Monads from Comonads—Prologue WG 2.8 Marble Falls

Monads from Comonads
Comonads from Monads

Ralf Hinze

Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, England
ralf.hinze@comlab.ox.ac.uk
http://www.comlab.ox.ac.uk/ralf.hinze/

March 2011

University of Oxford—Ralf Hinze

1-39

Monads from Comonads—Some context WG 2.8 Marble Falls

Buy one get one free!

A common form of sales promotion (BOGOF).

University of Oxford—Ralf Hinze

Monads from Comonads—Some context WG 2.8 Marble Falls

1 Monads

Monads, a success story.

University of Oxford—Ralf Hinze

Monads from Comonads—Some context WG 2.8 Marble Falls

A— MB

University of Oxford—Ralf Hinze 4-39

Monads from Comonads—Some context WG 2.8 Marble Falls

A monad consists of a functor M and natural transformations

r:l—M
j: MM — M

The two operations have to go together:

j-rM =idpy
j-MT:idM
J-Mj=j-jM
"
L MMM —5 MM
/id\ ‘ ‘
M— M JM J
%MM/‘% MM — M
j

University of Oxford—Ralf Hinze

5-39

Monads from Comonads—Some context WG 2.8 Marble Falls

1 Comonads

Comonads, not exactly a success story.

University of Oxford—Ralf Hinze 6-39

Monads from Comonads—Some context WG 2.8 Marble Falls

NA— B

University of Oxford—Ralf Hinze 7-39

Monads from Comonads—Some context WG 2.8 Marble Falls

A comonad consists of a functor N and natural transformations

e:N— |

d:N— NN

The two operations have to go together:

Ne - d = idpn
eN-d=1idy
Nd-d=dN-d
NN NN TY

[\ &

/id\

— N d Nd
Q)\NN@ NNWNNN

University of Oxford—Ralf Hinze

8-39

Monads from Comonads—Some context

WG 2.8 Marble Falls

The simplest of all: the product comonad.

N=-xX
e = outl

d = id A outr

University of Oxford—Ralf Hinze

Monads from Comonads—Some context WG 2.8 Marble Falls

Why has the product comonad not taken off?

University of Oxford—Ralf Hinze 10-39

Monads from Comonads—Adjunctions WG 2.8 Marble Falls

2 Adjunctions

e One of the most beautiful constructions in mathematics.
e They allow us to transfer a problem to another domain.

e They provide a framework for program transformations.

University of Oxford—Ralf Hinze 11-39

Monads from Comonads—Adjunctions WG 2.8 Marble Falls

Let ¥ and & be categories. The functors L : ¥ +— Z and
R:% — 2 are adjoint, L 4R,

if and only if there is a bijection between the hom-sets
¢(LA,B)= 2(A,RB)

that is natural both in A and B.
The witness of the isomorphism is called the left adjunct. It
allows us to trade L in the source for R in the target of an

arrow. Its inverse is the right adjunct.

University of Oxford—Ralf Hinze 12-39

Monads from Comonads—Adjunctions WG 2.8 Marble Falls

Perhaps the best-known example of an adjunction is currying.

—x X
¢ 1 % A:€(Ax X,B)=%€(A, BY)

The left adjunct A is also called curry and the right adjunct A°
is also called uncurry.

University of Oxford—Ralf Hinze 13-39

Monads from Comonads—Adjunctions WG 2.8 Marble Falls

A A:€(Ax X,B)=%€(A,BY)

The images of the identity are function application and the
return of the state monad.

app = A°id : €(BX x X, B)
r=Aid:€(A, (A x X)X)

University of Oxford—Ralf Hinze

14-39

Monads from Comonads—Adjunctions WG 2.8 Marble Falls

The images of the identity are the counit and the unit of the

adjunction.
e:LR—1
n:1—RL

An alternative definition of adjunctions builds solely on these
units, which have to satisfy

el - Ln = id,
Re - T]R = idR
LRL RLR

AT A
L wdy L R tdR R

University of Oxford—Ralf Hinze 15-39

Monads from Comonads—Adjunctions WG 2.8 Marble Falls

2 Comonads and monads

Every adjunction L 4 R induces a comonad and a monad.

e =€ r =7

University of Oxford—Ralf Hinze

16-39

Monads from Comonads—Adjunctions WG 2.8 Marble Falls

The curry adjunction induces the state monad.

MA=(AxX)¥
r=Aid
j = A (app - app)

The monad supports stateful computations, where the state X
is threaded through a program.

