

B → b
S

Higher-Order Recursion Scheme

Grammar for generating an infinite tree
Order-1 scheme

S → A c
A → λx. a x (A (b x))

S: o, A: o→ o
→A c

c A(b c)

→ a → ... →

c a

→ a

b A(b(b c))

c

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

Tree whose paths
are labeled by

am+1 bm c

S

Model Checking Recursion Schemes

e.g.
- Does every finite path end with “c”?
- Does “a” occur eventually whenever “b” occurs?

Given
G: higher-order recursion scheme
A: alternating parity tree automaton (APT)

(a formula of modal μ-calculus or MSO),
does A accept Tree(G)?

n-EXPTIME-complete [Ong, LICS06]
(for order-n recursion scheme)

Outline
Higher-order recursion schemes
From program verification to model checking
recursion schemes
From model checking to type checking
Type checking (=model checking) algorithm
TRecS: Type-based RECursion Scheme model checker
Ongoing work
Discussion

From Program Verification
to Model Checking Recursion Schemes

[K. POPL 2009]

Program
Transformation

Higher-order
program

+
specification

Rec. scheme
(describing all
event sequences

or outputs)
+

Tree automaton,
recognizing

valid event sequences
or outputs

Model
Checking

From Program Verification to Model Checking:
Example

let f(x) =
if ∗ then close(x)
else read(x); f(x)

in
let y = open “foo”
in

f (y)

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d

From Program Verification to Model Checking:
Example

let f(x) =
if ∗ then close(x)
else read(x); f(x)

in
let y = open “foo”
in

f (y)

F x k → + (c k) (r(F x k))
S → F d

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

From Program Verification to Model Checking:
Example

let f(x) =
if ∗ then close(x)
else read(x); f(x)

in
let y = open “foo”
in

f (y)

F x k → + (c k) (r(F x k))
S → F d

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

From Program Verification to Model Checking:
Example

let f(x) =
if ∗ then close(x)
else read(x); f(x)

in
let y = open “foo”
in

f (y)

F x k → + (c k) (r(F x k))
S → F d

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

From Program Verification to Model Checking:
Example

let f(x) =
if ∗ then close(x)
else read(x); f(x)

in
let y = open “foo”
in

f (y)

F x k → + (c k) (r(F x k))
S → F d

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

From Program Verification to Model Checking:
Example

let f(x) =
if ∗ then close(x)
else read(x); f(x)

in
let y = open “foo”
in

f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d

S

From Program Verification to Model Checking:
Example

let f(x) =
if ∗ then close(x)
else read(x); f(x)

in
let y = open “foo”
in

f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d

F d

From Program Verification to Model Checking:
Example

let f(x) =
if ∗ then close(x)
else read(x); f(x)

in
let y = open “foo”
in

f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d

F d

+
c r

From Program Verification to Model Checking:
Example

let f(x) =
if ∗ then close(x)
else read(x); f(x)

in
let y = open “foo”
in

f (y)

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d

+
c r

+

F d

c r

From Program Verification to Model Checking:
Example

let f(x) =
if ∗ then close(x)
else read(x); f(x)

in
let y = open “foo”
in

f (y)

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d

From Program Verification
to Model Checking Recursion Schemes

Program
Transformation

Higher-order
program

+
specification

Rec. scheme
(describing all

event sequences)
+

automaton for
infinite trees

Model
Checking

Sound, complete, and automatic for:
- A large class of higher-order programs:

simply-typed λ-calculus + recursion
+ finite base types

- A large class of verification problems:
resource usage verification [Igarashi&K. POPL2002],
reachability, flow analysis, ...

Comparison with Traditional Approach
(Control Flow Analysis)

Control flow analysis

Our approach

Flow
Analysis

Higher-order
program

Control flow
graph
(finite state
or pushdown
machines)

verification

Program
Transformation

Higher-order
program

Recursion
scheme verification

Only information about
infinite data domains
is approximated!

