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Abstract. Regular expression parsing is the problem of producing a parse
tree of a string for a given regular expression. We show that a compact bit
representation of a parse tree can be produced efficiently, in time linear in
the product of input string size and regular expression size, by simplifying
the DFA-based parsing algorithm due to Dubé and Feeley to emit the bits of
the bit representation without explicitly materializing the parse tree itself.
We furthermore show that Frisch and Cardelli’s greedy regular expression
parsing algorithm can be straightforwardly modified to produce bit codings
directly. We implement both solutions as well as a backtracking parser and
perform benchmark experiments to gauge their practical performance. We
observe that our DFA-based solution can be significantly more time and
space efficient than the Frisch-Cardelli algorithm due to its sharing of DFA-
nodes, but that the latter may still perform better on regular expressions
that are “more deterministic” from the right than the left. (Backtracking
is, unsurprisingly, quite hopeless.)

1 Introduction

A regular expression over finite alphabet Σ, as introduced by Kleene [12], is a
formal expression generated by the regular tree grammar

E,F ::= 0 | 1 | a | E + F | E × F | E∗

where a ∈ Σ, and ∗, × and + have decreasing precedence. (In concrete syntax,
we may omit × and write | instead of +.) Informally, we talk about a regular
expression matching a string, but what exactly does that mean?

In classical theoretical computer science, regular expression matching is the
problem of deciding whether a string belongs to the regular language denoted by
a regular expression; that is, it is membership testing [1]. In this sense, abdabc
matches ((ab)(c|d)|(abc))*, but abdabb does not. This is captured in the lan-
guage interpretation for regular expressions in Figure 2.1.

In programming, however, membership testing is rarely good enough: We do not
only want a yes/no answer, we also want to obtain proper matches of substrings
against the subexpressions of a regular expression so as to extract parts of the
input for further processing. In a Perl Compatible Regular Expression (PCRE)1

matcher, for example, matching abdabc against E = ((ab)(c|d)|(abc))* yields
a substring match for each of the 4 parenthesized subexpressions (“groups”): They
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1 See http://www.pcre.org.
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match abc, ab, c, and ε (the empty string), respectively. If we use a POSIX matcher
[10] instead, we get abc, ε, ε, abc, however. The reason for the difference is that
((ab)(c|d)|(abc))* is ambiguous: the string abc can match the left or the right
alternative of (ab)(c|d)|(abc), and returning substring matches makes this dif-
ference observable.

A limitation of Perl- and POSIX-style matching is that we only get at most
one match for each group in a regular expression. This is why only abc is returned,
the last substring of abdabc matching the group ((ab)(c|d)|(abc)) in the reg-
ular expression above. Intuitively, we might expect to get the list of all matches
[abd, abc]. This is possible with regular expression types [9]: Each group in a regu-
lar expression can be named by a variable, and the output may contain multiple
matches for the same variable. For a variable under two Kleene stars, however, we
cannot discern the matches belonging to different level-1 Kleene-star groups.

An even more refined notion of matching is thus regular expression parsing :
Returning a parse tree of the input string under the regular expression read as
a grammar. Automata-theoretic techniques, which exploit equivalence of regular
expressions under their language interpretation, typically change the grammatical
structure of matched strings and are thus not directly applicable. Only recently
have linear-time2 regular expression parsing algorithms been devised [6, 7].

In this paper we show how to generate a compact bit-coded representation of a
parse tree highly efficiently, without explicitly constructing the parse tree first. A
bit coding can be thought of as an oracle directing the expansion of a grammar—
here we only consider regular expressions—to a particular string. Bit codings are
interesting in their own right since they are typically not only smaller than the
parse tree, but also smaller than the string being parsed and can be combined with
other techniques for improved text compression [4, 3].

In Section 2 we recall that parse trees can be identified with the elements of
regular expressions interpreted as types, and in Section 3 we describe bit codings
and conversions to and from parse trees. Section 4 presents our algorithms for
generating bit coded parse trees. These are empirically evaluated in Section 5.
Section 6 summarizes our conclusions.

