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 ...in compilers

 ...in supercompilers

 ...in theorem provers

It’s a useful black box.  

 But it should be modularly separated from 
the rest of your compiler/theorem 
prover/whatever

 (The typical reality is otherwise.)



 Online termination detection

 Given a sequence of values, x0, x1, x2...

 ...presented one by one...

 ...yell “stop” if it looks as if the sequence might 
be diverging

 Guarantee never to let through an infinite 
sequence

 Delay “stop” as long as possible

 “Values” includes pairs, strings, trees....



 Postpone: where do TTests come from?

 Note: testList is inherently inefficient for 
the “present one at a time” situation

data TTest a

testList :: TTest a -> [a] -> Bool



 Intuitively the History accumulates (some 
abstraction of) the values seem so far

data History a

initHistory :: TTest a -> History a

data TestResult a = Stop | Continue (History a)

test :: History a -> a -> TestResult a 



 The goal: a library that makes it easy to 
construct values of type TTest a, that
 Are definitely sound: they do not admit infinite 

sequences

 Are lenient as possible: they do not blow the 
whistle too soon



 Just the usual type-directed combinator
library

intT :: TTest Int

boolT :: TTest Bool

pairT :: TTest a  -> TTest b -> TTest (a, b)

eitherT :: TTest a  -> TTest b -> TTest (Either a b)

wrapT :: (a -> b) -> TTest b -> TTest a



 How do we implement a TTest?

 Find a strictly-decreasing measure bounded 
below.

 This is VERY INCONVENIENT in many 
cases.  Think about a sequence of syntax 
trees.

 Well-studied problem, standard approach: 
use a well-quasi order (WQO).



Theorem: every WQO is reflexive

Definition
A transitive binary relation ≤ is a WQO 

iff
For any infinite sequence

x0, x1, x2....
there exists i<j st xi ≤ xj



 New goal: a (trusted) library that helps you 
to define (sparse) WQOs, that really are 
WQOs

newtype TTest a = TT (a -> a -> Bool)

data History a = H (a->a->Bool) [a]

initHistory :: TTest a -> History a

initHistory (TT wqo) = H wqo []

test :: History a -> a -> TestResult a

test (H wqo vs) v

| any (`wqo` v) vs = Stop

| otherwise        = Continue (H wqo (v:vs))



 Is (==) a WQO on finite sets? Yes.

 Odd; we don’t use the methods of Finite

 Instead, Finite is really a proof obligation:
 There are only a finite number of elements of a

 (==) is reflexive

finiteT :: Finite a => TTest a

finiteT = TT (==)

class Eq a => Finite a where

elements :: [a]



 Is this a WQO?  Why?  

eitherT:: TTest a -> TTest b -> TTest (Either a b)

eitherT (TT wqo_a) (TT wqo_b) = TT wqo

where

(Left x)  `wqo` (Left y)  = x `wqo_a` y

(Right x) `wqo` (Right y) = x `wqo_b` y

_ `wqo` _ = False



pairT:: TTest a -> TTest b -> TTest (a,b)

pairT (TT wqo_a) (TT wqo_b) = TT wqo

where

(x1,x2) `wqo` (y1,y2) = ....



 But is this a WQO?

 For any infinite sequence (x0,y0), (x1,y1), ...
can we be sure there is an i<j, st

xi ≤ xj, and yi ≤ yj
?

 Yes, and the proof is both simple and beautiful

pairT:: TTest a -> TTest b -> TTest (a,b)

pairT (TT wqo_a) (TT wqo_b) = TT wqo

where

(x1,x2) `wqo` (y1,y2) = x1 `wqo_a` y1 

&& x2 `wqo_b` y2 



Theorem.  If (≤) is a WQO, then 
for any infinite sequence x0, x1, x2, ... 
there is a finite N such that
for any i>N
there is a j>i
such that xi ≤ xj

That is, after some point N, 
every xi is ≤ a later xj

Proof: Consider {xi | j>i. xi ≤ xj }

Corollary: every infinite sequence has a chain 
xi1 ≤ xi2 ≤ xi3 ≤ ...



 Exercise: modify the implementation of 
TTest and History to avoid the repeated re-
application of f.

wrapT:: (b->a) -> TTest a -> TTest b

wrapT f (TT wqo_a) = TT wqo_b

where

x `wqo_b` y = f x `wqo_a` f y

instance CoFunctor TTest where

cofmap = wrapT



 The types are right

 We are only using library combinators

 Does it work?

unwrap :: [a] -> Either () (a, [a])

unwrap []     = Left ()

unwrap (x:xs) = Right (x,xs)

listT :: forall a. TTest a -> TTest [a]

listT telt = tlist

where

tlist :: TTest [a]

tlist = cofmap unwrap $

eitherT finiteT

(pairT telt tlist) 



 Consider [], [1], [1,1], [1,1,1], [1,1,1,1], ....

 An infinite sequence... accepted!

 What has gone wrong?

unwrap :: [a] -> Either () (a, [a])

unwrap []     = Left ()

unwrap (x:xs) = Right (x,xs)

listT :: forall a. TTest a -> TTest [a]

listT telt = tlist

where

tlist :: TTest [a]

tlist = cofmap unwrap $

eitherT finiteT

(pairT telt tlist) 



 We assumed that tlist was WQO when 
proving that it is a WQO!

 Sort-of solution: make the combinators
strict, so tlist is bottom

 ...But we still want a termination checker for 
lists!

tlist :: TTest [a]

tlist = cofmap unwrap $

eitherT finiteT

(pairT telt tlist) 



 This actually is a WQO

 The proof is not obvious, at all

 Q1: find an elegant proof

wqoL :: WQO a -> [a] -> [a] -> Bool

wqoL we [] ys = True

wqoL we (x:xs) [] = False

wqoL we (x:xs) (y:ys) 

=  (x `we` y && wqoL we xs ys)

|| wqoL we (x:xs) ys

“Couple”: 
See if 
they 

match at 
the root

“Dive”: See if 
the first arg

matches inside 
the recursive 
component of 

the second arg



recT :: (t -> [t]) 

-> TTest t 

-> TTest t

Function to get the 
“recursive children” 

of  a t-value

A “couple” tester: 
match at the root

listT :: TTest t -> TTest [t]

listT telt = tlist

where

tlist :: TTest [a]

tlist = recT kids $

cofmap unwrap $

eitherT finiteT

(pairT telt tlist)

kids [] = []

kids (x:xs) = [xs] 



recT :: (t -> [t]) 

-> TTest t

-> TTest t

recT kids ~(TT wqo_top)= TT wqo

where

x `wqo` y = x `wqo_top` y)

|| any (x `wqo`) (kids y)

Function to get the 
“recursive children” 

of  a t-value

A “couple” tester: 
match at the root



 Q2: is this the best formulation?

 Q3: what is the proof obligation for “kids”

 Q4: solve nasty interaction with cofmap

 Q5: Elucidate relationship to R+

recT :: (t -> [t]) 

-> TTest t

-> TTest t

recT kids ~(TT wqo_top)= TT wqo

where

x `wqo` y = x `wqo_top` y)

|| any (x `wqo`) (kids y)

Function to get the 
“recursive children” 

of  a t-value

A “couple” tester: 
match at the root



 A combinator library for online termination 
testing

 A useful black box, never previously 
abstracted out as such

 Encapsulates tricky theorems inside a nice, 
compositional interface


