Test-Driven Development of an
Information-Flow ISA

A QuickCheck Adventure

Arthur Azevedo de Amorim, Catalin Hritcu, John
Hughes, Leonidas Lampropoulos, Ulf Norell,
Benjamin C. Pierce, Dimitrios Vytiniotis, Antal
Spector-Zabusky

WG2.8
November 2012

Suppose...

1. ... we wanted to design a machine
architecture with dynamic information-flow
tracking...

2. ...and we wanted to use QuickCheck to help
get it right.

Could that be done?

Let’s find out!

\
e(\) ’

A“Simple Stack-and-Memory Machine

Values = integers

Stack = list of values
Memory = array of values
PC = value

Instructions...

Instruction Stack before Stack after

Push n stk n: stk

Add a:b:stk (a+b) : stk

Load a : stk mem|a] : stk

Store b:a:stk stk mem/[b] :=a

\
Qe(\) ’

A Simple Information-Flow Machine

Values = labeled integers (1@L, 2@H, ...)
Stack = list of values

Memory = array of values
PC = value
Instructions...

Instruction Stack before Stack after

Pushn@l| stk n@l : stk

Add a@l:b@l" : stk (a+b)@? : stk

Load a@l : stk mem[a]@? : stk

Store b@l:a@l’ : stk stk mem[b] :=a@?

“Correctness”?

* A nice property: noninterference
— “High inputs do not flow to low outputs”

 More formally:

— If initial machine states differ only in high values,
then “low observations” of execution traces are
the same

* Yet more formally:
— Forall s,s" with s ¥~~~ ¢,
observe(trace s) ~~~ observe(trace s’)

If the adversary can’t tell the difference
between starting states, they can’t tell the

difference between executions

“Observe”?

* Design choice:
— Introduce special “l1/0 events”?
— Observe memory?

