
A monad for deterministic
parallelism

Simon Marlow (MSR)

Ryan Newton (Intel)

Parallel programming models

Deterministic Non-deterministic

Implicit

Explicit

FDIP

Concurrent Haskell

par/pseq
Strategies

???

The Par Monad

data Par
instance Monad Par

runPar :: Par a -> a

fork :: Par () -> Par ()

data IVar
new :: Par (IVar a)
get :: IVar a -> Par a
put :: NFData a => IVar a -> a -> Par ()

Par is a monad for
parallel computation

Parallel computations
are pure (and hence

deterministic)

forking is explicit

results are communicated
through IVars

Highlights...

• Implemented as a Haskell library
– almost all the code is in this talk

– Including a work-stealing scheduler

– easy to hack on the implementation

• Good performance
– beats Strategies on some benchmarks

– but more overhead for very fine-grained stuff

– programmer has more control

• More explicit and less error-prone than Strategies
– easier to teach?

Par expresses dynamic dataflow

put

put

put

put put
get

get

get

get

get

• Par can express regular parallelism, like
parMap. First expand our vocabulary a bit:

• now define parMap:

spawn :: Par a -> Par (IVar a)
spawn p = do r <- new

fork $ p >>= put r
return r

Examples

parMap :: NFData b => (a -> b) -> [a] -> Par [b]
parMap f xs =
mapM (spawn . return . f) xs >>= mapM get

• Divide and conquer parallelism:

• In practice you want to use the sequential
version when the grain size gets too small

Examples

parfib :: Int -> Int -> Par Int
parfib n
| n <= 2 = return 1
| otherwise = do

x <- spawn $ parfib (n-1)
y <- spawn $ parfib (n-2)
x’ <- get x
y’ <- get y
return (x’ + y’)

Dataflow

• Consider typechecking a set of (non-recursive)
bindings:

• treat this as a dataflow graph:

f = ...
g = ... f ...
h = ... f ...
j = ... g ... h ...

f
g

h

j

Dataflow

• No dependency analysis required!

• We just create all the nodes and edges, and let
the scheduler do the work

• Maximum parallelism is extracted

do
ivars <- replicateM (length binders) new
let env = Map.fromList (zip binders ivars)
mapM_ (fork . typecheck env) bindings
types <- mapM_ get ivars
...

Parallel scan

scanL f [_] = [0]
scanL f xs = interleave s (zipWith f s e)
where
(e,o) = uninterleave xs
s = scanL f (zipWith f e o)

scanP f [_] = return [0]
scanP f xs = do
s <- scanP f =<< parZipWith f e o
interleave s <$> parZipWith f s e
where
(e,o) = uninterleave xs

parZipWith :: NFData c
=> (a -> b -> c) -> [a] -> [b] -> Par [c]

scanP' f [_] = do x <- new; put x 0; return [x]
scanP' f xs = do
s <- scanP' f =<< parZipWith' f e o
interleave s <$> parZipWith' f s e

where
(e,o) = uninterleave xs

parZipWith' :: NFData c
=> (a -> b -> c)
-> [IVar a] -> [IVar b] -> Par [IVar c]

Semantics and determinism

• Multiple put to the same IVar is an error (⊥)
• runPar cannot stop when it has the answer. It must run

all “threads” to completion, just in case there is a
multiple put.

• deadlocked threads are just garbage collected
• Deterministic:

– a non-deterministic result could only arise from choice
between multiple puts, which will always lead to an error

– if the result is an error, it is always an error
– c.f. determinism proof for CnC
– care is required with regular ⊥s (imprecise exceptions to

the rescue)

Implementation

• Starting point: A Poor Man’s Concurrency Monad
(Claessen JFP’99)

• PMC was used to simulate concurrency in a
sequential Haskell implementation. We are using
it as a way to implement very lightweight non-
preemptive threads, with a parallel scheduler.

• Following PMC, the implementation is divided
into two:
– Par computations produce a lazy Trace
– A scheduler consumes the Traces, and switches

between multiple threads

Traces

• A “thread” produces a lazy stream of
operations:

data Trace
= Fork Trace Trace
| Done
| forall a . Get (IVar a) (a -> Trace)
| forall a . Put (IVar a) a Trace
| forall a . New (IVar a -> Trace)

The Par monad

• Par is a CPS monad:

newtype Par a = Par {
runCont :: (a -> Trace) -> Trace

}

instance Monad Par where
return a = Par $ \c -> c a
m >>= k = Par $ \c -> runCont m $

\a -> runCont (k a) c

Operations

fork :: Par () -> Par ()
fork p = Par $ \c ->

Fork (runCont p (_ -> Done)) (c ())

new :: Par (IVar a)
new = Par $ \c -> New c

get :: IVar a -> Par a
get v = Par $ \c -> Get v c

put :: NFData a => IVar a -> a -> Par ()
put v a = deepseq a (Par $ \c -> Put v a (c ()))

e.g.

• This code:

• will produce a trace like this:

do
x <- new
fork (put x 3)
r <- get x
return (r+1)

New (\x ->
Fork (Put x 3 $ Done)

(Get x (\r ->
c (r + 1))))

The scheduler

• First, a sequential scheduler.

sched :: SchedState -> Trace -> IO ()

type SchedState = [Trace]

The work pool,
“runnable threads”

The currently running
thread

Why IO?
Because we’re going
to extend it to be a

parallel scheduler in a
moment.

