
Monads from Comonads—Prologue WG 2.8 Marble Falls

Monads from Comonads
Comonads from Monads

Ralf Hinze

Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, England

ralf.hinze@comlab.ox.ac.uk
http://www.comlab.ox.ac.uk/ralf.hinze/

March 2011

University of Oxford—Ralf Hinze 1-39

Monads from Comonads—Some context WG 2.8 Marble Falls

Buy one get one free!

A common form of sales promotion (BOGOF).

University of Oxford—Ralf Hinze 2-39

Monads from Comonads—Some context WG 2.8 Marble Falls

1 Monads

Monads, a success story.

University of Oxford—Ralf Hinze 3-39

Monads from Comonads—Some context WG 2.8 Marble Falls

A→ MB

University of Oxford—Ralf Hinze 4-39

Monads from Comonads—Some context WG 2.8 Marble Falls

A monad consists of a functor M and natural transformations

r : I→ M

j : MM→ M

The two operations have to go together:

j · rM = idM

j ·Mr = idM

j ·Mj = j · jM

MM

M
id

�
rM �

M

j
�

MM
j
�Mr �

MMM
Mj
� MM

MM

jM
g

j
� M

j
g

University of Oxford—Ralf Hinze 5-39

Monads from Comonads—Some context WG 2.8 Marble Falls

1 Comonads

Comonads, not exactly a success story.

University of Oxford—Ralf Hinze 6-39

Monads from Comonads—Some context WG 2.8 Marble Falls

NA→ B

University of Oxford—Ralf Hinze 7-39

Monads from Comonads—Some context WG 2.8 Marble Falls

A comonad consists of a functor N and natural transformations

e : N→ I

d : N→ NN

The two operations have to go together:

Ne · d = idN

eN · d = idN

Nd · d = dN · d

NN

N
id

�

d �

N

eN
�

NN Ne
�

d �

N
d
� NN

NN

d
g

dN
� NNN

Nd
g

University of Oxford—Ralf Hinze 8-39

Monads from Comonads—Some context WG 2.8 Marble Falls

The simplest of all: the product comonad.

N = −×X

e = outl

d = id M outr

University of Oxford—Ralf Hinze 9-39

Monads from Comonads—Some context WG 2.8 Marble Falls

Why has the product comonad not taken off?

University of Oxford—Ralf Hinze 10-39

Monads from Comonads—Adjunctions WG 2.8 Marble Falls

2 Adjunctions

• One of the most beautiful constructions in mathematics.

• They allow us to transfer a problem to another domain.

• They provide a framework for program transformations.

University of Oxford—Ralf Hinze 11-39

Monads from Comonads—Adjunctions WG 2.8 Marble Falls

Let C and D be categories. The functors L : C ← D and
R : C → D are adjoint, L a R,

C
≺

L

⊥
R
�

D

if and only if there is a bijection between the hom-sets

C (LA,B) ∼= D(A, RB)

that is natural both in A and B .

The witness of the isomorphism is called the left adjunct. It
allows us to trade L in the source for R in the target of an
arrow. Its inverse is the right adjunct.

University of Oxford—Ralf Hinze 12-39

Monads from Comonads—Adjunctions WG 2.8 Marble Falls

Perhaps the best-known example of an adjunction is currying.

C
≺
−×X

⊥
(−)X

�
C Λ : C (A×X ,B) ∼= C (A,BX)

The left adjunct Λ is also called curry and the right adjunct Λ◦

is also called uncurry .

University of Oxford—Ralf Hinze 13-39

Monads from Comonads—Adjunctions WG 2.8 Marble Falls

C
≺
−×X

⊥
(−)X

�
C Λ : C (A×X ,B) ∼= C (A,BX)

The images of the identity are function application and the
return of the state monad.

app = Λ◦ id : C (BX ×X ,B)

r = Λ id : C (A, (A×X)X)

University of Oxford—Ralf Hinze 14-39

Monads from Comonads—Adjunctions WG 2.8 Marble Falls

The images of the identity are the counit and the unit of the
adjunction.

ε : LR→ I

η : I→ RL

An alternative definition of adjunctions builds solely on these
units, which have to satisfy

εL · Lη = idL

Rε · ηR = idR

LRL

L
idL �

Lη
�

L

εL

�

RLR

R
idR �

ηR
�

R

Rε

�

University of Oxford—Ralf Hinze 15-39

Monads from Comonads—Adjunctions WG 2.8 Marble Falls

2 Comonads and monads

Every adjunction L a R induces a comonad and a monad.

N = LR

e = ε

d = LηR

M = RL

r = η

j = RεL

University of Oxford—Ralf Hinze 16-39

Monads from Comonads—Adjunctions WG 2.8 Marble Falls

The curry adjunction induces the state monad.