2 Regular Expressions as Types

Parse trees for regular expressions can be formalized as ad-hoc data structures [6,
2], representing exactly how the string can be expressed in the regular expression.
This means that both membership testing, substring groups and regular expression
types can be found by filtering away the extra information in the parse tree. Inter-
estingly, parse trees also arise completely naturally by interpreting regular expres-
sions as types [7, 8]; see Figure 2.2. For example, the type interpretation of regular
expression ((ab)(c|d)|(abc))∗ is (({a}×{b})× ({c}+ {d}) + {a}× ({b}×{c})) list.
We call elements of a type values; e.g., p1 = [inl ((a, b), inr d), inr (a, (b, c))] and
p2 = [inl ((a, b), inr d), inl ((a, b), inl c)] are different elements of (({a}×{b})×({c}+
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Fig. 2.1 The language interpreation of regular expressions

L[[0]] = ∅ L[[1]] = {ε} L[[a]] = {a}
L[[E + F ]] = L[[E]] ∪ L[[F ]] L[[E × F ]] = L[[E]]L[[F ]] L[[E∗]] = {

⋃
i≥0 L[[E]]i

where ε is the empty string, S T = {s t | s ∈ S ∧ t ∈ T}, and S0 = {ε}, Si+1 = S Si.

Fig. 2.2 The type interpreation of regular expressions

T [[0]] = ∅ T [[1]] = {()} T [[a]] = {a}
T [[E + F ]] = T [[E]] + T [[F ]] T [[E × F ]] = T [[E]]× T [[F ]] T [[E∗]] = T [[E]] list

where () is distinct from all alphabet symbols, S + T = {inlx | x ∈ S} ∪ {inr y | y ∈ T}
is the disjoint union, S × T = {(x, y) | x ∈ S, y ∈ T} the Cartesian product of S and T ,

and S list = {[v1, . . . , vn] | vi ∈ S} the finite lists over S.

{d}) + {a} × ({b} × {c})) list and thus represent different parse trees for regular
expression ((ab)(c|d)|(abc))∗.

We can flatten (unparse) any value to a string by removing the tree structure.

Definition 2.1. The flattening function flat(.) from values to strings is defined
as follows:

flat(()) = ε flat(a) = a
flat(inl v) = flat(v) flat(inrw) = flat(w)

flat((v, w)) = flat(v) flat(w) flat(fold v) = flat(v)

Flattening the type interpretation of a regular expression yields its language in-
terpretation:

Theorem 2.1. L[[E]] = {flat(v) | v ∈ T [[E]]}

A regular expression is ambiguous if and only if its type interpretation contains
two distinct values that flatten to the same string. With p1, p2 as above, since
flat(p1) = flat(p2) = abdabc, this shows that ((ab)(c|d)|(abc))∗ is grammatically
ambiguous.

3 Bit-coded Parse Trees

The description of bit coding in this section is an adaptation from Henglein and
Nielsen [8]. Bit coding for more general types than the type interpretation of
regular expressions is well-known [11]. It has been applied to certain context-free
grammars [3], but its use in this paper for efficient regular expression parsing seems
to be new.

A bit-coded parse tree is a bit sequence representing a parse tree for a given
regular expression. Intuitively, bit coding factors a parse tree p into its static part,
the regular expression E it is a member of, and its dynamic part, a bit sequence
that uniquely identifies p as a particular element of E. The basic idea is that the
bit sequence serves as an oracle for the alternatives that must be taken to expand
a regular expression into a particular string.

2 This is the data complexity; that is for a fixed regular expression, whose size is considered
constant.



4

Fig. 3.1 Type-directed encoding function from syntax trees to bit sequences

code(() : 1) = ε
code(a : a) = ε
code(inl v : E + F ) = 0 code(v : E)
code(inrw : E + F ) = 1 code(w : F )
code((v, w) : E × F ) = code(v : E) code(w : F )
code([v1, . . . , vn] : E∗) = 0 code(v1 : E) . . . 0 code(vn : E) 1