Representation of IVar

newtype IVar a = IVar (IORef (IVarContents a))

data IVarContents a = Full a | Blocked [a -> Trace]

set of threads
blocked in get

Fork and Done

sched state (Fork child parent) =
sched (child:state) parent

reschedule :: SchedState -> IO ()
reschedule [] = return ()
reschedule (t:ts) = sched ts t

sched state Done = reschedule state

New and Get

sched state (New f) = do
r <- newIORef (Blocked [])
sched state (f (IVar r))

sched state (Get (IVar v) c) = do
e <- readIORef v
case e of
Full a -> sched state (c a)
Blocked cs -> do
writeIORef v (Blocked (c:cs))
reschedule state

Put

sched state (Put (IVar v) a t) = do
cs <- modifyIORef v $ \e -> case e of

case e of
Full _ -> error "multiple put"
Blocked cs -> (Full a, cs)

let state' = map ($ a) cs ++ state
sched state' t

Wake up all the
blocked threads, add

them to the work
pool

modifyIORef :: IORef a -> (a -> (a,b)) -> IO b

Finally... runPar

• that’s the complete sequential scheduler

runPar :: Par a -> a
runPar x = unsafePerformIO $ do

rref <- newIORef (Blocked [])
sched [] $

runCont (x >>= put_ (IVar rref))
(const Done)

r <- readIORef rref
case r of
Full a -> return a
_ -> error "no result"

rref is an IVar to hold
the return value

the “main thread”
stores the result in rref

if the result is empty,
the main thread must

have deadlocked

A real parallel scheduler

• We will create one scheduler thread per core

• Each scheduler has a local work pool

– when a scheduler runs out of work, it tries to steal
from the other work pools

• The new state:

data SchedState = SchedState
{ no :: Int,
workpool :: IORef [Trace],
idle :: IORef [MVar Bool],
scheds :: [SchedState]

}

CPU number

Local work pool

Idle schedulers
(shared)

Other schedulers (for
stealing)

New/Get/Put

• New is the same

• Mechanical changes to Get/Put:

– use atomicModifyIORef to operate on IVars

– use atomicModifyIORef to modify the work pool
(now an IORef [Trace], was previously [Trace]).

reschedule

reschedule :: SchedState -> IO ()
reschedule state@SchedState{ workpool } = do
e <- atomicModifyIORef workpool $ \ts ->

case ts of
[] -> ([], Nothing)
(t:ts') -> (ts', Just t)

case e of
Just t -> sched state t
Nothing -> steal state

Here’s where
we go stealing

stealing

steal :: SchedState -> IO ()
steal state@SchedState{ scheds, no=me } = go scheds
where

go (x:xs)
| no x == me = go xs
| otherwise = do

r <- atomicModifyIORef (workpool x) $ \ ts ->
case ts of

[] -> ([], Nothing)
(x:xs) -> (xs, Just x)

case r of
Just t -> sched state t
Nothing -> go xs

go [] = do
-- failed to steal anything; add ourself to the
-- idle queue and wait to be woken up

runPar

runPar :: Par a -> a
runPar x = unsafePerformIO $ do

let states = ...
main_cpu <- getCurrentCPU
m <- newEmptyMVar
forM_ (zip [0..] states) $ \(cpu,state) ->

forkOnIO cpu $
if (cpu /= main_cpu)

then reschedule state
else do

rref <- newIORef Empty
sched state $

runCont (x >>= put_ (IVar rref))
(const Done)

readIORef rref >>= putMVar m

r <- takeMVar m
case r of Full a -> return a

_ -> error "no result"

The “main thread”
runs on the current
CPU, all other CPUs

run workers

An MVar
communicates the
result back to the
caller of runPar

Results

cores

speedup

99%

95%

50%

Optimisation possibilities

• Unoptimised it performs rather well

• The overhead of the monad and scheduler is
visible when running parFib

• Deforest away the Trace
– Mechanical; just define

– and each constructor in the Trace type is replaced by a
function, whose implementation is the appropriate
case in sched

– this should give good results but currently doesn’t

type Trace = SchedState -> IO ()

More optimisation possibilities

• Use real lock-free work-stealing queues

– We have these in the RTS, used by Strategies

– could be exposed via primitives and used in Par

• Give Haskell more control over scheduling?

Extending with CnC functionality

• Generalise IVars to mappings

• e.g. in the parallel typechecking example
earlier, no need to pre-populate the
environment

data ItemSet k v
newItemSet :: Par (ItemSet k v)
getItem :: Ord k => ItemSet k v -> k -> Par v
putItem :: Ord k => ItemSet k v -> k –> v -> Par ()

do
env <- newItemSet
mapM_ (fork . typecheck env) bindings
types <- mapM_ (getItem env) binders

get blocks if the
ItemSet does not
have a value for

that key yet

Could Par be a monad transformer?

• No.

Modularity

• Key property of Strategies is modularity

• Relies on lazy evaluation
– fragile
– not always convenient to build a lazy data structure

• Par takes a different approach to modularity:
– the Par monad is for coordination only
– the application code is written separately as pure

Haskell functions
– The “parallelism guru” writes the coordination code
– Par performance is not critical, as long as the grain

size is not too small

parMap f xs = map f xs `using` parList rwhnf

Drawbacks

• Nesting isn’t handled well. Each runPar
creates a new gang of threads.

• GHC doesn’t optimise the CPS very well (yet).

Related work

• Evaluation Strategies
– Par is more explicit; no reliance on lazy evaluation (programmer has more

control)
– Par is less modular (though modularity can be achieved in a different way)
– Par requires no special RTS support, implemented as a library

• Concurrent Haskell
– but Par is deterministic

• CnC
– Haskell CnC is the forerunner to Par
– Par is dynamic and does not have map-based synchronisation variables

(but they could be added)

• Cilk
– but Par has async dataflow

• pH
– Par has explicit forking, and does not modify Haskell

