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The (original) goal: fully abstract CPS
conversion

e =x|c|AX..J(xT...).e | e[T..](e...) | fold[uX.T]e | unfold e
T=X]int]| VIX.XT.)»T| uXT

vi=c | X ](xT...).e | fold[uX.Tlv

E=[1]E,T..](e...) | V[T...](v...Ee...)

Mo=xT...

A= X

Al te:T



The type translation

X=X
int™ = int

(UX.T)" = pX.(T)



The type translation

X=X
int™ = int
(UX.T)" = pX.(TY)

(VX)) = VX YIS* ..., T Y)Y



CPS translation

AlNte:T-e
such that
AT vre T

where T =V X.T" — X for some fresh X.



Original goal:

Show that:

ifA;F+e1ze2:T

then Al te =e, T



A crucial lemma

Suppose + T and tf: V[XIxTkT—X)—X.

Then for any well-typed choice of a type S and
a value v we get:

fISIv = v(f[Tlid.)

where id_ is the identity for T and = is contextual
equivalence.
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Suppose + T and tf: V[XIxTkT—X)—X.

Then for any well-typed choice of a type S and
a value v we get:

fISIv = v(f[Tlid.)

where id_ is the identity for T and = is contextual
equivalence.

Thank you, Phil!
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Thanks, but no thanks! @

The lemma is not true in the presence of recursive types, since
they introduce non-termination effects. (Other effects would
also render it untrue.)
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f[S]v = v(f[T]id.)

T=S =int

f = AIX](k: int—X).((A (xX).(k 1)) (k 0))
f= ALX](k: int—>X). let _ =k 0 ink 1

v = AXx:int) . if x =0then Qelse 0



Assuming a CPS restriction

T:=X|1|T>T| VXT| uXT
v:i=x]|()| AX:T.e | AX.e | fold[uX.T]v

e::=v|ev|e[T]|letx=unfoldvine

kKinding context A, typing context '

small-step semantics with explicit step counts
step-indexed logical relation

sound and complete wrt. contextual equivalence
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Claim

For the CPS-restricted System F,
Wadler's "free" theorem holds...

... but it is not free
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f[S]v = v(i[T]id.)

If f{T]id =* w then

fISlv=vw,
and otherwise both f[T]id_.

and f[S]v diverge.
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final result.”



Lemma 1: "If the result of a function is abstract, then
the function cannot be invoked unless its result is the
final result.”

Let B # X, and X;f:A—X + e : B.
Then 3 Vo such that X;f:A—X + Vo B.

Moreover, for any number of steps i, if for some T, and
some F with F,:A—=Titis the case that

[X~T,,fF e ='v,,
then v, = [X~T,,f »F ]v,. Moreover, in this case for any

other T and F such that F : A—T it is also true that
[X~T.f ~Fle »=»' [X~>Tf ~Flv,,.
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Proof:

By induction on i and case analysis on e.
Notation ¢ = [X~Tf »F] and ¢ = [X~T,f~F].

case e = v, immediate.

casee=e'w:

Have X;f:A—=X t w: C and X;fA—X + ¢ : C—B.

By IH 3 v/, such that { e' =/ ¢ V', and {e' = {V',

with 0 < <.

By canonical forms, Vv'P can be either a variable or some Ax:C.
b. But the only variable is f, and B # X.

Remainder follows from performing a single reduction step on

the redex and re-apply the IH.
case ...



Corollary 3: If the abstract result
type of a function is not part of
the overall type, then the
computation cannot depend on
the function (and the function
can, thus, not be invoked at all).



Corollary 3: If the abstract result
type of a function is not part of
the overall type, then the
computation cannot depend on
the function (and the function
can, thus, not be invoked at all).

Let X;f:A—X t e: B where + A and + B.
Let there be two substitutions k., = [X~T_.,f ~F.]

and K, = [X~T,,f~F Jwith t T, + T,
] F1:AﬁT1, and + FZ:AHTZ.
Then K,€=K,€: B.
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Lemma 4: Wadler's original "free" theorem holds.

If f{T]id =* w then

fISlv=vw,
and otherwise both f[T]id_.

and f[S]v diverge.



