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Buy one get one free!

A common form of sales promotion (BOGOF).
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1 Monads

Monads, a success story.
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A→ MB
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A monad consists of a functor M and natural transformations

r : I→ M

j : MM→ M

The two operations have to go together:

j · rM = idM

j ·Mr = idM

j ·Mj = j · jM
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1 Comonads

Comonads, not exactly a success story.
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NA→ B
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A comonad consists of a functor N and natural transformations

e : N→ I

d : N→ NN

The two operations have to go together:

Ne · d = idN

eN · d = idN

Nd · d = dN · d
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The simplest of all: the product comonad.

N = −×X

e = outl

d = id M outr
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Why has the product comonad not taken off?
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2 Adjunctions

• One of the most beautiful constructions in mathematics.

• They allow us to transfer a problem to another domain.

• They provide a framework for program transformations.
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Let C and D be categories. The functors L : C ← D and
R : C → D are adjoint, L a R,

C
≺

L

⊥
R
�

D

if and only if there is a bijection between the hom-sets

C (LA,B) ∼= D(A, RB)

that is natural both in A and B .

The witness of the isomorphism is called the left adjunct. It
allows us to trade L in the source for R in the target of an
arrow. Its inverse is the right adjunct.
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Perhaps the best-known example of an adjunction is currying.

C
≺
−×X

⊥
(−)X

�
C Λ : C (A×X ,B) ∼= C (A,BX )

The left adjunct Λ is also called curry and the right adjunct Λ◦

is also called uncurry .
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C
≺
−×X

⊥
(−)X

�
C Λ : C (A×X ,B) ∼= C (A,BX )

The images of the identity are function application and the
return of the state monad.

app = Λ◦ id : C (BX ×X ,B)

r = Λ id : C (A, (A×X )X )
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The images of the identity are the counit and the unit of the
adjunction.

ε : LR→ I

η : I→ RL

An alternative definition of adjunctions builds solely on these
units, which have to satisfy

εL · Lη = idL

Rε · ηR = idR
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2 Comonads and monads

Every adjunction L a R induces a comonad and a monad.

N = LR

e = ε

d = LηR

M = RL

r = η

j = RεL

University of Oxford—Ralf Hinze 16-39



Monads from Comonads—Adjunctions WG 2.8 Marble Falls

The curry adjunction induces the state monad.

MA = (A×X )X

r = Λ id

j = Λ (app · app)

The monad supports stateful computations, where the state X
is threaded through a program.
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The curry adjunction induces the costate comonad.

NA = AX ×X

e = app

d = (Λ id)×X

The context can be seen as a store AX together with a memory
location X , a focus of interest.
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3 Transforming natural transformations

• Adjunctions provide a framework for program
transformations.

• All the operations we have encountered so far are natural
transformations.

• To deal effectively with those we develop a little theory of
‘natural transformation transformers’.
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3 Post-composition

Every adjunction L a R gives rise to an adjunction L− a R−
between functor categories.

C
≺

L

⊥
R
�

D then C E ≺
L−
⊥
R−
�

DE

C E (LF, G) ∼= DE (F, RG)
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We write b−c for the lifted left adjunct and b−c◦ for its inverse.

α : LF→ G

bαc : F→ RG

β : F→ RG

bβc◦ : LF→ G

The lifted adjuncts can be defined in terms of the units of the
underlying adjunction:

bαc = Rα · ηF bβc◦ = εG · Lβ
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3 Pre-composition

Post-composition dualizes to pre-composition. Consequently,
every adjunction L a R also induces an adjunction −R a −L.

C
≺

L

⊥
R
�

D then E D ≺
−R

⊥
−L
�

E C

E D(FR, G) ∼= E C (F, GL)
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We write d−e◦ for the lifted left adjunct and d−e for its inverse.

β : FR→ G

dβe◦ : F→ GL

α : F→ GL

dαe : FR→ G

Again, the lifted adjuncts can be defined in terms of the units of
the underlying adjunction:

dβe◦ = βL · Fη dαe = Gε · αR

An aide-mémoire: b−c turns an L in the source to an R in the
target, while d−e turns an L in the target to an R in the source.
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3 Transformation transformers

If we combine b−c and d−e, we can send natural transformations
of type LF→ GL to transformations of type FR→ RG.

The order in which we apply the adjuncts does not matter.

bdαec = dbαce dbβc◦e◦ = bdβe◦c◦
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If we assume that L and R are endofunctors, then we can nest
b−c and d−e arbitrarily deep.

