A Quick View of
Homomorphic Encryption

John Launchbury

galois



Homomorphic

Crypto
encCg
A —>E(A)
e A computation on the encrypted space
produces the same result as the fj j Eval (f)
computation on the unencrypted space

B —— Ex(B)
enc

galois



® RSA Settings
» Size m, private key k, public key p

» enc(x) = xmod m
® |et

» Eval(*)(c,c’) = cc’ mod m
e Then

enc(x)enc(y) mod m
= (x* mod m) (y* mod m) mod m

= (xy)* mod m

RSA
Semi-homomorphic

Homomorphic with
respect to multiplication,

but not addition

galois



Homomorphic

Crypto
® Basic Setting
» A, B are bit-vector types (i.e. finite
products of Bool)
; . enck
» k is a cryptographic key A > Ex (A)
» Ex(A) is an integer type that may be
much larger than A deck
id
e Encryption/Decryption
A

» The encryption operation enc is
typically a random multi-function

» It has an inverse function dec

galois



e fis a function that can be represented
as a boolean circuit

» A boolean polynomial over AND, XOR

e Evalk(f) is a boolean circuit whose size is
independent of the size of f

» Compactness property

Homomorphic
Crypto

eNnNCg
A —— S Ec(A)

f Evaly (f)

B —— Ex(B)
enc

galois



e fis a function that can be represented
as a boolean circuit

» A boolean polynomial over AND, XOR

e Evalk(f) is a boolean circuit whose size is
independent of the size of f

» Compactness property

Homomorphic
Crypto

deck
A «——E¢ (A)

f Evaly (f)

B «—E(B)
deck

galois



e KeyGen : Bit-P
» k <- random(P), odd

® Encrypt(m,k) : Key -> Bit-1 -> Integer
» m’ <- random(N), m’ = m(mod 2)
» c<-m’ + kg

® Decrypt(c,k) : Key -> Integer -> Bit-1

» m <- (c mod k) mod 2

Simplified Gentry
Scheme

® Security settings
» N=A(e.g. 16)
» P =A% (e.g. 256)
» Q=AM (e.g. 1048576)

® g <- random(Q)

galois



Simplified Gentry
Scheme

® m’ = m(mod 2) and n’ = n(mod 2)

e Addition
(m” +kq) + (0" + kq’)

= (m’+n’) + k(g+q’)
decrypt (c,k)

=1 gl (G = (c mod k) mod 2
e Multiplication

(m’ + kq) (n" + kq’)

=m'n’ +k(m'q"+n'q+qq’)

= mlnl + kqll

galois



Simplified Gentry
Scheme

® m’ = m(mod 2) and n’ = n(mod 2)

e Addition
(m” +kq) + (0" + kq’)

=(m’+n’) + k(g+q’)
decrypt (c,k)

= G = (c mod k) mod 2
e Multiplication
(m’” + kq) (n” + kq’)
=m'n’ +k(m'q"+n'q+qq’)

= mlnl + kqll

galois



® Codes are “near multiples” of k with noise m

® Decrypt fails if the noise reaches P bits
» A fresh encryption has N-bit noise
» Adds add 1 bit to the noise

» Mults double the noise

Noise

galois



e Encrypted decryption
» Homomorphically lift decryption

» Resets the noise

e Monads
» This type is a multiplier operation

» Ex(A) is very much like a monad

Homomorphic
Crypto

Ex (Ex (A))
Evalk (deck )

Ex (A)

galois



Noise Reduction

€NnCk

e May need a special formulation Bl Er(ERE

of deck to make it small enough

Evali (deck)

e Low degree polynomial resety

Ex(A)

galois



Program constructed dynamically,

incorporating efficient P h ases Of
data-structures and algorithms
Computation

Circuit
minimization
transformations

Circuit
garbling

transformations Remote

communication

s

‘galois

11



Proxy Crypto

e Operations on different keys can enc;
be combined Ex(A) —> Ej (Ex(A))

» Proxy cryptography

» Translate from one key to OrOXYK Eval; (deck)

another, without ever producing

plaintext in the process Ei(A)

galois