Comparison with Traditional Approach
(Software Model Checking)

Program Classes Verification Methods
Programs with
while-loops

Finite state model checking

Programs with
1st-order recursion

Pushdown model checking

Higher-order functional
programs

Recursion scheme model
checking

infinite
state
model
checking

Outline
Higher-order recursion schemes
From program verification to model checking
recursion schemes
From model checking to type checking
Type checking (=model checking) algorithm
TRecS: Type-based RECursion Scheme model checker
Ongoing work
Discussion

Goal

Construct a type system TS(A) s.t.
Tree(G) is accepted by tree automaton A

if and only if

G is typable in TS(A)

Model Checking as
Type Checking
(c.f. [Naik & Palsberg, ESOP2005])

Why Type-Theoretic
Characterization?

Simpler decidability proof of model
checking recursion schemes
– Previous proofs [Ong, 2006][Hague et. al, 2008]
made heavy use of game semantics

More efficient model checking algorithm
– Known algorithms [Ong, 2006][Hague et. al, 2008]
always require n-EXPTIME

Model Checking Problem

Given
G: higher-order recursion scheme

(without safety restriction)
A: alternating parity tree automaton (APT)

(a formula of modal μ-calculus or MSO),
does A accept Tree(G)?

n-EXPTIME-complete [Ong, LICS06]
(for order-n recursion scheme)

Model Checking Problem
Given

G: higher-order recursion scheme
(without safety restriction)

A: trivial automaton [Aehlig CSL06]

(Büchi tree automaton where
all the states are accepting states)

does A accept Tree(G)?

See [K.&Ong, LICS09] for the general case
(full modal μ-calculus model checking)

(Trivial) tree automaton
for infinite trees

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

δ(q0, a) = q0 q0
δ(q0, b) = q1
δ(q1, b) = q1
δ(q0, c) = ε
δ(q1, c) = ε

q0

q0q0
q0q0

q1
q0q0

q1

q1

q0
q1

q1

q1
In every path,
“a” cannot occur after “b”

Types for Recursion Schemes
Automaton state as the type of trees
– q: trees accepted from state q

– q1∧q2: trees accepted from both q1 and q2

q

Is Tree(G) accepted by A?

Does Tree(G) have type q0?

Types for Recursion Schemes
Automaton state as the type of trees

– q1→ q2: functions that take a tree of type q1
and return a tree of q2

q2

q1 + =
q1

q2

q1

Types for Recursion Schemes
Automaton state as the type of trees
– q1∧q2 → q3:

functions that take a tree of type q1∧q2 and
return a tree of type q3

+ =
q1, q2

q3

q1 q2q2

q3

q1 q2q2

Types for Recursion Schemes
Automaton state as the type of trees
(q1 → q2) → q3:

functions that take a function of type q1 → q2
and return a tree of type q3

+ =

q3

q1

q2

q1

q2

q3

q1

q2

Γ, x:τ ┝ x :τ

Typing

Γ┝ t1: τ1∧…∧τn → τ
Γ┝ t2:τi (i=1,..n)

−−−−−−−−−−−−−−−−−−−−
Γ┝ t1 t2:τ

Γ, x:τ1,..., x:τn ┝ t:τ
−−−−−−−−−−−−−−−−−−
Γ┝ λx.t: τ1∧…∧τn → τ

Γ┝ tk : τ (for every Fk:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1→t1,..., Fn → tn} : Γ

δ(q, a) = q1…qn
−−−−−−−−−−−−−−−−−−−
┝ a :q1 → … → qn → q

Γ, x:τ ┝ x :τa

…

q

q1 qn

Soundness and Completeness
[K., POPL2009]

Let
G: Rec. scheme with initial non-terminal S
A: Trivial automaton with initial state q0
TS(A): Intersection type system

derived from A
Then,
Tree(G) is accepted by A

if and only if
S has type q0 in TS(A)

Outline
Higher-order recursion schemes
From program verification to model checking
recursion schemes
From model checking to type checking
Type checking (=model checking) algorithm
– A naive algorithm
– A practical algorithm
TRecS: Type-based RECursion Scheme model checker
Ongoing work
Discussion

