
1

Verification of refinements
in rule-based designs

Nirav Dave, Myron King, Arvind (MIT)
Michael Katelman, Jose’ Meseguer (Illinois)

WG 2.8, Marble Falls, TX
March 11, 2010

1

A typical RTL design

What if we change the
implementation of the
filter with a different
latency?

2

2

Problem in refinement

The correctness of
thi bl k d d this block depends on
the latency of the
rest of the system

3

img
data

Latency-Insensitive design

EdgerMemory
1

rdResp
g

Detector1

Merge
Image

VGA
Controller

Video
Controller

RdReq
Generator

wrReq

rdReq

rdReq
rdResp

RGB

Memory
2

rdResp
(img data)

Such latency-insensitive designs are much
more amenable to modular refinement

4

Wrap peripherals
with handshake
interface for
reusability

3

Refinements inside a block

5

r1 r2

Limitations of FSM-equivalence
preserving refinements

yi = f1(xi; r1i);
1 0 1

f1 f2

r1 r2

x zy

r10 = 0; r1i+1 = yi;
zi = f2(yi; r2i);
r20 = 0; r2i+1 = zi;

Produces the same z

6

f1 f2

r1 r2

x zy y’

shifted by one clock

The two FSMs are not
equal

4

r1 r2

A rule-based description

prod-cons

f1 f2

r1 r2

x zy

inQ outQ
register r1 = 0, r2 = 0
inQ, outQ

7

rule producer-consumer when (!inQ.empty && !outQ.full):
let x = inQ.first;
let y = f1(x,r1);
let z = f2(y,r2);
r1 := y; r2 := z
outQ.enq(z); inQ.deq;

r1 r2

Rules for the Refined System
register r1 = 0, r2 = 0
fifo q, inQ, outQ

prod cons

f1 f2

r1 r2

x zy y’

inQ Can be
implemented
by many
different FSMs

8

rule consume when
(!q.empty && !outQ.full):

let y = q.first;
let z = f2(y,r2);
outQ.enq(z); q.deq;
r2 := z;

rule produce when
(!q.full && !inQ.empty):

let x = inQ.first;
let y = f1(x,r1);
q.enq(y); inQ.deq;
r1 := y

5

Schedules
The semantics of rule-based systems
only dictates that an execution must only dictates that an execution must
conform to some sequential execution
of rules
The compiler tries to execute in each
cycle as many of the enabled rules as
possible without violating the semanticspossible without violating the semantics
Each schedule results in a different FSM

9

Back to our example
The one rule system has only one schedule but
the refined system has many

rule consume when
(!q.empty && !outQ.full):

let y = q.first;
let z = f2(y,r2);
outQ.enq(z); q.deq;
r2 := z;

rule produce when
(!q.full && !inQ.empty):

let x = inQ.first;
let y = f1(x,r1);
q.enq(y); inQ.deq;
r1 := y

S h d l

y y

10

Some schedules
prod; cons; prod; cons; prod; cons;…
prod; prod; cons; prod; cons; prod; cons;…
prod; prod; cons; cons; prod; prod;…
prod; (prod|cons); (prod|cons); (prod|cons);…

6

In what sense are these
two systems the same?
rule producer-consumer when (!inQ.empty && !outQ.full):

let x = inQ.first;
let y = f1(x,r1);
let z = f2(y,r2);
r1 := y; r2 := z
outQ.enq(z); inQ.deq;

register r1 = 0, r2 = 0
inQ, outQ

register r1 = 0, r2 = 0
fifo q, inQ, outQ

Original System
Refined System

same set
of

behaviors?

11

rule consume when
(!q.empty && !outQ.full):

let y = q.first;
let z = f2(y,r2);
outQ.enq(z); q.deq;
r2 := z;

rule produce when
(!q.full && !inQ.empty):

let x = inQ.first;
let y = f1(x,r1);
q.enq(y); inQ.deq;
r1 := y

Same set of behaviors?
A set of rules defines a transition system
A behavior is the sequence of values assumed A behavior is the sequence of values assumed
by the state variables (r1, r2, inQ, outQ, q) as
a consequence of rule executions
In order to relate two systems we have to
define “related” states of the two systems
 The state of the two system should be related when

q is empty (The designer specifies this)q p y (g p)
Proof burden ?

12

7

Strong stuttering simulation
refined

s1 --> …. --> s2

Show that if the two systems start out in the
 l t bl t t d th fi d t

| |
| related | related
| |
t1 --> …. --> t2

original

same relatable state and the refined systems
gets into a relatable state then there exists
transitions in the original system that can get
to an equivalent related state.

13
Can be done using a SMT solver

The tool
The tool we have built shows that either the
refinement is correct or produces a behavior refinement is correct or produces a behavior
that it is unable to reproduce in some bounded
amount of time on the original system

Wonderful as a debugging aid because
works in tens of seconds for many
examples we have tried

14

p

Most complex example: refining a 4
stage processor pipeline into a 5 stage
pipleline

8

Non-determinism:
Adding an Observer rule

observe

f1 f2

r1 r2

x zy

inQ outQ

obsQ

f3

prod-cons
x zy

15

1 2

Wrong refinement

consprod

obser

f1 f2

r1 r2

x zy

inQ outQ

obsQ

f3

consprod

16

9

Correct refinement 1

prod

obsv

f1 f2

r1 r2

x zy

inQ outQ

obsQ

f3

consprod

17

r1 r2r1p

Correct refinement 2

consprod

obser

f1 f2

r1 r2

x zy

inQ outQ

obsQ

f3

r1p

y’
o

18

Thanks

