Termination combinators
forever

Simon Peyton Jones (Microsoft Research)
Max Bolingbroke (University of Cambridge)

2011

Termination testing is useful

= _.in compilers

= _.in supercompilers
= _.in theorem provers
I't's a useful black box.

= But it should be modularly separated from
the rest of your compiler/theorem
prover/whatever

= (The typical reality is otherwise.)

The problem

Online termination detection
Given a sequence of values, x0, x1, x2...
..presented one by one...

.yell "stop” if it looks as if the sequence might
be diverging

Guarantee never to let through an infinite
sequence

Delay "stop” as long as possible

"Values" includes pairs, strings, trees....

Concretely

data TTest a

testlList :: TTest a -> [a] -> Bool

= Postpone: where do TTests come from?

= Note: testList is inherently inefficient for
the "present one at a time" situation

Better. ..
data History a

initHistory :: TTest a -> History a

data TestResult a = Stop | Continue (History a)
test :: History a -> a -> TestResult a

® Tntuitively the History accumulates (some
abstraction of) the values seem so far

Creating T Tests

= The goal: a library that makes it easy to
construct values of type TTest a, that

= Are definitely sound: they do not admit infinite
sequences

® Are lenient as possible: they do not blow the
whistle too soon

Creating T Tests

intT :: TTest Int
boolT :: TTest Bool

pairT :: TTest a -> TTest b -> TTest (a, b)
eitherT :: TTest a -> TTest b -> TTest (Either a b)
wrapT :: (a -> b) -> TTest b -> TTest a

= Just the usual type-directed combinator
library

Implementing TTests

How do we implement a TTest?

Find a strictly-decreasing measure bounded
below.

This is VERY INCONVENIENT in many
cases. Think about a sequence of syntax
Trees.

Well-studied problem, standard approach:
use a well-quasi order (WQO).

Well-quasi orders

Definition
A transitive binary relation < is a WQO
iff

For any infinite sequence
X, X1, Xo....

there exists i<j st x; < x;

Theorem: every WQQO is reflexive

From WQOs to TTests

newtype TTest a = TT (a -> a -> Bool)
data History a = H (a->a->Bool) [a]

initHistory :: TTest a -> History a
initHistory (TT wqo) = H wqo []

test :: History a -> -> TestResult a
test (H wgo vs) v
| any (wgo V) vs Stop
| otherwise Continue (H wgo (v:vs))

New goal: a (trusted) library that helps you
to define (sparse) WQOs, that really are
WQOs

Finite sets

finiteT :: Finite a => TTest a
finiteT = TT (==

class Eq a => Finite a where
elements :: [a]

m Ts(==) a WQO on finite sets? Yes.
= Odd; we don't use the methods of Finite

= Tnstead, Finite is really a proof obligation:
= There are only a finite number of elements of a
m (=) is reflexive

sums

eitherT:: TTest a -> TTest b -> TTest (Either a b)
eitherT (TT wgo_a) (TT wgo b) = TT wqgo

where
(Left x) "wgo (Left y) X Wgo a y
(Right x) "wgo (Right y) = x 'wgo by
"wqgo = False

® Ts thisa WQO? Why?

Products

pairT:: TTest a -> TTest b -> TTest (a,b)
pairT (TT wgo_a) (TT wgo b) = TT wqgo

where
(x1,x2) "wgo (yl,y2) =

Products

pairT:: TTest a -> TTest b -> TTest (a,b)
pairT (TT wgo_a) (TT wgo b) = TT wqgo

where
(x1,x2) "wgo (yl,y2) = x1 'wgo a yl
&& x2 'wgo b y2

m Butis thisa WQO?

= For any infinite sequence (x0,y0), (x1,y1), ...
can we be sure there is an i<j, st
Xi ¢ xj,and yi < yj
2

= Yes, and the proof is both simple and beautiful

Back to WQOs

Theorem. If (<)isa WQO, then
for any infinite sequence x,, X;, X,, ...
there is a finite N such that
for any >N
there is a j>i
such that x; < x,

That is, after some point N,
every X; is ¢ a later X;

Proof: Consider {x; | Aj>i. x; ¢ Xj)

Corollary: every infinite sequence has a chain

Cofunctors

wrapT:: (b->a) -> TTest a -> TTest b
wrapT £ (TT wgo a) = TT wqgo b
where

X wgob y=fx wgo a fy

instance CoFunctor TTest where
cofmap = wrapT

= Exercise: modify the implementation of
TTest and History to avoid the repeated re-
application of f.

Even more fun...recursive types

unwrap :: [a] -> Either () (a, [al]l)
unwrap [] Left ()
unwrap (x:xs) Right (x,xs)

listT :: forall a. TTest a -> TTest [a]
listT telt = tlist
where
tlist :: TTest [a]
tlist = cofmap unwrap $
eitherT finiteT
(pairT telt tlist)

= The types are right

= We are only using library combinators
= Does it work?

Lists

unwrap :: [a] -> Either () (a, [al]l)
unwrap [] Left ()
unwrap (x:xs) Right (x,xs)

listT :: forall a. TTest a -> TTest [a]
listT telt = tlist
where
tlist :: TTest [a]
tlist = cofmap unwrap $
eitherT finiteT
(pairT telt tlist)

® Consider [],[1],[1,1],[111],[1111], ...

= Aninfinite sequence... accepted!

® What has gone wrong?

The problem

m We assumed that tlist was WQO when
proving that it is a WQO!

tlist :: TTest [a]
tlist = cofmap unwrap $

eitherT finiteT
(pairT telt tlist)

m Sort-of solution: make the combinators
strict, so tlist is bottom

® . But we still want a termination checker for
lists!

Homeomorphic embedding

“Couple”:
See if

wgoL :: WQO a -> [a] -> [a] -> Bool
wgoL we [] ys = True they
wgol we (x:xs) [] = False match at
(x:xs) (y:ys) the root
‘'we y && wgol we xs ys)
| | wgolL. we (x:xs) ys

= This actually is a WQO

"Dive": See if
the first arg

= The proof is not obvious, at all GRS
. the recursive
= QI: find an elegant proof component of

the second arg

Function to get the
"recursive children”
of a t-value

recT :: (t -> [t])
-> TTest t A “couple” tester:
-> TTest t match at the root

listT :: TTest t -> TTest [t]
listT telt = tlist
where
tlist :: TTest [a]
tlist = recT kids $
cofmap unwrap $
eitherT finiteT
(pairT telt tlist)
= []

xs) = [xs]

Function to get the
"recursive children”
of a t-value

recT :: (t -> [t])
-> TTest t A “couple” tester:

-> TTest t match at the root
recT kids ~(TT wqgo top)= TT wqgo
where
X Wgqo y = X wqgo_top y)
|| any (x "wqgo') (kids y)

Function to get the
"recursive children”
of a t-value

recT :: (t -> [t])
-> TTest t A “couple” tester:

-> TTest t match at the root
recT kids ~(TT wqgo top)= TT wqgo
where
X Wgo y = x wqgo top vy)
|| any (x "wqgo') (kids y)

Q2: is this the best formulation?

= Q3: what is the proof obligation for “kids"
= Q4: solve nasty interaction with cofmap

= Qb: Elucidate relationship to R+

Summary

= A combinator library for online termination
testing

= A useful black box, never previously
abstracted out as such

= Encapsulates tricky theorems inside a nice,
compositional interface