MA = (A×X)X

r = Λ id

j = Λ (app · app)

The monad supports stateful computations, where the state X
is threaded through a program.

University of Oxford—Ralf Hinze 17-39

Monads from Comonads—Adjunctions WG 2.8 Marble Falls

The curry adjunction induces the costate comonad.

NA = AX ×X

e = app

d = (Λ id)×X

The context can be seen as a store AX together with a memory
location X , a focus of interest.

University of Oxford—Ralf Hinze 18-39

Monads from Comonads—Program transformations WG 2.8 Marble Falls

3 Transforming natural transformations

• Adjunctions provide a framework for program
transformations.

• All the operations we have encountered so far are natural
transformations.

• To deal effectively with those we develop a little theory of
‘natural transformation transformers’.

University of Oxford—Ralf Hinze 19-39

Monads from Comonads—Program transformations WG 2.8 Marble Falls

3 Post-composition

Every adjunction L a R gives rise to an adjunction L− a R−
between functor categories.

C
≺

L

⊥
R
�

D then C E ≺
L−
⊥
R−
�

DE

C E (LF, G) ∼= DE (F, RG)

University of Oxford—Ralf Hinze 20-39

Monads from Comonads—Program transformations WG 2.8 Marble Falls

We write b−c for the lifted left adjunct and b−c◦ for its inverse.

α : LF→ G

bαc : F→ RG

β : F→ RG

bβc◦ : LF→ G

The lifted adjuncts can be defined in terms of the units of the
underlying adjunction:

bαc = Rα · ηF bβc◦ = εG · Lβ

University of Oxford—Ralf Hinze 21-39

Monads from Comonads—Program transformations WG 2.8 Marble Falls

3 Pre-composition

Post-composition dualizes to pre-composition. Consequently,
every adjunction L a R also induces an adjunction −R a −L.

C
≺

L

⊥
R
�

D then E D ≺
−R

⊥
−L
�

E C

E D(FR, G) ∼= E C (F, GL)

University of Oxford—Ralf Hinze 22-39

Monads from Comonads—Program transformations WG 2.8 Marble Falls

We write d−e◦ for the lifted left adjunct and d−e for its inverse.

β : FR→ G

dβe◦ : F→ GL

α : F→ GL

dαe : FR→ G

Again, the lifted adjuncts can be defined in terms of the units of
the underlying adjunction:

dβe◦ = βL · Fη dαe = Gε · αR

An aide-mémoire: b−c turns an L in the source to an R in the
target, while d−e turns an L in the target to an R in the source.

University of Oxford—Ralf Hinze 23-39

Monads from Comonads—Program transformations WG 2.8 Marble Falls

3 Transformation transformers

If we combine b−c and d−e, we can send natural transformations
of type LF→ GL to transformations of type FR→ RG.

The order in which we apply the adjuncts does not matter.

bdαec = dbαce dbβc◦e◦ = bdβe◦c◦

University of Oxford—Ralf Hinze 24-39

Monads from Comonads—Program transformations WG 2.8 Marble Falls

If we assume that L and R are endofunctors, then we can nest
b−c and d−e arbitrarily deep.

α : LmF→ GLn

dbαcmen : RnF→ GRm

An aide-mémoire: the number of bs corresponds to the number
of Ls in the source, and the number of ds corresponds to the
number of Ls in the target.

University of Oxford—Ralf Hinze 25-39

Monads from Comonads—Comonads from monads WG 2.8 Marble Falls

4 Monads from comonads

• Assume that a left adjoint is at the same time a comonad.

• Then its right adjoint is a monad!

• Dually, the left adjoint of a monad is a comonad.

University of Oxford—Ralf Hinze 26-39

Monads from Comonads—Comonads from monads WG 2.8 Marble Falls

The ‘transformation transformers’ allow us to systematically
turn the comonadic operations into monadic ones and vice versa.

r = bec : I→ R

j = bdddeec : RR→ R

e = brc◦ : L→ I

d = ddbj c◦e◦e◦ : L→ LL

University of Oxford—Ralf Hinze 27-39

Monads from Comonads—Comonads from monads WG 2.8 Marble Falls

The curry adjunction, provides an example, where the left
adjoint L = −×X is also a comonad.

e = outl

d = id M outr

Consequently, L’s right adjoint R = (−)X is a monad with
operations

r = boutlc = Λ outl

j = bddid M outreec = Λ (app · (app M outr))

The resulting structure is known as the reader monad.

University of Oxford—Ralf Hinze 28-39

Monads from Comonads—Comonads from monads WG 2.8 Marble Falls

A×X → B ∼= A→ BX

University of Oxford—Ralf Hinze 29-39

Monads from Comonads—Comonads from monads WG 2.8 Marble Falls

Every (co)monad comes equipped with additional operations.
The product comonad might provide a getter and an update
operation:

get = outr : L→ ∆X

update (f : X → X) = id × f : L→ L

where ∆X is the constant functor.