observe (trace s)
* Values only? =

sequence of memories as

— Stack?
— PC?


~~~ in Haskell

class Observable a where
(~»~~) :: a -> a -> Bool

instance Observable a => Observable (Labeled a) where
(Labeled L x) ~~~ (Labeled L y) = x ~~~ y
(Labeled H ) ~~~ (Labeled H ) = True
~a~ = False

instance Observable a => Obserwvable [a] where
Xs ~~~ ys = length xs == length ys
&& and (zipWith (~~~) xs ys)



QuickChecking Noninterference

Ask QC to look for

* For arbitra ry S,S’, counterexamples to this

S NN S
=» observe(trace s) ~¥~~ observe(trace s’)

* For arbitrary s,
for an arbitrary ~~~ variation s’ of s,

observe(trace s) ~~~ observe(trace s’)

\ Better!



Variation in Haskell

class Observable a where
vary :: a -> Gen a

4

Invariant: Va’evarya. a~>"a

instance (Arbitrary a, Observable a) =>
Observable (Labeled a) where

Labeled H <$> arbitrary
return a

vary (Labeled H x)
vary a



Ready for bugs!

Instruction Stack before Stack after

Pushn@l stk n@l : stk

Add a@l:b@l" : stk (a+b)@L : stk

Load a@] : stk mem/|a] : stk

Store b@|:a@l’ : stk stk memlb] :=a@/’

Let’s take them one at a time...




What if Add doesn’t taint its result?

[Add,Push 0QL,Store]

1QL M=[0QL] S=[{0@H/1@H} ,1QL]
2QL M=[0QL] S=[{1Q@L/2RL}]
3QL M=[0QL] S=[0@L, {1@L/2QL}]

4QL M=[{1QL/2QL}] S=[1]




What if Load doesn’t taint its result?

[{Push OQ@H/Push 2@H},Load,Store]

1QL
2QL
3QL
4QL

M=[0Q@L,0Q@L,1QL]
M=[0Q@L,0Q@L,1QL]
M=[0Q@L,0Q@L,1QL]
M=[{1@L/0€L}, {0GL/1@L},1@L]

S=[1QL]
S=[{0Q@H/2Q@H},1RQL]
S=[{0Q@L/1Q@L},1RQL]
S=[]



What if Store doesn’t taint the value

[Store]

1QL
2QL

[Store]

1QL
2QL

stored?

M=[0QH, 0QH]
M=[{0@H/0@L}, {0OCL/0RH}]

M=[0QL, 0QL]
M=[{1QL/0QRL}, {0@L/1@L}]

S=[{1@H/0@H},0QL]
S=[1

S=[{0@H/1@H},1QL]
S=[1



How many tests are needed?

to find a counter-example

Bug Information
leak through
memory

Add fails to 506
taint
Load fails to 50582
taint
Store fails to 42855
taint

(Averaged over 10 runs of QuickCheck)



1QL
2QL
3QL
4QL

Notice:

Optimisation

[Add,Push 0@QL,Store]

M=[0QL]
M=[0QL]
M=[0QL]
M=[{1QRL/2@L}]

S=[{0@H/1@H} ,1@QL]
S=[{1@L/2@L}]
S=[0@L, {1@L/2QL}]
S=[]

* The bug in Add makes the stacks different at step 2!
* The need for a Store to make the bug visible makes
detection harder

|dea:

 observe whole machine state (stack and memory),
not just memory



Forall s,s" with s ¥~~~ ¢’,
observe(trace s) ~~~ observe(trace s’)

L (1) observe memories } { (2) observe memories and stacks}

e What we really want * Implies (1)

e Fails faster
* Expected to hold for
“reasonable” machines



How many tests are needed?

Information Information
leak through leak through
memory stack or
memory
Add fails to 506 11
taint
Load fails to 50582 1904
taint
Store fails to 42855 52833

taint



How long do programs run?

Steps to termination

150%
100%
® Steps to
50% - termination
O% ] | | |

0--9 10--19  20--29

e 98% of executions are <10 instructions



50%
40%
30%
20%
10%

0%

Why do executions terminate?

Reason for termination

Load address Store address
out of range out of range

.

PC out of
range

™ Reason for
termination



Smart program generation

* Track machine states as instruction sequences are
generated

— Don’t generate instructions that fail in current state
e e.g., don’t generate Add when stack is empty

* Generate "sensible instruction pairs”, as well as
random instructions

e Push valid addr; Load
e Push valid addr; Store

— Often generate low valid addresses (0, 1, 2)
* so we reuse locations often



How long do programs run now?

30%
25%
20%
15%
10%

5%

0%

Steps to termination

lin

0--9 10--1920--2930--3940--49 50+

W Steps to
termination



How many tests are needed?

Information Information Smart program
leak through leak through generation,
memory stack or leak through
memory memory
Add fails to 506 11 26
