A monad for deterministic
parallelism

Simon Marlow (MSR)
Ryan Newton (Intel)

Parallel programming models

Deterministic

Implicit FDIP

par/pseq
Strategies

?277?
Explicit

Non-deterministic

Concurrent Haskell

The Par Monad

Par is a monad for

parallel computation
data Par

1nstance Monad Par
Parallel computations

are pure (and hence

runPar :: Par a -> a deterministic)

foricis Par O = Par O

hew :: Par (IVar a) through IVars
get :: Ivar a -> Par a
put :: NFData a => Ivar a -> a -> Par ()

Highlights...

* Implemented as a Haskell library
— almost all the code is in this talk
— Including a work-stealing scheduler
— easy to hack on the implementation

 Good performance
— beats Strategies on some benchmarks
— but more overhead for very fine-grained stuff
— programmer has more control
 More explicit and less error-prone than Strategies
— easier to teach?

Par expresses dynamic dataflow

Examples

* Par can express regular parallelism, like
parMap. First expand our vocabulary a bit:

spawn :: Par a -> Par (Ivar a)
spawn p = do r <- new

fork $ p >>= put r
return r

* how define parMap:

parMap :: NFData b => (a -> b) -> [a] -> Par [b]

parMap f xs =
mapM (spawn . return . f) xs >>= mapM get

Examples

* Divide and conquer parallelism:

parfib :: Int -> Int -> Par Int
parfib n

| n <= 2

| otherwise

X <- spawn $ parfib (n-1)
y <- spawn $ parfib (n-2)

X’ <- get X

y' <- gety
return (x’ + y’)

* |n practice you want to use the sequential
version when the grain size gets too small

Dataflow

e Consider typechecking a set of (non-recursive)
bindings:

* treat this as a dataflow graph:

Dataflow

ivars <- replicateM (length binders) new
let env = Map.fromList (zip binders ivars)

mapM_ (fork . typecheck env) bindings
types <- mapM_ get 1ivars

* No dependency analysis required!

* We just create all the nodes and edges, and let
the scheduler do the work

* Maximum parallelism is extracted

Parallel scan

scanL f [_] = [0]
scanL f xs = interleave s (zipwith f s e)
where

(e,0) uninterleave Xxs

S

scanL ¥ (zipwith f e o)

scanP' f [_] = do x <- new; put x O0; return [x]
scanP' f xs = do
s <- scanP' f =<< parzipwith' f e o
interleave s <$> parzipwith' f s e
where
(e,0) = uninterleave xs

parZzipwith' :: NFData c
= (a -> b ->)
-> [Ivar a] -> [Ivar b] -> Par [Ivar c]

Semantics and determinism

 Multiple put to the same IVar is an error (L)

* runPar cannot stop when it has the answer. It must run
all “threads” to completion, just in case thereis a
multiple put.

* deadlocked threads are just garbage collected
* Deterministic:

— a non-deterministic result could only arise from choice
between multiple puts, which will always lead to an error

— if the resultis an error, it is always an error
— c.f. determinism proof for CnC

— care is required with regular Ls (imprecise exceptions to
the rescue)

Implementation

e Starting point: A Poor Man’s Concurrency Monad
(Claessen JFP’99)

 PMC was used to simulate concurrency in a
sequential Haskell implementation. We are using
it as a way to implement very lightweight non-
preemptive threads, with a parallel scheduler.

* Following PMC, the implementation is divided
Into two:

— Par computations produce a lazy Trace

— A scheduler consumes the Traces, and switches
between multiple threads

Traces

* A “thread” produces a lazy stream of
operations:

data Trace
Fork Trace Trace
Donhe

forall a . Put (Ivar a) a Trace
forall a . New (Ivar a -> Trace)

|
| forall a . Get (Ivar a) (a -> Trace)
|
|

The Par monad

e Paris a CPS monad:

newtype Par a = Par {
runCont :: (a -> Trace) -> Trace

}

instance Monad Par where
return a = Par $ \c -> c a
m >>= k Par $ \c -> runCont m $
\a -> runCont (k a) c

Operations

fork :: Ppar O -> Par ()
fork p = Par $ \c ->
Fork (runCont p (_ -> Done)) (c O)

hew :: Par (Ivar a)
hew = Par $ \c -> New C

get :: Ivar a -> Par a
get v = Par $ \c -> Get v C

put :: NFData a => Ivar a -> a -> Par ()
put v a = deepseq a (Par $ \c -> Put v a (c 0))

e.g.

 This code:

do
X <- new
fork (put x 3)

r <- get x
return (r+1)

* will produce a trace like this:

New (\x ->
Fork (Put x 3 $ Done)

(Get x (\r —>
c (r+ 1))))

The scheduler

* First, a sequential scheduler.

The currently running
thread

sched :: SchedState -> Trace -> I0 ()

type SchedState = [Trace]

Why IO?
Because we’re going
to extend it to be a

parallel scheduler in a
moment.