Fig. 3.2 Type-directed decoding function from bit sequences to syntax trees

decode′(d : 1) = ((), d)
decode′(d : a) = (a, d)
decode′(0d : E + F ) = let (v, d′) = decode′(d : E)

in (inl v, d′)
decode′(1d : E + F ) = let (w, d′) = decode′(d : F )

in (inrw, d′)
decode′(d : E × F ) = let (v, d′) = decode′(d : E)

(w, d′′) = decode′(d′ : F )
in ((v, w), d′′)

decode′(0d : E∗) = let (v1, d
′) = decode′(d : E)

(~v, d′′) = decode′(d′ : E∗)
in (v1 :: ~v, d′)

decode′(1d : E∗) = ([], d)
decode(d : E) = = let (w, d′) = decode′(d : E)

in if d′ = ε thenw else error

Consider, for example, the values p1 = [inl ((a, b), inr d), inr (a, (b, c))] and p2 =
[inl ((a, b), inr d), inl ((a, b), inl c)] from Section 2, which represent distinct parse
trees of abdabc for regular expression ((ab)(c|d)|(abc))*. The bit coding arises
from throwing away everything in the parse tree except the list and the tag con-
structors, which yields [inl inr , inr ]. We code inl by 0 and inr by 1, which gives us
[01, 1]. Finally we code the list itself: Each element is prefixed by 0, and the list
is terminated by 1. The resulting bit coding is b1 = 001 01 1 (whitespace added
for readability). Similarly, the bit coding of p2 is b2 = 001 000 1. More compact
codings for lists are possible by generalizing regular expressions to tail-recursive
µ-terms [8]. We stick to the given coding of lists here, however, since the focus of
this paper is on constructing the bit codings, not their effect on text compression.

Figures 3.1 and 3.2 define regular-expression directed linear-time coding and
decoding functions from parse trees to their bit codings and back:

Theorem 3.1. If v ∈ T [[E]] then decode(code(v : E) : E) = v

Proof: By structural induction on v.

Note that bit codings are only meaningful in the context of a regular expression,
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because the same bit sequence may represent different strings for different regular
expressions, and may be invalid for other regular expressions.

Bit codings are not only more compact than parse trees. As we shall see, they
are also more suitable for automaton output, as it is not necessary to generate list
structure, pairing or even the alphabet symbols occurring in a parse tree.

4 Parsing Algorithms

We present two bit coding parsing algorithms in this section. The first can be
understood as a simplification of Dubé and Feeley’s [6] DFA-generation algorithm,
producing bit codings instead of explicit parse tree. We also show that Frisch and
Cardelli’s [7] algorithm can be straightforwardly modified to produce bit codings.

4.1 Dubé/Feeley-style Parsing

Our algorithm DFA performs the following steps: Given regular expression E and
input string s,

1. generate an enhanced Thompson-style NFA with output actions (finite state
transducer);

2. use the subset construction to produce an enhanced DFA with additional in-
formation on edges to capture the output actions from the NFA;

3. use the enhanced DFA as a regular DFA on s;
– if it rejects terminate with error (no parse tree);
– if it accepts, return the path in the DFA induced by the input string;

4. combine, in reverse order of the path, the output information on each edge
traversed to construct the bit coding of a parse tree.

The steps are described in more detail below.

Enhanced NFA generation. The left column of Figure 4.1 shows Thompson-
style NFA generation. We enhance it by adding single bit outputs to the outedges
of those states that have two outgoing ε-transitions, shown in the right column.
The output bits can be thought of indicators for an agent traversing the NFA: 0
means turn left, 1 means turn right. The other edges carry no output bit since
their traversal is forced.

When traversing a path p in an enhanced NFA, the sequence of symbols read
is denoted by read(p), and the sequence of symbols written is denoted by write(p).

Lemma 4.1 (Soundness and completeness of enhanced NFAs). Let NE be
the extended NFA for regular expression E according to Figure 4.1 (right). Then
for each s ∈ Σ∗ we have {v|v ∈ T [[E]] ∧ flat(v) = s} =
{decode(write(p) : E) | p is a path in NE from initial state to final state such that
read(p) = s}.

Proof: By structural induction on E.