Typing

Γ┝ t1: τ1∧…∧τn → τ
Γ┝ t2:τi (i=1,..n)

−−−−−−−−−−−−−−−−−−−−
Γ┝ t1 t2:τ

Γ, x:τ1,..., x:τn ┝ t:τ
−−−−−−−−−−−−−−−−−−
Γ┝ λx.t: τ1∧…∧τn → τ

Γ, x:τ ┝ x :τ

Γ┝ tj : τ (for every Fj:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1→t1,..., Fn → tn} : Γ

δ(q, a) = q1…qn
−−−−−−−−−−−−−−−−−−−
┝ a :q1 → … → qn → q

Naïve Type Checking Algorithm
Recursion Scheme:
{F1 →t1, ..., Fm →tm }

S has type q0

(i) Γ |− tj: τ
for each Fj:τ ∈ Γ

(ii) S:q0 ∈ Γ
for some Γ

S:q0 ∈ gfp(H) = ∩k Hk(Γmax)
where

H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ }
Γmax = {F:τ | τ :: sort(F) }

All the possible
type bindings
E.g. for F:o→o,
{F:T → q0, F:q0 → q0,
F: q1 → q0,
F:q0∧q1 → q0,…}

Filter out invalid type bindings

Naïve Algorithm Does NOT Work

sort # of types (Q={q0,q1,q2,q3})
o 4 (q0,q1,q2,q3)
o → o 24 ×4 = 64 (∧S→ q, with S∈2Q, q∈Q)

(o→o) → o 264 ×4 = 266

((o→o) → o) → o 266 10000000000000000000
2 ×4 > 10

S has type q0

S:q0 ∈ gfp(H) = ∩k Hk(Γmax)
where H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ }

Γmax = {F:τ | τ :: sort(F) } This is huge!

Outline
Higher-order recursion schemes
From program verification to model checking
recursion schemes
From model checking to type checking
Type checking (=model checking) algorithm
– A naive algorithm
– A practical algorithm
TRecS: Type-based RECursion Scheme model checker
Ongoing work
Discussion

More Efficient Algorithm?
S has type q0
⇔

S:q0 ∈ ∩k Hk(Γmax)
where

H(Γ) = { Fj:τ ∈ Γ | Γ |− tj:τ }

Γ0
⇐

Challenges:
(i) How can we find an appropriate Γ0 ?

(ii) How can we guarantee completeness?

Reduce the recursion scheme (finitely many steps),
and extract type information

Iteratively repeat (i) and type checking

Hybrid Type Checking Algorithm

Step 1:
Run the recursion scheme
a finite number of steps

Property
violated?

Error path
yes

no Step 2: Extract
type environment

Γ0

Step 3: Compute
Γ = ∩k Hk(Γ0)

S:q0 ∈ Γ ?no
yes Property

Is
Satisfied!

Soundness and Completeness of
the Hybrid Algorithm

Given:
– Recursion scheme G
– Deterministic trivial automaton A,

the algorithm eventually terminates, and:
(i) outputs an error path

if Tree(G) is not accepted by A
(ii) outputs a type environment

if Tree(G) is accepted by A

Example
Recursion scheme:

S → F c F → λx.a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

S
q0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Example
Recursion scheme:

S → F c F → λx.a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :
S: q0

Example
Recursion scheme:

S → F c F → λx.a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: q0 ∧ q1
→ q0

Example
Recursion scheme:

S → F c F → λx.a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: q0 ∧ q1
→ q0

F: q0 → q0

Example
Recursion scheme:

S → F c F → λx.a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = q1
δ(q0, c) = δ(q1, c) = ε

→ F c

c F(b c)

→ a

c a

→ a

b F(b(b c))

c

Sq0 q0 q0

q0
q0

q0

q0 q0

q0

q1

q0

Γ0 :

S: q0

F: q0 ∧ q1
→ q0

F: q0 → q0

F: T → q0

Example
Step 1:

Run the recursion scheme
a finite number of steps

Property
violated?

