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The Par Monad

data Par
instance Monad Par

runPar :: Par a -> a

fork :: Par () -> Par ()

data IVar
new :: Par (IVar a)
get :: IVar a -> Par a
put :: NFData a => IVar a -> a -> Par ()

Par is a monad for 
parallel computation

Parallel computations 
are pure (and hence 

deterministic)

forking is explicit

results are communicated 
through IVars



Highlights...

• Implemented as a Haskell library
– almost all the code is in this talk

– Including a work-stealing scheduler

– easy to hack on the implementation

• Good performance
– beats Strategies on some benchmarks

– but more overhead for very fine-grained stuff

– programmer has more control

• More explicit and less error-prone than Strategies
– easier to teach?



Par expresses dynamic dataflow
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• Par can express regular parallelism, like 
parMap.  First expand our vocabulary a bit:

• now define parMap:

spawn :: Par a -> Par (IVar a)
spawn p = do r <- new

fork $ p >>= put r
return r

Examples

parMap :: NFData b => (a -> b) -> [a] -> Par [b]
parMap f xs = 
mapM (spawn . return . f) xs >>= mapM get



• Divide and conquer parallelism:

• In practice you want to use the sequential 
version when the grain size gets too small

Examples

parfib :: Int -> Int -> Par Int
parfib n 
| n <= 2    = return 1
| otherwise = do

x <- spawn $ parfib (n-1)
y <- spawn $ parfib (n-2)
x’ <- get x
y’ <- get y
return (x’ + y’)



Dataflow

• Consider typechecking a set of (non-recursive) 
bindings:

• treat this as a dataflow graph: 

f = ...
g = ... f ...
h = ... f ...
j = ... g ... h ...

f
g

h

j



Dataflow

• No dependency analysis required!

• We just create all the nodes and edges, and let 
the scheduler do the work

• Maximum parallelism is extracted

do
ivars <- replicateM (length binders) new
let env = Map.fromList (zip binders ivars)
mapM_ (fork . typecheck env) bindings
types <- mapM_ get ivars
...



Parallel scan

scanL f [_] = [0]
scanL f xs = interleave s (zipWith f s e)
where
(e,o) = uninterleave xs
s     = scanL f (zipWith f e o)

scanP f [_] = return [0]
scanP f xs = do
s <- scanP f =<< parZipWith f e o
interleave s <$> parZipWith f s e
where
(e,o) = uninterleave xs

parZipWith :: NFData c
=> (a -> b -> c) -> [a] -> [b] -> Par [c]

scanP' f [_] = do x <- new; put x 0; return [x]
scanP' f xs = do
s <- scanP' f =<< parZipWith' f e o
interleave s <$> parZipWith' f s e

where
(e,o) = uninterleave xs

parZipWith' :: NFData c
=> (a -> b -> c)
-> [IVar a] -> [IVar b] -> Par [IVar c]



Semantics and determinism

• Multiple put to the same IVar is an error (⊥)
• runPar cannot stop when it has the answer.  It must run 

all “threads” to completion, just in case there is a 
multiple put.

• deadlocked threads are just garbage collected
• Deterministic:

– a non-deterministic result could only arise from choice 
between multiple puts, which will always lead to an error

– if the result is an error, it is always an error
– c.f. determinism proof for CnC
– care is required with regular ⊥s (imprecise exceptions to 

the rescue)



Implementation

• Starting point: A Poor Man’s Concurrency Monad 
(Claessen JFP’99)

• PMC was used to simulate concurrency in a 
sequential Haskell implementation.  We are using 
it as a way to implement very lightweight non-
preemptive threads, with a parallel scheduler.

• Following PMC, the implementation is divided 
into two:
– Par computations produce a lazy Trace
– A scheduler consumes the Traces, and switches 

between multiple threads



Traces

• A “thread” produces a lazy stream of 
operations:

data Trace 
= Fork Trace Trace
| Done
| forall a . Get (IVar a) (a -> Trace)
| forall a . Put (IVar a) a Trace
| forall a . New (IVar a -> Trace)



The Par monad

• Par is a CPS monad:

newtype Par a = Par {
runCont :: (a -> Trace) -> Trace

}

instance Monad Par where
return a = Par $ \c -> c a
m >>= k  = Par $ \c -> runCont m $

\a -> runCont (k a) c



Operations

fork :: Par () -> Par ()
fork p = Par $ \c -> 

Fork (runCont p (\_ -> Done)) (c ())

new :: Par (IVar a)
new  = Par $ \c -> New c

get :: IVar a -> Par a
get v = Par $ \c -> Get v c

put :: NFData a => IVar a -> a -> Par ()
put v a = deepseq a (Par $ \c -> Put v a (c ()))



e.g.

• This code:

• will produce a trace like this:

do 
x <- new
fork (put x 3)
r <- get x
return (r+1)

New (\x ->
Fork (Put x 3 $ Done)

(Get x (\r ->
c (r + 1))))



The scheduler

• First, a sequential scheduler.

sched :: SchedState -> Trace -> IO ()

type SchedState = [Trace]

The work pool, 
“runnable threads”

The currently running 
thread

Why IO?
Because we’re going 
to extend it to be a 

parallel scheduler in a 
moment.



