
Simon Peyton Jones (Microsoft Research)

Max Bolingbroke (University of Cambridge)

2011

 ...in compilers

 ...in supercompilers

 ...in theorem provers

It’s a useful black box.

 But it should be modularly separated from
the rest of your compiler/theorem
prover/whatever

 (The typical reality is otherwise.)

 Online termination detection

 Given a sequence of values, x0, x1, x2...

 ...presented one by one...

 ...yell “stop” if it looks as if the sequence might
be diverging

 Guarantee never to let through an infinite
sequence

 Delay “stop” as long as possible

 “Values” includes pairs, strings, trees....

 Postpone: where do TTests come from?

 Note: testList is inherently inefficient for
the “present one at a time” situation

data TTest a

testList :: TTest a -> [a] -> Bool

 Intuitively the History accumulates (some
abstraction of) the values seem so far

data History a

initHistory :: TTest a -> History a

data TestResult a = Stop | Continue (History a)

test :: History a -> a -> TestResult a

 The goal: a library that makes it easy to
construct values of type TTest a, that
 Are definitely sound: they do not admit infinite

sequences

 Are lenient as possible: they do not blow the
whistle too soon

 Just the usual type-directed combinator
library

intT :: TTest Int

boolT :: TTest Bool

pairT :: TTest a -> TTest b -> TTest (a, b)

eitherT :: TTest a -> TTest b -> TTest (Either a b)

wrapT :: (a -> b) -> TTest b -> TTest a

 How do we implement a TTest?

 Find a strictly-decreasing measure bounded
below.

 This is VERY INCONVENIENT in many
cases. Think about a sequence of syntax
trees.

 Well-studied problem, standard approach:
use a well-quasi order (WQO).

Theorem: every WQO is reflexive

Definition
A transitive binary relation ≤ is a WQO

iff
For any infinite sequence

x0, x1, x2....
there exists i<j st xi ≤ xj

 New goal: a (trusted) library that helps you
to define (sparse) WQOs, that really are
WQOs

newtype TTest a = TT (a -> a -> Bool)

data History a = H (a->a->Bool) [a]

initHistory :: TTest a -> History a

initHistory (TT wqo) = H wqo []

test :: History a -> a -> TestResult a

test (H wqo vs) v

| any (`wqo` v) vs = Stop

| otherwise = Continue (H wqo (v:vs))

 Is (==) a WQO on finite sets? Yes.

 Odd; we don’t use the methods of Finite

 Instead, Finite is really a proof obligation:
 There are only a finite number of elements of a

 (==) is reflexive

finiteT :: Finite a => TTest a

finiteT = TT (==)

class Eq a => Finite a where

elements :: [a]

 Is this a WQO? Why?

eitherT:: TTest a -> TTest b -> TTest (Either a b)

eitherT (TT wqo_a) (TT wqo_b) = TT wqo

where

(Left x) `wqo` (Left y) = x `wqo_a` y

(Right x) `wqo` (Right y) = x `wqo_b` y

_ `wqo` _ = False

pairT:: TTest a -> TTest b -> TTest (a,b)

pairT (TT wqo_a) (TT wqo_b) = TT wqo

where

(x1,x2) `wqo` (y1,y2) =

 But is this a WQO?

 For any infinite sequence (x0,y0), (x1,y1), ...
can we be sure there is an i<j, st

xi ≤ xj, and yi ≤ yj
?

 Yes, and the proof is both simple and beautiful

pairT:: TTest a -> TTest b -> TTest (a,b)

pairT (TT wqo_a) (TT wqo_b) = TT wqo

where

(x1,x2) `wqo` (y1,y2) = x1 `wqo_a` y1

&& x2 `wqo_b` y2

Theorem. If (≤) is a WQO, then
for any infinite sequence x0, x1, x2, ...
there is a finite N such that
for any i>N
there is a j>i
such that xi ≤ xj

That is, after some point N,
every xi is ≤ a later xj

Proof: Consider {xi | j>i. xi ≤ xj }

Corollary: every infinite sequence has a chain
xi1 ≤ xi2 ≤ xi3 ≤ ...

 Exercise: modify the implementation of
TTest and History to avoid the repeated re-
application of f.

wrapT:: (b->a) -> TTest a -> TTest b

wrapT f (TT wqo_a) = TT wqo_b

where

x `wqo_b` y = f x `wqo_a` f y

instance CoFunctor TTest where

cofmap = wrapT

 The types are right

 We are only using library combinators

 Does it work?

unwrap :: [a] -> Either () (a, [a])

unwrap [] = Left ()

unwrap (x:xs) = Right (x,xs)

listT :: forall a. TTest a -> TTest [a]

listT telt = tlist

where

tlist :: TTest [a]

tlist = cofmap unwrap $

eitherT finiteT

(pairT telt tlist)

 Consider [], [1], [1,1], [1,1,1], [1,1,1,1],

 An infinite sequence... accepted!

 What has gone wrong?

unwrap :: [a] -> Either () (a, [a])

unwrap [] = Left ()

unwrap (x:xs) = Right (x,xs)

listT :: forall a. TTest a -> TTest [a]

listT telt = tlist

where

tlist :: TTest [a]

tlist = cofmap unwrap $

eitherT finiteT

(pairT telt tlist)

 We assumed that tlist was WQO when
proving that it is a WQO!

 Sort-of solution: make the combinators
strict, so tlist is bottom

 ...But we still want a termination checker for
lists!

tlist :: TTest [a]

tlist = cofmap unwrap $

eitherT finiteT

(pairT telt tlist)

 This actually is a WQO

 The proof is not obvious, at all

 Q1: find an elegant proof

wqoL :: WQO a -> [a] -> [a] -> Bool

wqoL we [] ys = True

wqoL we (x:xs) [] = False

wqoL we (x:xs) (y:ys)

= (x `we` y && wqoL we xs ys)

|| wqoL we (x:xs) ys

“Couple”:
See if
they

match at
the root

“Dive”: See if
the first arg

matches inside
the recursive
component of

the second arg

recT :: (t -> [t])

-> TTest t

-> TTest t

Function to get the
“recursive children”

of a t-value

A “couple” tester:
match at the root

listT :: TTest t -> TTest [t]

listT telt = tlist

where

tlist :: TTest [a]

tlist = recT kids $

cofmap unwrap $

eitherT finiteT

(pairT telt tlist)

kids [] = []

kids (x:xs) = [xs]

recT :: (t -> [t])

-> TTest t

-> TTest t

recT kids ~(TT wqo_top)= TT wqo

where

x `wqo` y = x `wqo_top` y)

|| any (x `wqo`) (kids y)

Function to get the
“recursive children”

of a t-value

A “couple” tester:
match at the root

 Q2: is this the best formulation?

 Q3: what is the proof obligation for “kids”

 Q4: solve nasty interaction with cofmap

 Q5: Elucidate relationship to R+

recT :: (t -> [t])

-> TTest t

-> TTest t

recT kids ~(TT wqo_top)= TT wqo

where

x `wqo` y = x `wqo_top` y)

|| any (x `wqo`) (kids y)

Function to get the
“recursive children”

of a t-value

A “couple” tester:
match at the root

 A combinator library for online termination
testing

 A useful black box, never previously
abstracted out as such

 Encapsulates tricky theorems inside a nice,
compositional interface