Error path
yes

no Step 2: Extract
type environment

Γ0

Step 3: Compute
Γ = ∩k Hk(Γ0)

S:q0 ∈ Γ ?no
yes Property

Is
Satisfied!

S: q0 F: q0 ∧ q1→ q0
F: q0 → q0 F: T → q0

Example:
Filtering out invalid judgments
Recursion scheme:

S → F c F → λx.a x (F (b x))
Automaton:

δ(q0, a) = q0 q0 δ(q0, b) = q1
δ(q0, c) = δ(q1, c) = ε

Γ0 = {S: q0, F: q0 ∧ q1→ q0, F: q0 → q0 , F: T → q0}

Γ1 = H(Γ0) = { Fk:τ ∈ Γ0 | Γ0 |− tk:τ }
= {S: q0, F: q0 ∧ q1→ q0, F: q0 → q0 }

Γ2 = {S: q0, F: q0 ∧ q1→ q0}
Γ3 = {S: q0, F: q0 ∧ q1→ q0}

Example
Step 1:

Run the recursion scheme
a finite number of steps

Property
violated?

Error path
yes

no Step 2: Extract
type environment

Γ0

Step 3: Compute
Γ = ∩k Hk(Γ0)

S:q0 ∈ Γ ?no
yes Property

Is
Satisfied!

S: q0 F: q0 ∧ q1→ q0
F: q0 → q0 F: T → q0

S: q0
F: q0 ∧ q1→ q0

Example
Step 1:

Run the recursion scheme
a finite number of steps

Property
violated?

Error path
yes

no Step 2: Extract
type environment

Γ0

Step 3: Compute
Γ = ∩k Hk(Γ0)

S:q0 ∈ Γ ?no
yes Property

Is
Satisfied!

S: q0 F: q0 ∧ q1→ q0
F: q0 → q0 F: T → q0

S: q0
F: q0 ∧ q1→ q0

TRecS
http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

The first model checker for recursion
schemes (or, for higher-order functions)

Based on the hybrid model checking algorithm,
with certain additional optimizations

Experiments

150Yes12802m91
2Yes495Order5

order rules states result Time
(msec)

Twofiles 4 11 4 Yes 2

FileWrong 4 11 4 No 1
TwofilesE 4 12 5 Yes 2
FileOcamlC 4 23 4 Yes 5
Lock 4 11 3 Yes 10

xhtml 1 2 50 Yes 263

(Environment: Intel(R) Xeon(R) 3Ghz with 2GB memory)

Taken from the compiler of
Objective Caml, consisting of
about 60 lines of O’Caml code

(A simplified version of)
FileOcamlC

let readloop fp =
if * then () else readloop fp; read fp

let read_sect() =
let fp = open “foo” in
{readc=fun x -> readloop fp;
closec = fun x -> close fp}

let loop s =
if * then s.closec() else s.readc();loop s

let main() =
let s = read_sect() in loop s

Experiments

150Yes12802m91
2Yes495Order5

order rules states result Time
(msec)

Twofiles 4 11 4 Yes 2

FileWrong 4 11 4 No 1
TwofilesE 4 12 5 Yes 2
FileOcamlC 4 23 4 Yes 5
Lock 4 11 3 Yes 10

xhtml 1 2 50 Yes 263

(Environment: Intel(R) Xeon(R) 3Ghz with 2GB memory)

Machine-generated code
from McCurthy’s 91 function

by using predicate abstractionMachine-generated code
from a program manipulating

Xhtml documents

Outline
Higher-order recursion schemes
From program verification to model checking
recursion schemes
From model checking to type checking
Type checking (=model checking) algorithm
TRecS: Type-based RECursion Scheme model checker
Limitations and ongoing work
Discussion

Recursion schemes as
models of higher-order programs?
+ simply-typed λ-calculus
+ recursion
+ tree constructors
+ finite data domains (via Church encoding;

true = λx.λy.x, false=λx.λy.y)
- infinite data domains

(integers, lists, trees,…)
- advanced types (polymorphism, recursive

types, object types, …)
- imperative features/concurrency

Ongoing work
to overcome the limitation

Predicate abstraction and CEGAR,
to deal with infinite data domains
(c.f. BLAST, SLAM, …)
From recursion schemes to transducers,
to deal with algebraic data types
(lists, trees, …) [K.,Tabuchi&Unno, POPL 2010]