In other words, an extended NFA generates exactly the bit codings of the parse
trees of the strings it accepts. Observe furthermore that no two distinct paths
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from initial to final state have the same output bits. This means that a bit coding
uniquely determines a particular path from initial to final state, and vice versa.
Dubé and Feeley [6] also instrument Thompson-style NFAs, but with more output
symbols on more edges so as to be able to generate an external representation of
a parse tree. Figure 4.2 shows their enhanced NFA for E = a× (b+ c)?× a on the
left. Our corresponding enhanced NFA is shown on the right.

Enhanced subset construction. During subset construction additional infor-
mation is computed:

1. A map init from the NFA states q in the initial DFA state to an output init(q).
The output init(q) must be write(p) for some path p from the initial NFA state
to q where read(p) = ε. These paths are traversed when finding the ε-closure
of the initial NFA state, which is how the initial DFA state is constructed in
the subset construction, and is thus easy to generate.

2. A map outpute for each edge e in the DFA, that maps each NFA state q2 in
the destination DFA state to a pair (q1, o) of an NFA state q1 in the source
DFA state, and an output o. The output o must be write(p) for some path p
from q1 to q2 where read(p) is the input of the DFA edge e. These paths are
traversed, when the destination state of the edge is computed, and are thus
simple to generate.

The DFA for the NFA from Fig. 4.2 (right) is shown in Fig. 4.3, and the result
of adding the information described above is shown in Fig. 4.4.

The additional information captures basically the same information as in Dubé
and Feeley’s DFA construction, but it stores the additional information directly in
the DFA edges, where Dubé and Feeley use an external 3-dimensional table. Most
importantly, the additional information we need to store is reduced, since we only
generate bit codings, not explicit parse trees.

Bit code construction. After accepting s = a1 . . . an we have a path p =
[A0, A1, · · · , An] in the extended DFA, where A0, . . . , An are DFA states, each
consisting of a set of NFA states, with A0 containing the initial NFA state qi and
An the final NFA state qf .

We construct the bit code of a parse tree for s by calling write(p, qf ) where
write traverses p from right to left as follows:

write([A0], q) = initq

write([A0, A1, . . . , Ak−1, Ak], q) = write([A0, A1, . . . , Ak−1], q′) · b′

where (q′, b′) = outputAk−1→Ak
(q)

Lemma 4.2 (Bit coding preservation). Let DE be the extended DFA generated
from the extended NFA NE for E. If p is a path from the initial state in D to a
state containing the NFA state q and if write(p, q) = b
then there is a path p′ in NE from the initial state in NE to the state q such that
read(p) = read(p′) and write(p, q) = write(p′).

Proof: Induction on the number of steps in p.

We can now conclude that the bit sequence found represents a parse tree for the
input string.
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Theorem 4.1 (Correctness of DFA algorithm). If DE is an extended DFA
generated from an extended NFA NE for regular expression E, and p is a path
from the initial state to a final state in DE, and qf is the final state of NE

then read(p) = flat(decode(write(p, qf ) : E)).

Proof: This follows from first applying Lemma 4.2 and then Lemma 4.1.

Once the DFA has been generated, this method results in very efficient regular
expression parsing. The DFA traversal takes time Θ(|s|), and the bit code genera-
tion takes time Θ(|s|+ |b|), where |b| is the length of the output bit sequence. This
means the total run time complexity of parsing is Θ(|s| + |b|) which is (sequen-
tially) optimal, since the entire string must be read, and the entire bit sequence
must be written.

Example. Consider the extended DFA for the reg-
ular expression a(b+ c)?a in Fig. 4.4.
If we use it to accept the string abcba, then we get
the path p = 0 → 1 → 3 → 4 → 3 → 2. Tracing
the path backwards, keeping track of the output bit-
sequences b and NFA states q we get the steps in the
table on the right.

Step q Symbol new q b
3→ 2 9 a 8 ””
4→ 3 8 b 3 ”1”
3→ 4 3 c 4 ”00”
1→ 3 4 b 3 ”01”
0→ 1 3 a 0 ”00”

Since init0 = ”” we get the bit code b = ”” ·”00” ·”01” ·”00” ·”1” ·”” = ”0001001”.
We can verify that the DFA parsing algorithm has given us a correct bit coding

since flat(decode(”0001001” : a(b+ c)?a)) = abcba.