The transforms of get and update correspond to operations
called ask and local in the Haskell monad transformer library.

ask = boutrc = Λ outr : I→ R ∆X

local (f : X → X) = bdid × f ec = Λ (app · (id × f)) : R→ R

University of Oxford—Ralf Hinze 30-39

Monads from Comonads—Comonads from monads WG 2.8 Marble Falls

4 Proof

We have to show that the comonadic laws imply the monadic
laws and vice versa. (It is sufficient to concentrate on natural
transformations of type Lm → Ln and Rn → Rm .)

The transformers enjoy functorial properties:

bdidLn encn = idRn

dbβ · αcken = dbαckem · dbβcmen

bdLαen+1cm+1 = bdαencmR

For reference, we call the last one flip law.

University of Oxford—Ralf Hinze 31-39

Monads from Comonads—Comonads from monads WG 2.8 Marble Falls

The first comonadic unit law is equivalent to the first monadic
unit law:

Le · d = idL

⇐⇒ { inverses }
bdLe · dec = bdidLec

⇐⇒ { preservation of composition and identity }
bdddeec · bbdLeecc = idR

⇐⇒ { flip law }
bdddeec · becR = idR

⇐⇒ { definition of j and definition of r }
j · rR = idR

University of Oxford—Ralf Hinze 32-39

Monads from Comonads—The wrong way round WG 2.8 Marble Falls

5 The wrong way round

• Does the translation also work if the left adjoint is
simultaneously a monad?

• The transformers happily take the monadic operations to
comonadic ones.

• However, monadic programs of type A→ LB are not in
one-to-one correspondence to comonadic programs of type
RA→ B .

University of Oxford—Ralf Hinze 33-39

Monads from Comonads—The wrong way round WG 2.8 Marble Falls

If X is a monoid with operations [] : X and (++) : X ×X → X ,
then L = −×X also has the structure of a monad.

r a = (a, [])

j ((a, x1), x2) = (a, x1 ++ x2)

(For simplicity, we assume that we are working in Set.) This
instance is known as the “write to a monoid” monad or simply
the writer monad.

University of Oxford—Ralf Hinze 34-39

Monads from Comonads—The wrong way round WG 2.8 Marble Falls

Its right adjoint R = (−)X is indeed a comonad, lovingly called
the “read from a monoid” comonad.

e f = f []

d f = λ x1 . λ x2 . f (x1 ++ x2)

University of Oxford—Ralf Hinze 35-39

Monads from Comonads—The wrong way round WG 2.8 Marble Falls

However, we cannot translate the accompanying infrastructure
of the writer monad. Consider the write operation.

write : X → LX

write x = (x , x)

The L is on the wrong side of the arrow, write is not natural, so
it has no counterpart in the comonadic world.

University of Oxford—Ralf Hinze 36-39

Monads from Comonads—Epilogue WG 2.8 Marble Falls

6 Summary

• Monads: effectful computations.
• Comonads: computations in context.
• Adjunctions: a theory of program transformations.

C (LA,B) ∼= D(A, RB)

If L and R are endofunctors:

Lm → Ln ∼= Rn → Rm

• If L is a comonad, then R is a monad. Furthermore,
comonadic programs are in one-to-one correspondence to
monadic programs: LA→ B ∼= A→ RB .

• If L is a monad, then R is a comonad. However, monadic
programs are not in one-to-one correspondence to
comonadic programs: A→ LB 6∼= RA→ B .

University of Oxford—Ralf Hinze 37-39

Monads from Comonads—Epilogue WG 2.8 Marble Falls

6 Summary continued

The curry adjunction

C
≺
−×X

⊥
(−)X

�
C Λ : C (A×X ,B) ∼= C (A,BX)

explains:

• state monad,

• costate comonad,

• product comonad,

• reader monad,

• “write to a monoid” monad or writer monad,

• “read from a monoid” comonad.

University of Oxford—Ralf Hinze 38-39

Monads from Comonads—Appendix WG 2.8 Marble Falls

7 Post- and pre-composition
Functors can be composed, written simply using juxtaposition
KF. The operation K−, post-composing a functor K, is itself
functorial:

K− : DC → E C

(K−) F = KF

(K−) α = Kα

where (Kα) A = K (αA).
Post-composition dualizes to pre-composition:

−E : DC → DB

(−E) F = FE

(−E) α = αE

where (αE) A = α (EA).
University of Oxford—Ralf Hinze 39-39

	Prologue
	Some context
	Adjunctions
	Program transformations
	Comonads from monads
	The wrong way round
	Epilogue
	Appendix