The work pool,
“runnable threads”

Representation of IVar

newtype IvVar a = IVar (IORef (IvarContents a))

data IvarcContents a = Full a | Blocked [a -> Trace]

set of threads
blocked in get

Fork and Done

sched state Done = reschedule state

reschedule :: SchedState -> I0 ()
reschedule [] return ()
reschedule (t:ts) sched ts t

sched state (Fork child parent) =
sched (child:state) parent

New and Get

sched state (New f) = do
r <- newIORef (Blocked [])
sched state (f (Ivar r))

sched state (Get (Ivar v) c) = do
e <- readIorRef v
case e of
Full a -> sched state (c a)
Blocked cs -> do
writeIORef v (Blocked (c:cs))
reschedule state

Put

sched state (Put (Ivar v) a t) = do
cs <- modifyIORef v $ \e -> case e of
case e of

Full _ -> error "'multiple put”

Blocked cs -> (Full a, cs)
let state' = map ($ a) cs ++ state

sched state' t
Wake up all the

blocked threads, add
them to the work
pool

modifyIORef :: IORef a -> (a -> (a,b)) -> I0 b

Finally... runPar

rref is an IVar to hold
the return value

runPar :: Par a -> a
runPar X = unsafePerformio $ do

rref <- newIORef (Blocked [])~™ the “main thread”
sched [] $ stores the result in rref

runCont (x >>= put_ (Ivar rref))

d (anSt ?One) if the result is empty,
r <- readIOReT rre the main thread must

case r of have deadlocked
Full a -> return a
-> error "no result"”

e that’s the complete sequential scheduler

A real parallel scheduler

* We will create one scheduler thread per core

* Each scheduler has a local work pool

— when a scheduler runs out of work, it tries to steal
from the other work pools

e The new state:

data SchedState = SchedSta

{ no :: Int,

workpool :: IORef [Trace],

1dle :: IORef [Mvar Bool],
scheds :: [SchedState] Idle schedulers
} (shared)
Other schedulers (for
stealing)

New/Get/Put

e New is the same

* Mechanical changes to Get/Put:
— use atomicModifylORef to operate on IVars

— use atomicModifylORef to modify the work pool
(now an IORef [Trace], was previously [Trace]).

reschedule

reschedule :: SchedState -> I0 ()
reschedule state@SchedState{ workpool } = do
e <- atomicModifyIORef workpool $ \ts ->
case ts of
[] -> ([], Nothing)
(t:ts') -> (ts', Just t)
case e of

Just t -> sched state t
Nothing -> steal state

Here’s where
we go stealing

stealing

steal :: SchedState -> 10 ()
steal state@SchedState{ scheds, no=me } = go scheds
where
go (x:xs)
| no X == me
| otherwise
r <- atomicModifyIORef (workpool x) $ \ ts ->
case ts of
[] -> ([], Nothing)
(x:xs) -> (xs, Just x)
case r of
Just t -> sched state t
Nothing -> go Xxs
go [] = do
-- failed to steal anything; add ourself to the
-- 1dle queue and wait to be woken up

runPar :: Par a -> a
runPar x = unsafePerformio $ do
let states =
main_cpu <- getCurrentCPU
m <- newEmptyMvar
form_ (zip [0..] states) $ \(cpu,state) ->

'FOI:'kOnIO cpw s : //The “main thread”
if (cpu /= main_cpu)

runs on the current
CPU, all other CPUs
run workers

then reschedule state
else do
rref <- newIORef Empty
sched state $
runCont (x >>= put_ (Ivar rref))
(const Done)
readIORef rref >>= putMvar m

An MVar
r <- takemvar m communicates the

case r of Full a -> return a result back to the
_ -=> error "no result" caller of runPar

Results

(o)
blackscholes —+—- 99%
minimax =<
mangel —s—

speedup =

50%

Optimisation possibilities

* Unoptimised it performs rather well
* The overhead of the monad and scheduler is
visible when running parFib

e Deforest away the Trace
— Mechanical; just define

type Trace = SchedState -> 10 (O

— and each constructor in the Trace type is replaced by a
function, whose implementation is the appropriate

case in sched
— this should give good results but currently doesn’t

More optimisation possibilities

e Use real lock-free work-stealing queues
— We have these in the RTS, used by Strategies
— could be exposed via primitives and used in Par

* Give Haskell more control over scheduling?

Extending with CnC functionality

get blocks if the
. . ltemSet d
* Generalise IVars to mappings e

that key yet
data ItemSet k v

nhewItemSet :: Par (ItemSet k v)

getItem :: ord k => ItemSet k v -> k -> Par v
putItem :: ord k = ItemSet k v -> k -=> v -> Par ()

e e.g. in the parallel typechecking example
earlier, no need to pre-populate the

environment

do
env <- newItemSet

mapM_ (fork . typecheck env) bindings
types <- mapM_ (getItem env) binders

Could Par be a monad transformer?

* No.

Modularity

e Key property of Strategies is modularity

parMap f xs = map f xs using parList rwhnf

* Relies on lazy evaluation

— fragile

— not always convenient to build a lazy data structure
* Par takes a different approach to modularity:

— the Par monad is for coordination only

— the application code is written separately as pure
Haskell functions

— The “parallelism guru” writes the coordination code

— Par performance is not critical, as long as the grain
size is not too small

Drawbacks

* Nesting isn’t handled well. Each runPar
creates a new gang of threads.

 GHC doesn’t optimise the CPS very well (yet).

Related work

* Evaluation Strategies

— Par is more explicit; no reliance on lazy evaluation (programmer has more
control)

— Par is less modular (though modularity can be achieved in a different way)
— Par requires no special RTS support, implemented as a library
* Concurrent Haskell
— but Par is deterministic
* CnC
— Haskell CnC is the forerunner to Par

— Par is dynamic and does not have map-based synchronisation variables
(but they could be added)

 Cilk
— but Par has async dataflow
e pH
— Par has explicit forking, and does not modify Haskell