University of Oxford—Ralf Hinze 17-39

Monads from Comonads—Adjunctions WG 2.8 Marble Falls

The curry adjunction induces the costate comonad.

NA=AX x X
e = app
d=(Aid) x X

The context can be seen as a store AX together with a memory
location X, a focus of interest.

University of Oxford—Ralf Hinze 18-39

Monads from Comonads—Program transformations WG 2.8 Marble Falls

3 Transforming natural transformations

e Adjunctions provide a framework for program
transformations.

e All the operations we have encountered so far are natural
transformations.

e To deal effectively with those we develop a little theory of
‘natural transformation transformers’.

University of Oxford—Ralf Hinze

19-39

Monads from Comonads—Program transformations WG 2.8 Marble Falls

3 Post-composition

Every adjunction L 4 R gives rise to an adjunction L— 4 R—
between functor categories.

L L—
“~ <~
¢ 1 9 then ©¢ 1 9°¢
R R—

%% (LF,G) = 2°(F,RG)

University of Oxford—Ralf Hinze

20-39

Monads from Comonads—Program transformations WG 2.8 Marble Falls

We write |—] for the lifted left adjunct and |—|° for its inverse.

x:LF—G B:F—RG
|&] : F— RG IB]°:LF —G

The lifted adjuncts can be defined in terms of the units of the
underlying adjunction:

|| = Ra-mF IB|°=¢€eG-Lp

University of Oxford—Ralf Hinze

21-39

Monads from Comonads—Program transformations WG 2.8 Marble Falls

3 Pre-composition

Post-composition dualizes to pre-composition. Consequently,
every adjunction L 4 R also induces an adjunction —R 4 —L.

L ~R
<~ 5y <———
€ N % then &7 5 | &%
R —L

&7(FR,G) = &% (F,GL)

University of Oxford—Ralf Hinze

22-39

Monads from Comonads—Program transformations WG 2.8 Marble Falls

We write [—1° for the lifted left adjunct and [—] for its inverse.

B:FR— G «:F— GL
[B]°:F— GL [] : FR — G

Again, the lifted adjuncts can be defined in terms of the units of
the underlying adjunction:

[B1°=BL-Fn [a] = Ge - aR

An aide-mémoire: |—] turns an L in the source to an R in the
target, while [—] turns an L in the target to an R in the source.

University of Oxford—Ralf Hinze

23-39

Monads from Comonads—Program transformations WG 2.8 Marble Falls

3 Transformation transformers

If we combine |—| and [—], we can send natural transformations
of type LF — GL to transformations of type FR — RG.

The order in which we apply the adjuncts does not matter.

[Tedl] = [le] [LBJ1" = LIBI°)

University of Oxford—Ralf Hinze 24-39

Monads from Comonads—Program transformations WG 2.8 Marble Falls

If we assume that L and R are endofunctors, then we can nest
| —| and [—] arbitrarily deep.
o: L™F — GL™
[o|™]™ : R"F — GR™

An aide-mémoire: the number of |s corresponds to the number
of Ls in the source, and the number of [s corresponds to the
number of Ls in the target.

University of Oxford—Ralf Hinze

Monads from Comonads—Comonads from monads WG 2.8 Marble Falls

4 Monads from comonads

e Assume that a left adjoint is at the same time a comonad.
e Then its right adjoint is a monad!

e Dually, the left adjoint of a monad is a comonad.

University of Oxford—Ralf Hinze

Monads from Comonads—Comonads from monads WG 2.8 Marble Falls

The ‘transformation transformers’ allow us to systematically

turn the comonadic operations into monadic ones and vice versa.

r=le]: =R e=|r|°:L—1
L[Td]1] : RR—R d=1[l"1°1°: L= LL

J

University of Oxford—Ralf Hinze

27-39

Monads from Comonads—Comonads from monads WG 2.8 Marble Falls

The curry adjunction, provides an example, where the left

adjoint L = — x X is also a comonad.
e = outl
d = id A outr

X

Consequently, L’s right adjoint R = (—)* is a monad with

operations

r = |outl] = A outl
j = L[ITid & outr]]] = A(app - (app & outr))

The resulting structure is known as the reader monad.

University of Oxford—Ralf Hinze 28-39

Monads from Comonads

Comonads from monads

WG 2.8 Marble Falls

Ax X - B~A— BX

University of Oxford—Ralf Hinze

29-39

Monads from Comonads—Comonads from monads WG 2.8 Marble Falls

Every (co)monad comes equipped with additional operations.
The product comonad might provide a getter and an update
operation:

get = outr : L — Ax
update (f : X — X)=idx f:L—L

where Ay is the constant functor.