4.2 Frisch/Cardelli-style Parsing

Instead of building a Thompson-style NFA from the regular expressions, Frisch and
Cardelli [7] build an NFA with one node for each position in the regular expression,
with the final state as the only additional node. The regular expression positions
are identified by the path used to reach the position. The positions λend(E) in
a regular expression E are defined as lists of choices (the choices are fst and
snd for sequence, lft and rgt for sum and star for ?). E.l is used to denote the
subexpression of E found by following the path l. The transitions δ(E) in the
NFA of a regular expression E are defined using a successor relation succ on the
paths.

The NFA is used to generate a table Q(l, i), which maps each position l ∈
λend(E) and input string position i to true, if l accepts the ith suffix of s and
false otherwise.

The table Q can be constructed by starting with Q(l, i) = false for all l ∈
λend(E) and i = 1 . . . |s|, and calling SetPrefix(Q, end, |s|), which updates Q as
defined below.

SetPrefix(Q, l, i) = if Q(l, i) then return;
Q(l, i) := true;
for (l′, ε, l) ∈ δ(E) do SetPrefix(Q, l′, i);
if i > 0 then for (l′, s[i], l) ∈ δ(E) do SetPrefix(Q, l′, i− 1);
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Fig. 4.1 NFA generation schema

E NFA Extended NFA

0 0 1 0 1

1 0 0

a 0 1
a

0 1
a/ε

E1 × E2
0 1 2

E F
0 1 2

E F

E + F

0
1

2

3

4
5

E1

E2
0

1

2

3

4
5

ε/1

ε/0

E1

E2

ε/ε

ε/ε

E1
? 0

1 2

3

E1

0

1 2

3

ε/0
ε/1

E1

ε/ε

Fig. 4.2 Extended NFAs for a(b+ c)?a
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Fig. 4.3 DFA for a(b+ c)?a
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Fig. 4.4 Extended DFA for a(b+ c)?a

0 : = 0:  0
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The run time cost and memory consumption of computing Q is asymptotically
bounded by the size of Q, which is in Θ(|s| · |E|).

After Q is built, it is easy to check whether s matches the regular expression
E, simply by looking up Q([], 0). We modify Frisch and Cardelli’s build function
to construct a bit coding representing the greedy leftmost (or first and greedy [14])
parse tree for s, if s matches E, as follows (notice that l :: x means appending x
after l):

build(l, i) = case E.l of
a: return (ε, i+ 1)
1: return (ε, i)
E1 × E2: let (b1, j) = build(l :: fst, i)

in let (b2, k) = build(l :: snd, j) in return (b1b2, k);
E1 + E2: if Q(l :: lft, i)

then let (b1, j) = build(l :: fst, i) in retuen (0b1, j)
else let (b2, j) = build(l :: snd, i) in return (1b2, j);

E?
1 : if Q(l :: star, i)

then let (b1, j) = build(l :: star, i)
in let (b2, k) = build(l, j) in return (0b1b2, k)

else return (1, j);

The run time cost and memory consumption of build([], 0) is asymptotically
bounded by the number of cells in Q, which is in Θ(|E| · |s|) and which is therefore
the time complexity and memory consumption of the entire algorithm.

5 Empirical evaluation

We have implemented the algorithms described in Section 4 as a C++ library [13]
and performed a series of performance tests on a PC with a 2.50GHz Intel Core2
Duo CPU and 4Gb of memory, running Ubuntu 10.4. We test four different parsing
methods. NFA based backtracking (backtracking), implemented by a depth-first
search for an accepting path in our enhanced Thompson-style NFA. FRCA is the
algorithm based on Frisch and Cardelli from Section 4.2. DFA is the algorithm
based on Dubé and Feeley from Section 4.1. DFASIM is the same algorithm as
DFA, but where the nodes and edges of the DFA are not precomputed, but gen-
erated dynamically by need.