α : LmF→ GLn

dbαcmen : RnF→ GRm

An aide-mémoire: the number of bs corresponds to the number
of Ls in the source, and the number of ds corresponds to the
number of Ls in the target.
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4 Monads from comonads

• Assume that a left adjoint is at the same time a comonad.

• Then its right adjoint is a monad!

• Dually, the left adjoint of a monad is a comonad.
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The ‘transformation transformers’ allow us to systematically
turn the comonadic operations into monadic ones and vice versa.

r = bec : I→ R

j = bdddeec : RR→ R

e = brc◦ : L→ I

d = ddbj c◦e◦e◦ : L→ LL
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The curry adjunction, provides an example, where the left
adjoint L = −×X is also a comonad.

e = outl

d = id M outr

Consequently, L’s right adjoint R = (−)X is a monad with
operations

r = boutlc = Λ outl

j = bddid M outreec = Λ (app · (app M outr))

The resulting structure is known as the reader monad.
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A×X → B ∼= A→ BX
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Every (co)monad comes equipped with additional operations.
The product comonad might provide a getter and an update
operation:

get = outr : L→ ∆X

update (f : X → X ) = id × f : L→ L

where ∆X is the constant functor.

The transforms of get and update correspond to operations
called ask and local in the Haskell monad transformer library.

ask = boutrc = Λ outr : I→ R ∆X

local (f : X → X ) = bdid × f ec = Λ (app · (id × f )) : R→ R
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4 Proof

We have to show that the comonadic laws imply the monadic
laws and vice versa. (It is sufficient to concentrate on natural
transformations of type Lm → Ln and Rn → Rm .)

The transformers enjoy functorial properties:

bdidLn encn = idRn

dbβ · αcken = dbαckem · dbβcmen

bdLαen+1cm+1 = bdαencmR

For reference, we call the last one flip law.
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The first comonadic unit law is equivalent to the first monadic
unit law:

Le · d = idL

⇐⇒ { inverses }
bdLe · dec = bdidLec

⇐⇒ { preservation of composition and identity }
bdddeec · bbdLeecc = idR

⇐⇒ { flip law }
bdddeec · becR = idR

⇐⇒ { definition of j and definition of r }
j · rR = idR
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5 The wrong way round

• Does the translation also work if the left adjoint is
simultaneously a monad?

• The transformers happily take the monadic operations to
comonadic ones.

• However, monadic programs of type A→ LB are not in
one-to-one correspondence to comonadic programs of type
RA→ B .
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If X is a monoid with operations [ ] : X and (++) : X ×X → X ,
then L = −×X also has the structure of a monad.

r a = (a, [ ])

j ((a, x1), x2) = (a, x1 ++ x2)

(For simplicity, we assume that we are working in Set.) This
instance is known as the “write to a monoid” monad or simply
the writer monad.
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Its right adjoint R = (−)X is indeed a comonad, lovingly called
the “read from a monoid” comonad.

e f = f [ ]

d f = λ x1 . λ x2 . f (x1 ++ x2)
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However, we cannot translate the accompanying infrastructure
of the writer monad. Consider the write operation.

write : X → LX

write x = (x , x )

The L is on the wrong side of the arrow, write is not natural, so
it has no counterpart in the comonadic world.
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6 Summary

• Monads: effectful computations.
• Comonads: computations in context.
• Adjunctions: a theory of program transformations.

C (LA,B) ∼= D(A, RB)

If L and R are endofunctors:

Lm → Ln ∼= Rn → Rm

• If L is a comonad, then R is a monad. Furthermore,
comonadic programs are in one-to-one correspondence to
monadic programs: LA→ B ∼= A→ RB .

• If L is a monad, then R is a comonad. However, monadic
programs are not in one-to-one correspondence to
comonadic programs: A→ LB 6∼= RA→ B .
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6 Summary continued

The curry adjunction

C
≺
−×X

⊥
(−)X

�
C Λ : C (A×X ,B) ∼= C (A,BX )

explains:

• state monad,

• costate comonad,

• product comonad,

• reader monad,

• “write to a monoid” monad or writer monad,

• “read from a monoid” comonad.
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7 Post- and pre-composition
Functors can be composed, written simply using juxtaposition
KF. The operation K−, post-composing a functor K, is itself
functorial:

K− : DC → E C

(K−) F = KF

(K−) α = Kα

where (Kα) A = K (αA).
Post-composition dualizes to pre-composition:

−E : DC → DB

(−E) F = FE

(−E) α = αE

where (αE) A = α (EA).
University of Oxford—Ralf Hinze 39-39


	Prologue
	Some context
	Adjunctions
	Program transformations
	Comonads from monads
	The wrong way round
	Epilogue
	Appendix

