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call/cc-like patterns

A = λ(f:int➝int,g:int➝int).(f 0; g 0; 0)
B = λ(f:int➝int,g:int➝int).(g 0; f 0; 0)
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C = λk:int➝ans. [‧] (λ(_,_).k 1, λ(_,_).k 2, k)



The (original) goal: fully abstract CPS 
conversion

e ::= x | c | λ[X...](x:T...).e | e[T...](e...) | fold[μX.T]e | unfold e

T ::= X | int | ∀[X...](T...)➝T | μX.T

v ::= c | λ[X...](x:T...).e | fold[μX.T]v

E ::= [‧] | E0[T...](e...) | v[T...](v...Ee...)

Γ ::= x:T...

Δ ::= X...

Δ;Γ ⊦ e : T
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The type translation

X+ = X

int+ = int

(μX.T)+ = μX.(T+)

(∀[X...](S...)➝T)+ = ∀[X...,Y](S+...,T+➝Y)➝Y



CPS translation

Δ;Γ ⊦ e : T ↝ e*

such that

Δ;Γ+ ⊦ e* : T*

where T* = ∀ X . T+ ➝ X for some fresh X.



Original goal:

Show that: 

if Δ;Γ ⊦ e1 ≈ e2 : T

then Δ;Γ+ ⊦ e1
* ≈ e2

* : T*



A crucial lemma

Suppose  ⊦ T  and  ⊦ f : ∀[X](x:T,k:T➝X)➝X.

Then for any well-typed choice of a type S and 
a value v we get:

f[S]v ≈ v(f[T]idT)

where idT is the identity for T and ≈ is contextual 
equivalence.
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Suppose  ⊦ T  and  ⊦ f : ∀[X](x:T,k:T➝X)➝X.

Then for any well-typed choice of a type S and 
a value v we get:

f[S]v ≈ v(f[T]idT)

where idT is the identity for T and ≈ is contextual 
equivalence.

Thank you, Phil!
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Actually...

Thanks, but no thanks! ☹

The lemma is not true in the presence of recursive types, since 
they introduce non-termination effects.  (Other effects would 
also render it untrue.)
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f[S]v ≈ v(f[T]idT)

T = S = int

f ≡ λ[X](k: int➝X).((λ(x:X).(k 1)) (k 0))
f ≡ λ[X](k: int➝X). let _ = k 0 in k 1

v ≡ λ(x:int) . if x = 0 then Ω else 0



Assuming a CPS restriction

T ::= X | 1 | T➝T | ∀X.T | μX.T

v ::= x | () | λX:T.e | ΛX.e | fold[μX.T]v

e ::= v | e v | e[T] | let x = unfold v in e

...

kinding context Δ, typing context Γ
small-step semantics with explicit step counts
step-indexed logical relation
sound and complete wrt. contextual equivalence



Claim

For the CPS-restricted System F, 
Wadler's "free" theorem holds...



Claim

For the CPS-restricted System F, 
Wadler's "free" theorem holds...

... but it is not free
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f[S]v ≈ v(f[T]idT)

If f[T]idT ➟* w then

f[S]v ≈ v w,
and otherwise both f[T]idT 
and f[S]v diverge.



Lemma 1: "If the result of a function is abstract, then 
the function cannot be invoked unless its result is the 
final result."



Let B ≠ X, and X;f:A➝X ⊦ e : B.
Then ∃ vP such that X;f:A➝X ⊦ vP : B.
Moreover, for any number of steps i, if for some T0 and 
some F0 with  F0 : A➝T0 it is the case that

[X↦T0,f ↦F0]e ➟i v0,
then v0 ≡ [X↦T0,f ↦F0]vP. Moreover, in this case for any 
other T and F such that F : A→T it is also true that 
[X↦T,f ↦F]e ➟i [X↦T,f ↦F]vP.
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Proof:

By induction on i and case analysis on e.
Notation ζ = [X↦T,f ↦F] and ζ0 = [X↦T0,f ↦F0].

case e ≡ vP: immediate.
case e ≡ e' w:
Have X;f:A➝X ⊦ w : C and X;f:A➝X ⊦ e' : C➝B.
By IH ∃ v'P such that ζ0e' ➟j ζ0v'P and ζe' ➟j ζv'P
with 0 ≤ j < i.
By canonical forms, v'P can be either a variable or some λx:C.
b. But the only variable is f, and B ≠ X.
Remainder follows from performing a single reduction step on 
the redex and re-apply the IH.
case ...



Corollary 3: If the abstract result 
type of a function is not part of 
the overall type, then the 
computation cannot depend on 
the function (and the function 
can, thus, not be invoked at all).



Let X;f:A➝X ⊦ e : B where ⊦ A and ⊦ B.
Let there be two substitutions κ1 = [X↦T1,f ↦F1] 
and κ2 = [X↦T2,f ↦F2] with ⊦ T1, ⊦ T2,
⊦ F1:A➝T1, and ⊦ F2:A➝T2.
Then κ1 e ≈ κ2 e : B.

Corollary 3: If the abstract result 
type of a function is not part of 
the overall type, then the 
computation cannot depend on 
the function (and the function 
can, thus, not be invoked at all).



Lemma 4: Wadler's original "free" theorem holds.



If f[T]idT ➟* w then

f[S]v ≈ v w,
and otherwise both f[T]idT 
and f[S]v diverge.

Lemma 4: Wadler's original "free" theorem holds.