taint
Load fails to 50582 1904 1242
taint
Store fails to 42855 52833 3383

taint



How many tests are needed?

Information Information Smart program | Smart
leak through leak through generation, programs, leak
memory stack or leak through through stack
memory memory or memory
Add fails to 506 11 26 6
taint
Load fails to 50582 1904 1242 179
taint
Store fails to 42855 52833 3383 3031

taint



Bugs squashed!

Instruction Stack before Stack after

Push n@lI stk n@I : stk

Add a@l:b@!' : stk (a+b)@(l L I’) : stk

Load a@| : stk mem/[a]ul : stk

Store b@|:a@l’ : stk stk memlb] :=a@(l L I’)




What do counterexamples look like?

Program=[Push 4@L,Store,Push 0@L,Load,Push 5@L,Load,Store,Push
-1@L,Push 6@L,Load,Push 5@L,Store,Push 1@L,Push O@L,Store,Push
-3@L,Add,Push 10@L,Store,Load,{Push 6@H/Push -16@H},Push
3@L,Store,Push -3@L,{Push 5@H/Push 2@H},Store,{Push -2@H/Push
12@H},Push 0@L]

Memory=[25@L,19@L,{18@H/4@H},-3@L,3@L,3@L,{29@H/13@H},6@L,
17@L,24@L,15@L,8@L]

Stack=[1@L, 5@L, 22@L, 7@L]



Shrinking 101

 When a test fails, QC tries to replace it by a
“shrunk” test — a similar input that also fails

—goto 1

 Candidates are generated by a function

shrink :: a->[a]



Details of shrinking

* We are working with pairs of ~~~ states
— shrinking must preserve this invariant

data Variation a = Variation a a
class Observable a where
shrinkV :: Variation a -> [Variation a]
* Now define shrinkV for each kind of Observable...

— Standard definitions for Int, lists, etc.
— Domain-specific: Shrink H to L



Before:

Program=[Push 4@L,Store,Push 0@L,Load,Push 5@L,Load,Store,Push
-1@L,Push 6@L,Load,Push 5@L,Store,Push 1@L,Push O0@L,Store,Push
-3@L,Add,Push 10@L,Store,Load,{Push 6@H/Push -16@H},Push
3@L,Store,Push -3@L,{Push 5@H/Push 2@H},Store,{Push -2@H/Push
12@H},Push O@L]

Memory=[25@L,19@L,{18@H/4@H},-3@L,3@L,3@L,{29@H/13@H},6@L,
17@L,24@L,15@L,8@L]

Stack=[1@L, 5@L, 22@L, 7@L]

After:

Program=[Push 0@L,Store,Push 0@L,Load,Push O0@L,Load,Store,Push
O@L,Push 0@L,Load,Push O0@L,Store,Push O0@L,Push O@L,Store,Push
O@L,Add,Push 0@L,Store,Load,Push O@H,Push 3@L,Store,Push 0@L,{Push
3@H/Push 2@H},Store]

Memory=[0@L,0@L,0@H,0@L]

Stack=[0@L, 0@L]



ldea

* Try shrinking instructions to Noop



Before:

Program=[Push O0@L,Store,Push 0@L,Load,Push O0@L,Load,Store,Push
O0@L,Push 0@L,Load,Push 0@L,Store,Push 0@L,Push O@L,Store,Push
0O@L,Add,Push O0@L,Store,Load,Push O0@H,Push 3@L,Store,Push 0@L,{Push
3@H/Push 2@H},Store]

Memory=[0@L,0@L,0@H,0@L]

Stack=[0@L, 0@L]

After:
Program=[Noop,Noop,Noop,Noop,Noop,Noop,Noop,Noop,Noop,Noop,Noo

p,Noop,Noop,Noop,Noop,Noop,Noop,Noop,Noop,Noop,Push O0@H,Push
3@L,Store,Noop,{Push 3@H/Push 2@H},Store]
Memory=[0@L,0@L,0@H,0@L]

Stack=[0@L]



ldea

* Try deleting Noop instructions



Before:
Program=[Noop,Noop,Noop,Noop,Noop,Noop,Noop,Noop,Noop,Noop,Noo
p,Noop,Noop,Noop,Noop,Noop,Noop,Noop,Noop,Noop,Push O@H,Push
3@L,Store,Noop,{Push 3@H/Push 2@H},Store]
Memory=[0@L,0@L,0@H,0@L]

Stack=[0@L]

After:
[Push O0@H,Push 3@L,Store,{Push 3@H/Push 2@H},Store]

Memory=[0@L,0@L,0@H,0@L]

Stack=[0@L]



Another run of QC yields:

Program=[{Push 1@H/Push 0@H},Store]
Memory=[0@H,0@H]

Stack=[0@L]



Going further...

* Jumps
— Complicates smart generation and shrinking
— Raises possibility of branching on secrets

e Call/return

— Much more interesting design issues
* Not easy to achieve noninterference!



Surprises

* Not all bugs were planted :-)

e Subtleties in definition of noninterference

1. Combining “private labels” with pointers doesn’t
work

 Should not permit 1@L ~~~ 2@H

2. Data and return addresses on the stack must not
be conflated (even when both are labeled high)



Going even further

* Ultimate goal:

— Use QC to find bugs in implementation of SAFE
operating system



Any (more) questions?