Representation of IVar

newtype IVar a = IVar (IORef (IVarContents a))

data IVarContents a = Full a | Blocked [a -> Trace]

set of threads 
blocked in get



Fork and Done

sched state (Fork child parent) =
sched (child:state) parent

reschedule :: SchedState -> IO ()
reschedule []     = return ()
reschedule (t:ts) = sched ts t

sched state Done = reschedule state



New and Get

sched state (New f) = do
r <- newIORef (Blocked [])
sched state (f (IVar r))

sched state (Get (IVar v) c) = do
e <- readIORef v
case e of
Full a -> sched state (c a)
Blocked cs -> do
writeIORef v (Blocked (c:cs))
reschedule state



Put

sched state (Put (IVar v) a t) = do
cs <- modifyIORef v $ \e -> case e of

case e of
Full _     -> error "multiple put"
Blocked cs -> (Full a, cs)

let state' = map ($ a) cs ++ state
sched state' t

Wake up all the 
blocked threads, add 

them to the work 
pool

modifyIORef :: IORef a -> (a -> (a,b)) -> IO b



Finally... runPar

• that’s the complete sequential scheduler

runPar :: Par a -> a
runPar x = unsafePerformIO $ do

rref <- newIORef (Blocked [])
sched [] $

runCont (x >>= put_ (IVar rref))
(const Done)

r <- readIORef rref
case r of
Full a -> return a
_      -> error "no result"

rref is an IVar to hold 
the return value

the “main thread” 
stores the result in rref

if the result is empty, 
the main thread must 

have deadlocked



A real parallel scheduler

• We will create one scheduler thread per core

• Each scheduler has a local work pool

– when a scheduler runs out of work, it tries to steal 
from the other work pools

• The new state:

data SchedState = SchedState
{ no       :: Int,
workpool :: IORef [Trace],
idle     :: IORef [MVar Bool],
scheds :: [SchedState]

}

CPU number

Local work pool

Idle schedulers 
(shared)

Other schedulers (for 
stealing)



New/Get/Put

• New is the same

• Mechanical changes to Get/Put:

– use atomicModifyIORef to operate on IVars

– use atomicModifyIORef to modify the work pool 
(now an IORef [Trace], was previously [Trace]).



reschedule

reschedule :: SchedState -> IO ()
reschedule state@SchedState{ workpool } = do
e <- atomicModifyIORef workpool $ \ts ->

case ts of
[]      -> ([], Nothing)
(t:ts') -> (ts', Just t)

case e of
Just t  -> sched state t
Nothing -> steal state

Here’s where 
we go stealing



stealing

steal :: SchedState -> IO ()
steal state@SchedState{ scheds, no=me } = go scheds
where

go (x:xs)
| no x == me   = go xs
| otherwise    = do

r <- atomicModifyIORef (workpool x) $ \ ts ->
case ts of

[]     -> ([], Nothing)
(x:xs) -> (xs, Just x)

case r of
Just t  -> sched state t
Nothing -> go xs

go [] = do
-- failed to steal anything; add ourself to the
-- idle queue and wait to be woken up



runPar

runPar :: Par a -> a
runPar x = unsafePerformIO $ do

let states = ...
main_cpu <- getCurrentCPU
m <- newEmptyMVar
forM_ (zip [0..] states) $ \(cpu,state) ->

forkOnIO cpu $
if (cpu /= main_cpu)

then reschedule state
else do

rref <- newIORef Empty
sched state $ 

runCont (x >>= put_ (IVar rref)) 
(const Done)

readIORef rref >>= putMVar m

r <- takeMVar m
case r of Full a -> return a

_ -> error "no result"

The “main thread” 
runs on the current 
CPU, all other CPUs 

run workers

An MVar
communicates the 
result back to the 
caller of runPar



Results

cores

speedup

99%

95%

50%



Optimisation possibilities

• Unoptimised it performs rather well

• The overhead of the monad and scheduler is 
visible when running parFib

• Deforest away the Trace
– Mechanical;  just define

– and each constructor in the Trace type is replaced by a 
function, whose implementation is the appropriate 
case in sched

– this should give good results but currently doesn’t

type Trace = SchedState -> IO ()



More optimisation possibilities

• Use real lock-free work-stealing queues

– We have these in the RTS, used by Strategies

– could be exposed via primitives and used in Par

• Give Haskell more control over scheduling?



Extending with CnC functionality

• Generalise IVars to mappings

• e.g. in the parallel typechecking example 
earlier, no need to pre-populate the 
environment

data ItemSet k v
newItemSet :: Par (ItemSet k v)
getItem :: Ord k => ItemSet k v -> k -> Par v
putItem :: Ord k => ItemSet k v -> k –> v -> Par ()

do
env <- newItemSet
mapM_ (fork . typecheck env) bindings
types <- mapM_ (getItem env) binders

get blocks if the 
ItemSet does not 
have a value for 

that key yet



Could Par be a monad transformer?

• No.



Modularity

• Key property of Strategies is modularity

• Relies on lazy evaluation
– fragile
– not always convenient to build a lazy data structure

• Par takes a different approach to modularity:
– the Par monad is for coordination only
– the application code is written separately as pure 

Haskell functions
– The “parallelism guru” writes the coordination code
– Par performance is not critical, as long as the grain 

size is not too small

parMap f xs = map f xs `using` parList rwhnf



Drawbacks

• Nesting isn’t handled well.  Each runPar
creates a new gang of threads.

• GHC doesn’t optimise the CPS very well (yet).



Related work

• Evaluation Strategies
– Par is more explicit; no reliance on lazy evaluation (programmer has more 

control)
– Par is less modular (though modularity can be achieved in a different way)
– Par requires no special RTS support, implemented as a library

• Concurrent Haskell
– but Par is deterministic

• CnC
– Haskell CnC is the forerunner to Par
– Par is dynamic and does not have map-based synchronisation variables 

(but they could be added)

• Cilk
– but Par has async dataflow

• pH
– Par has explicit forking, and does not modify Haskell