The transforms of get and update correspond to operations
called ask and local in the Haskell monad transformer library.

ask = |outr| = Aoutr : | - RAx
local (f : X — X) = [[id x f]] =A(app-(id x f)) :R—R

University of Oxford—Ralf Hinze

30-39

Monads from Comonads—Comonads from monads WG 2.8 Marble Falls

4 Proof

We have to show that the comonadic laws imply the monadic
laws and vice versa. (It is sufficient to concentrate on natural
transformations of type L™ — L™ and R" — R™.)

The transformers enjoy functorial properties:

[Fidin]" "
LB - of*1™ =[] 1™ - [LBJ™1"
HLoqn—f—lJm—I—l — HO“InJmR

tdRn

For reference, we call the last one flip law.

University of Oxford—Ralf Hinze 31-39

Monads from Comonads—Comonads from monads WG 2.8 Marble Falls

The first comonadic unit law is equivalent to the first monadic
unit law:
Le-d=1idL
<= { inverses }

[[Le-dl] = [[idL]]

<= { preservation of composition and identity }

LITdT1] - LLILel]) = idr

<— {flip law }

LITdT1] - Le]R = idr
<= { definition of j and definition of r }

j‘T’R:idR

University of Oxford—Ralf Hinze 32-39

Monads from Comonads—The wrong way round WG 2.8 Marble Falls

5 The wrong way round

e Does the translation also work if the left adjoint is
simultaneously a monad?

e The transformers happily take the monadic operations to
comonadic ones.

e However, monadic programs of type A — L B are not in

one-to-one correspondence to comonadic programs of type
RA— B.

University of Oxford—Ralf Hinze

Monads from Comonads—The wrong way round WG 2.8 Marble Falls

If X is a monoid with operations []: X and (#): X x X — X,
then L = — x X also has the structure of a monad.

ra=(a[])
Jj((a,z1),12) = (a, 21 H x2)

(For simplicity, we assume that we are working in Set.) This
instance is known as the “write to a monoid” monad or simply
the writer monad.

University of Oxford—Ralf Hinze

Monads from Comonads—The wrong way round WG 2.8 Marble Falls

Its right adjoint R = (—)¥ is indeed a comonad, lovingly called
the “read from a monoid” comonad.

ef=r1]
df =Axy Az . f (21 H 22)

University of Oxford—Ralf Hinze

Monads from Comonads—The wrong way round WG 2.8 Marble Falls

However, we cannot translate the accompanying infrastructure
of the writer monad. Consider the write operation.

write : X — L X

writez = (z,x)

The L is on the wrong side of the arrow, write is not natural, so
it has no counterpart in the comonadic world.

University of Oxford—Ralf Hinze

Monads from Comonads—Epilogue WG 2.8 Marble Falls

6 Summary

e Monads: effectful computations.
e Comonads: computations in context.

e Adjunctions: a theory of program transformations.
¢(LA,B)~ 2(A,RB)
If L and R are endofunctors:
L™ - L" =2 R" - R™

e If L is a comonad, then R is a monad. Furthermore,
comonadic programs are in one-to-one correspondence to
monadic programs: LA — B~ A — RB.

e If L is a monad, then R is a comonad. However, monadic
programs are not in one-to-one correspondence to
comonadic programs: A - LB 2 RA — B.

University of Oxford—Ralf Hinze

Monads from Comonads—Epilogue WG 2.8 Marble Falls

6 Summary continued

The curry adjunction

—x X
4 1 € A:F(Ax X,B)

1

€ (A, BY)

explains:
e state monad,
e costate comonad,
e product comonad,
e reader monad,
e “write to a monoid” monad or writer monad,

e ‘“read from a monoid” comonad.

University of Oxford—Ralf Hinze

Monads from Comonads—Appendix WG 2.8 Marble Falls

7 Post- and pre-composition

Functors can be composed, written simply using juxtaposition
KF. The operation K—, post-composing a functor K, is itself

functorial:
K—: 9% - &7
(K=)F =KF
(K=) & = Ka

where (Ka) A = K(c A).
Post-composition dualizes to pre-composition:

—E: 9% - 97
(-E)F =FE
(-E) x = «E

where («E) A = «(E A).

University of Oxford—Ralf Hinze

39-39

	Prologue
	Some context
	Adjunctions
	Program transformations
	Comonads from monads
	The wrong way round
	Epilogue
	Appendix

