Verification of refinements
In rule-based designs

Nirav Dave, Myron King, Arvind (MIT)
Michael Katelman, Jose’ Meseguer (lllinois)

WG 2.8, Marble Falls, TX
March 11, 2010

T
Sewistion Format Took Help

Fle & D p
DSEHE 8 == oz afin e RGBS REES
(T s it i
080 _HE ol |
i & 1
(P e = o | .".,\E
e Vs |
ettt [vl o [l
) Y 55 it e iy
(O i o Sobal_Edge_Deiecs 4‘ 9 e o
g st e a0 Tiga,_t
’—’ What if we change the
ol] implementation of the
[s | filter with a different
sy e [latency?
‘ o I— Trm T
g o]
i : IM_L{ w{m
[ufint i
Rnady 100% FxedSten{acrete: &

y

Problem in refinement

=loix
Fie £t Vew Sedshon Formad Teok Help
DEHE B == oz afon [fem HJRuBDEe s REERS
(o yteam The correctness of
b this block depends on
Y s the latency of the
e i rest of the system
(I;th_w o .m’v | —
i fn bk l —
ﬂw‘i :‘:":_:‘l““m ! & i) Bobal_Edge_ Detestan R
Vidwe_Cestallel D]
D'_“S‘h

\

img
rdRes

Latency-Insensitive design

B Memory data

1

* rdReq

wrReq| RdReq

(img data)
] Memory

5 ‘i

Merge
Generator

Image |
* rdReq
rdResp

Such latency-insensitive designs are much

more amenable to modular refinement

Wrap peripherals
with handshake
interface for
reusability

Refinements inside a block

Limitations of FSM-equivalence
preserving refinements

v v y; = f1(x;; rl);
t 12 rlo = 05 rlig = Y3

z; = f2(y;; r2);
o 2) 2, =0; r2,,; = z;
X Yy~~~ 2

'y

! ! Produces the same z

1 > shifted by one clock

» - - g The two FSMs are not
i y y Hign cqual

prod-cons

A rule-based description

registerrl =0,r2 =0
inQ, outQ

let x = inQ.first;
lety = f1(x,rl);
let z = f2(y,r2);
rl:=y;r2:=z
outQ.enq(z); inQ.deq;

rule producer-consumer when (!linQ.empty && loutQ.full):

Rules for the Refined System

A 4

r2

cons

outQ

registerr1 =0,r2 =0
fifo g, inQ, outQ

Can be
implemented
by many
different FSMs

rule produce when

let x = inQ.first;
lety = f1(x,rl);
g.enq(y); inQ.deq;
ri:=y

('q.full && 'inQ.empty):

rule consume when
(!q.empty && loutQ.full):
let y = g.first;
let z = f2(y,r2);
outQ.enq(z); g.deq;
r2 :=z;

Schedules

€ The semantics of rule-based systems
only dictates that an execution must
conform to some sequential execution
of rules

The compiler tries to execute in each
cycle as many of the enabled rules as
possible without violating the semantics

® Each schedule results in a different FSM

Back to our example

The one rule system has only one schedule but
the refined system has many

rule produce when rule consume when
('q.full && 'inQ.empty): (!g.empty && loutQ.full):
let x = inQ.first; let y = q.first;
lety = f1(x,rl); let z = f2(y,r2);
g.enq(y); inQ.deq; outQ.enq(z); q.deq;
rl:=y 2 :=z;

Some schedules

prod; cons; prod; cons; prod; cons;...

prod; prod; cons; prod; cons; prod; cons;...
prod; prod; cons; cons; prod; prod;...

prod; (prod]cons); (prod|cons); (prodjcons);...

10

In what sense are these
two systems the same?

rule producer-consumer when (linQ.empty && loutQ.full):
let x = inQ.first;
lety = f1(x,rl); registerrl =0,r2=0
let z = f2(y,r2); inQ, outQ
ri:=y;r2:=z
outQ.enq(z); inQ.deq;

Original System T Same set
Refined; System l behawors’?

Same set of behaviors?

A set of rules defines a transition system

A behavior is the sequence of values assumed
by the state variables (r1, r2, inQ, outQ, q) as
a consequence of rule executions

In order to relate two systems we have to
define “related” states of the two systems

= The state of the two system should be related when
q is empty (The designer specifies this)

% Proof burden ?

Strong stuttering simulation

refined
sl --> -->s2
| |
| related | related
| I
tl --> -->t2
original

@ Show that if the two systems start out in the
same relatable state and the refined systems
gets into a relatable state then there exists

transitions in the original system that can get
to an equivalent related state.

Can be done using a SMT solver

13

The tool

The tool we have built shows that either the
refinement is correct or produces a behavior
that it is unable to reproduce in some bounded
amount of time on the original system

Wonderful as a debugging aid because
works in tens of seconds for many
examples we have tried

Most complex example: refining a 4

stage processor pipeline into a 5 stage
pipleline

14

Non-determinism:
Adding an Observer rule

r 2

obsQ
(s
inQ V(\/V' (Obserje\yOUtQ
%\,\ {‘
prod-cons)
Wrong refinement
‘rrl ‘r'2
obsQ

16

Correct refinement 1

— obsQ

L]

—
|
AR
*

inQ ‘EZ:\\ i

e
—
—h

17

Correct refinement 2

A 4 v v
ri rip r2
obsQ
| f3
inQ '\(WV/-Y\ obser OUtQ
f1 fZ\ \’\ >
: 74 A1

S cons

Thanks

18

