
Can Functional Programmers

Make make Make Sense?

Norman Ramsey
Tufts University

(A Worse is Better production)

[[]] �?

Can Functional Programmers

Make make Make Sense?

Norman Ramsey
Tufts University

(A Worse is Better production)

[[]] �?

Application: class web site

Justifications:
• Derived web pages (schedule, etc)
• Platform-specific binaries
• Minimize collisions among staff

Surprise! 10,000–12,000 source lines

Dependencies for lecture notes

Ingredients:
• Markdown file with embedded L ATEX
• Photos of blackboard

Both computed dynamically!

Write notes using lightweight markup

Inductively defined data type: smallest set satisfying

$$

\mathrm{LIST}(A) = \{ \lit{’()} \} \cup \{ \lit{(cons a as)} \mid

\lit{a} \in A, \lit{as} \in \mathrm{LIST}(A) \}

$$

Any list is therefore *constructed* with nil or with cons.

- How can you tell the difference?

- What, therefore, is the structure of a function

that consumes a list?

Example: ‘length‘

(Turns into readable HTML)

TEX fragment turns into image

Can be shown on screenLIST(A) = f’()g[f(cons a as) j a2A;as2 LIST(A)g
(Also spliced into HTML)

Dynamic dependencies using mk

What images are needed?

<|$REQUIRE/bin/xtex -rules $WWW/notes

Script emits “rules” and “recipes”
• Notes depend on image (rule):

www/notes.html: www/xtex/slide-070a8c.png

• Image built from T EX file (rule + recipe):
www/xtex/slide-070a8c.ps: www/xtex/slide-070a8c.dvi

dvips -E -x 1000 -o $target $prereq

mk is a simpler, better make

Engineered by Andrew Hume

• Make vars are Unix env vars are shell vars
• “Recipes” are shell scripts
• No built-in rules

Dynamic dependencies using mk

What images are needed?

<|$REQUIRE/bin/xtex -rules $WWW/notes

Script emits “rules” and “recipes”
• Notes depend on image (rule):

www/notes.html: www/xtex/slide-070a8c.png

• Image built from T EX file (rule + recipe):
www/xtex/slide-070a8c.ps: www/xtex/slide-070a8c.dvi

dvips -E -x 1000 -o $target $prereq

Notes built using static rules

The build:

$WWW/&.mdx:D: $WWW/& $REQUIRE/bin/xtex \

$REQUIRE/lib/lua/5.1/notes.lua

$REQUIRE/bin/xtex -markdown $WWW/$stem > $target

$WWW/notes.html:DQ: $WWW/notes.mdx \

$TOP/bin/add-notes-photos \

$PHOTOSTOP ...

(insert shell code from hell)

Dependencies for the dependencies

xtex -markdown produces the notes
xtex -rules produces the dependencies

But
• xtex requires platform-specific binaries
• Can’t call xtex until binaries built
• Software is evolving; binaries change
• ./configure; make a complete nonstarter

Hack: conditional inclusion

<$TOP/require/src/base.mk

<$TOP/require/base.mk

<|$TOP/require/bin/include-if-present \

$RLIBLUA/posix.so $RLIBLUA/md5.so \

$TOP/www/base.mk

“Consistency” model:

mk; mk

How can we do better?

Hack: conditional inclusion

<$TOP/require/src/base.mk

<$TOP/require/base.mk

<|$TOP/require/bin/include-if-present \

$RLIBLUA/posix.so $RLIBLUA/md5.so \

$TOP/www/base.mk

“Consistency” model:

mk; mk

How can we do better?

Hack: conditional inclusion

<$TOP/require/src/base.mk

<$TOP/require/base.mk

<|$TOP/require/bin/include-if-present \

$RLIBLUA/posix.so $RLIBLUA/md5.so \

$TOP/www/base.mk

“Consistency” model:

mk; mk

How can we do better?

mk is attractive at small/medium scale

Attractive features
• Easy to integrate panoply of Unix tools
• Easy to integrate custom tools
• Appears declarative
• Caching (incremental rebuild) sometimes works

Deficiencies emerge gradually

Examples:
• Maintenance of dependencies
• Portability may involve devil’s bargain
• Caching doesn’t always work

The language picture is bleak

Low-level, algorithmic semantics

Makefiles don’t compose
• Recursive Make Considered Harmful (Miller 1998)
• Textual substitution too low-level

