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Problem in refinement
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Latency-Insensitive design
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Such latency-insensitive designs are much

more amenable to modular refinement

Wrap peripherals
with handshake
interface for
reusability




Refinements inside a block

Limitations of FSM-equivalence
preserving refinements
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prod-cons

A rule-based description

registerrl =0,r2 =0
inQ, outQ

let x = inQ.first;
lety = f1(x,rl);
let z = f2(y,r2);
rl:=y;r2:=z
outQ.enq(z); inQ.deq;

rule producer-consumer when (!linQ.empty && loutQ.full):

Rules for the Refined System
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r2

cons

outQ

registerr1 =0,r2 =0
fifo g, inQ, outQ

Can be
implemented
by many
different FSMs

rule produce when

let x = inQ.first;
lety = f1(x,rl);
g.enq(y); inQ.deq;
ri:=y

('q.full && 'inQ.empty):

rule consume when
(!q.empty && loutQ.full):
let y = g.first;
let z = f2(y,r2);
outQ.enq(z); g.deq;
r2 :=z;




Schedules

€ The semantics of rule-based systems
only dictates that an execution must
conform to some sequential execution
of rules

# The compiler tries to execute in each
cycle as many of the enabled rules as
possible without violating the semantics

® Each schedule results in a different FSM

Back to our example

The one rule system has only one schedule but
the refined system has many

rule produce when rule consume when
('q.full && 'inQ.empty): (!g.empty && loutQ.full):
let x = inQ.first; let y = q.first;
lety = f1(x,rl); let z = f2(y,r2);
g.enq(y); inQ.deq; outQ.enq(z); q.deq;
rl:=y 2 :=z;

Some schedules

prod; cons; prod; cons; prod; cons;...

prod; prod; cons; prod; cons; prod; cons;...
prod; prod; cons; cons; prod; prod;...

prod; (prod]cons); (prod|cons); (prodjcons);...
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In what sense are these
two systems the same?

rule producer-consumer when (linQ.empty && loutQ.full):
let x = inQ.first;
lety = f1(x,rl); registerrl =0,r2=0
let z = f2(y,r2); inQ, outQ
ri:=y;r2:=z
outQ.enq(z); inQ.deq;

Original System T Same set
Refined; System l behawors’?

Same set of behaviors?

# A set of rules defines a transition system

# A behavior is the sequence of values assumed
by the state variables (r1, r2, inQ, outQ, q) as
a consequence of rule executions

# In order to relate two systems we have to
define “related” states of the two systems

= The state of the two system should be related when
q is empty (The designer specifies this)

% Proof burden ?




Strong stuttering simulation

refined
sl --> -->s2
| |
| related | related
| I
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original

@ Show that if the two systems start out in the
same relatable state and the refined systems
gets into a relatable state then there exists

transitions in the original system that can get
to an equivalent related state.

Can be done using a SMT solver

13

The tool

# The tool we have built shows that either the
refinement is correct or produces a behavior
that it is unable to reproduce in some bounded
amount of time on the original system

Wonderful as a debugging aid because
works in tens of seconds for many
examples we have tried

Most complex example: refining a 4

stage processor pipeline into a 5 stage
pipleline
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Non-determinism:
Adding an Observer rule
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Correct refinement 1
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Correct refinement 2
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Thanks
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