5.1 Backtracking Worst Case: (an : (a + 1)nan)

The regular expression is (a + 1)nan, where we use the notation En to represent
E × · · · × E (n copies). This is a well-known example [5], which captures the
problematic cases for backtracking.3 The results of matching an (denoting n as)
to (a+ 1)n × an are in the two leftmost graphs below.

3 If a fixed regular expression is preferred, then (a + a)? × b or (a? × a)? × b provokes the same
behavior.
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When parsing a string with n as, the backtracking algorithm traverses 2n different
paths before eventually finding the match. The cost of generating the DFA is
Θ(n2) (2 · n nodes containing n NFA-nodes on average). Since only half of the
DFA-nodes are used, DFASIM is faster than generating the whole DFA, but the
run time complexity is still Θ(n2). The time used for FRCA is Θ(n), since there is
exactly one suffix that can be parsed from each position in the regular expression.
The reason FRCA performs much better than the other algorithms in this example
is that the example was designed to be hard to parse from the left to right, and
FRCA processes the string in its first phase from right to left. If we change the
regular expression to an(1 + a)n, it becomes hard to process from right to left,
as shown in the rightmost graph above. It is generally advantageous to process a
string in the “more deterministic” direction of the regular expression.

5.2 DFA Worst Case (am+1 : (a + b)?a(a + b)n)

The following is a worst-case scenario for the DFA based algorithm, and a best-
case scenario for the FRCA and backtracking algorithms. The regular expression
is (a+ b)?a(a+ b)n, and the string is am+1.

The two leftmost graphs below show the execution time when n = m, and the
right graph shows the execution time when n = 13. When n is fixed to 13, the
runtime of both FRCA, DFASIM and DFA are linear, but even though DFA has
a large initialization time for building the DFA, FRCA uses more time for large
m, because it uses more time per character.
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The DFA will haveO(2n) DFA-nodes. This causes the DFA algorithm to have a run
time complexity of Θ(m · 2n). This exponential explosion is avoided by DFASIM,
which only builds as many states as needed for the particular input string.

5.3 Practical examples

We have tested 9 of the 10 examples of “real world” regular expressions from
Veanes et al. [15] to compare the performance of each algorithm. (Their example
nr. 3 is uninteresting for performance testing since it only accepts strings of a
bounded length).
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Examples 1,4,5,7,8,9,10 are different ways of expressing the language of email
addresses, while Example 2 defines the language of dollar-amounts, and Example
6 defines the language of floating point values.
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The DFA and Precompiled DFA (a staged version of DFA) graphs are missing
in many of the examples. This is because the DFA generation runs out of memory.
We may conclude that there are many cases where it is not feasible to generate
the full DFA. The two best algorithms for these tests are FRCA and DFASIM,
with DFASIM being faster by a large factor (at least 10) in all cases. Apart from
the direction of processing NFA-nodes in their respective first passes, the key
difference between DFASIM and FRCA is that DFASIM memoizes and reuses
DFA-states at multiple positions in the input string, whereas FRCA essentially
produces what amounts to a separate DFA-state for each position in the input
string. In comparison to FRCA, the DFA-state memoization not only saves space,
but also computation time whenever the same transition is traversed more than
once.

6 Conclusion

We have designed and implemented a number of regular expression parsing algo-
rithms, which produce bit coded representations of parse trees without ever ma-
terializing the parse trees during parsing. Producing bit codings is advantageous
since it carries the dual advantage of yielding a compressed parse tree represen-
tation and of speeding its construction. Our DFA simulation algorithm DFASIM,
in the style of Dubé and Feeley [6], and FRCA, a modified version of the greedy
algorithm of Frisch and Cardelli [7], have shown the best asymptotic performance,
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with DFA simulation beating FRCA on a suite of real world examples. As for
the potential for further improvements, compact NFA-construction, efficient com-
putation of the sub-NFA induced by an input string (left-to-right or right-to-left
or, preferably, something better), and memoized DFA-state construction appear
to be key to obtaining practically improved regular expression parsing without
sacrificing asymptotic scalability.
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