Existing solutions not for medium scale

Prior art:

• Nmake/iffe (1985+) /

• Odin (1990)

• Vesta (2000)

• OMake (2006)

• Shake (2010)

Room left in the design space

language add tool? “run” note

Nmake rules++++ easy std shell scales, portable

Odin C? no — caches

Vesta functional hard “bridge” scales, proven

OMake rules+fp easy custom small delta

Shake Haskell ? Haskell consistent

wanted rules(+) easy std shell composable

Part II: Ideas, Questions

Low-hanging fruit

Interpretation of relative pathnames
• Today: relative to where mk is invoked
• Correct: Relative to location of mention

Assignment to variables
• No mutation
• Limited in scope (OMake)?
• Union semantics for sets of names?

Controlled destruction of derived files
• Automate mk clean

Medium challenge

Dependencies computed by tools:
• Easy integration
• Caching

Replace textual inclusion

Harder problems I: Dependencies

Can we get this right?
• Dependencies for dependency generator

(like xtex)
• Eliminate phase distinction?
• Cache results properly?

Harder problems II: Metarules

Like type classes, but based on names
• Ways to disambiguate?

(e.g., choose metarule by name?)

Really hard problem: Fixed points

Example: LATEX

Harder example:
textbook with index,
cross-reference, and
mini-index

3.10. PRACTICE V: CONTINUATION-PASSING STYLE 93

3.9.2 A polymorphic, higher-order sort

Sorting is another example of a polymorphic computation. Industrial-strength sorts are

highly tuned for performance, and it’s desirable to create a single sort that can sort any kind

of object. In sorting, each kind of object needs it own ordering function, just as in the set

example, each kind of object needs its own equality function. To sort a list of numbers, the

primitive function < probably suffices, but to sort a list of lists, this function no longer makes

sense. We can define a polymorphic, higher-order function mk-insertion-sort, which when

passed an argument lt, returns a function to sort a list of elements into nondecreasing order

according to function lt. The sort itself is based on the algorithm in chunk 71a.

93a 〈transcript 66〉+≡ ⊳ 92d 93b ⊲

-> (define mk-insertion-sort (lt)

(letrec (

(insert (lambda (x l)

(if (null? l) (list1 x)

(if (lt x (car l))

(cons x l)

(cons (car l) (insert x (cdr l)))))))

(sort (lambda (l)

(if (null? l)

’()

(insert (car l) (sort (cdr l)))))))

sort))

The great thing about mk-insertion-sort is that it is easy to reuse. For example, we

can easily sort numbers in increasing or decreasing order.

93b 〈transcript 66〉+≡ ⊳ 93a 93c ⊲

-> (val sort< (mk-insertion-sort <))

-> (val sort> (mk-insertion-sort >))

-> (sort< ’(6 9 1 7 4 3 8 5 2 10))

(1 2 3 4 5 6 7 8 9 10)

-> (sort> ’(6 9 1 7 4 3 8 5 2 10))

(10 9 8 7 6 5 4 3 2 1)

We can also use mk-insertion-sort to sort pairs of integers lexicographically.

93c 〈transcript 66〉+≡ ⊳ 93b 94b ⊲

-> (define pair< (p1 p2)

(or (< (car p1) (car p2))

(and (= (car p1) (car p2))

(< (cadr p1) (cadr p2)))))

-> ((mk-insertion-sort pair<) ’((4 5) (2 9) (3 3) (8 1) (2 7)))

((2 7) (2 9) (3 3) (4 5) (8 1))

3.10 Practice V: Continuation-passing style

Our implementation of association lists suffers from a problem with find: we cannot distin-

guish between a key that is bound to nil and a key that is not bound at all. We could solve

this problem by returning a pair: one element telling whether found and another telling

what the answer is. But this interface would be awkward, and using it would force us to

test results both inside find and in clients of find.

cadr 110c

car P

cdr P

find 72b

not 108a

null? P

solve-literal

98a

symbol? P

Fun with fixed pointsFun with fixed points

Just plain fun

Real semantics:
• Makefile as value? What does it denote?
• Makefile target as function?
• Composition?
• Fine-grained memoization?

I want your advice

What’s interesting?

Is there science?

How to get research credit?