Infinite intersection types,
to deal with non-simply-typed programs
[Tsukada&K. FoSSaCS 2010]

Outline
Higher-order recursion schemes
From program verification to model checking
recursion schemes
From model checking to type checking
Type checking (=model checking) algorithm
TRecS: Type-based RECursion Scheme model checker
Ongoing work
Discussion

Advantages of our approach
(1) Sound, complete and automatic for a large

class of higher-order programs
– no false alarms!
– no annotations

Advantages of our approach
(1) Sound, complete and automatic for a large

class of higher-order programs
– no false alarms!
– no annotations

(2) Subsumes finite-state/pushdown model
checking
– Order-0 rec. schemes ≈ finite state systems
– Order-1 rec. schemes ≈ pushdown systems

Advantages of our approach
(3) Take the best of model checking and types

– Types as certificates of successful verification
⇒ applications to PCC (proof-carrying code)

– Counterexample when verification fails
⇒ error diagnosis,

CEGAR (counterexample-guided
abstraction refinement)

Advantages of our approach
(4) Encourages structured programming

Main:
fp1 := open “r” “foo”;
fp2 := open “w” “bar”;

Loop:
c1 := read fp1;
if c1=eof then goto E;
write(c1, fp2);
goto Loop;

E:
close fp1;
close fp2;

let copyfile fp1 fp2 =
try write(read fp2, fp1);

copyfile fp1 fp2
with

Eof -> close(fp1);close(fp2)
let main =

let fp1 = open “r” file in
let fp2 = open “w” file in

copyfile fp1 fp2

v.s.

Previous techniques:
- Imprecise for higher-order functions and recursion,
hence discourage using them

Advantages of our approach
(4) Encourages structured programming

Our technique:
- No loss of precision for higher-order functions and
recursion

- Performance penalty? -- Not necessarily!
- n-EXPTIME in the specification size,

but polynomial time in the program size
- Compact representation of large state space

e.g. recursion schemes generating am(c)
S→F1 c, F1 x→F2(F2 x),..., Fn x→a(a x)

vs
S→a G1, G1 →a G2,..., Gm → c (m=2n)

Advantages of our approach
(5) A good combination with testing:

Verification through testing

Step 1:
Run the recursion scheme
a finite number of steps

Property
violated?

Error path
yes no Step 2: Extract

type environment
Γ0

Step 3: Compute
Γ = ∩k Hk(Γ0)

S:q0 ∈ Γ ?
no

yes Property
Is
Satisfied!

Challenges
More efficient model checker
– More language-theoretic properties of recursion

schemes (e.g. pumping lemmas)

– BDD-like state representation

Software model checker for ML/Haskell

Extension of the decidability of higher-order
model checking (Tree(G) |= ϕ)

Integration with testing (e.g. QuickCheck)

Conclusion
New program verification technique based on
model checking recursion schemes
– Many attractive features

• Sound and complete for higher-order programs
• Take the best of model-checking and
type-based techniques

– Many interesting and challenging topics

References
K., Types and higher-order recursion schemes for verification of
higher-order programs, POPL09
From program verification to model-checking, and typing

K.&Ong, Complexity of model checking recursion schemes for
fragments of the modal mu-calculus, ICALP09
Complexity of model checking

K.&Ong, A type system equivalent to modal mu-calculus model-
checking of recursion schemes, LICS09

From model-checking to type checking

K., Model-checking higher-order functions, PPDP09
Type checking (= model-checking) algorithm

K., Tabuchi & Unno, Higher-order multi-parameter tree
transducers and recursion schemes for program verification,
POPL10 Extension to transducers and its applications
Tsukada & K., Untyped recursion schemes and infinite intersection
types, FoSSaCS 10

