
All Your IFCException Are Belong To Us

Cătălin Hrițcu
(joint work with Michael Greenberg, Ben Karel,

Benjamin Pierce, Greg Morrisett, and more)

2012-11-05 -- WG 2.8 meeting in Annapolis

Information Flow Control

Static Dynamic

Sound

Coarse-grained

[Krohn & Tromer, 2009] [Sabelfeld & Russo, 2009]
[Austin & Flanagan, 2009] OSes: Asbestos (2005), Flume, HiStar

[Fenton, 1974]

JavaScript

2

Taint Tracking

Fine-grained

Breeze

• sound fine-grained dynamic IFC

• label-based discretionary access control
– clearance helps prevent covert channels

• functional core (λ) + state(!) + concurrency (π)
– from Pict/CML towards something more Erlang-ish

• dynamically typed
– directly reflects capabilities of CRASH/SAFE HW

– dynamically-checked first-class contracts

 3

Exception handling

• we wanted all Breeze errors to be recoverable

– including IFC violations! (IFCException)

• however, existing work* assumes errors are fatal

– makes some things easier ... at the expense of others

4

+secrecy +integrity –availability

*There are 2 very recent (partial) exceptions:
 [Stefan et al., 2012] and [Hedin & Sabelfeld, 2012]

Poison-pill attacks

5

let cin = chan low;
let cout = chan low;

fun process_max x y =
 if x <= y then y else x

fun rec max_server_loop () =
 let (x,y) = recv cin in
 let res = process_max x y in
 send cout res;
 max_server_loop ()

let attacker = send cin (3, 2@high)@low

let client = send cin (3, 5)@low; recv cout

x=3@low y=2@high

3@low <= 2@high = false@high
pc=high  result is high

res=3@high
max_server gets killed because of IFC violation!?

= 5

let bclient = send cin (3, 5)@high bclient gets killed

channels only do top-
level label checks

Wishful thinking

6

let cin = chan low;
let cout = chan low;

fun process_max (x,y) =
 if x <= y then y else x

fun rec max_server_loop' () =
 try
 send cout (process_max (recv cin))
 catch x => log x;
 max_server_loop' ()

All Your
IFCException Are

Belong to Us

But there is a problem ... in fact two

7

Sound
Fine-

Grained
Dynamic

IFC

 ... in fact two!

But there is a problem ... in fact two

8

Sound
Fine-

Grained
Dynamic

IFC

 ... in fact two!

Labels are information channels

• well-known fact:

– changing labels are themselves information channels

• get soundness by preventing secrets from leaking
either into or out of label channel

9

label
channel

enforce that labels don’t
depend on secrets

labels must be hidden

labels can be observed

allow labels to depend on secrets

Problem #1: IFC exceptions make
labels public

• ... and that’s unsound if labels can depend on secrets

• secret bit: h@high low <: high <: top

try

 true
catch IFCException => false

10

encode h into label

if branch − assignment works
else branch − IFCException

(if h then ()@high
 else ()@top);

href :=

let href = ref high () in
.......

pc automatically restored
to low once the if
branches merged

so false/true is low

Solution to problem #1: brackets

• no longer automatically restore pc

– pc=low if h then ()@high else ()@top pc=high

• instead, restore pc manually using brackets
– choose label before branching on secrets

– pc=low top[if h then ()@high else ()@top] pc=low

– brackets are not declassification!
– sound even when annotation is incorrect (more later)

• labels can now be soundly made public
– bracket annotations can be dynamically computed

11
labels

IFCException

labelOf

Problem #2: exceptions destroy
control flow join points

• ending brackets have to be control flow join points

– try
 let _ = high[if h then throw Ex] in
 false
catch Ex => true

• brackets need to delay all exceptions!
– high[if true then throw Ex] => “(Inr Ex)@high”

– high[if false then throw Ex] => “(Inr ())@high”

12

Solution #2: Delayed exceptions

• delayed exceptions unavoidable

– still have a choice how to propagate them

• we studied two alternatives for error handling:

1. mix active and delayed exceptions (λ[]
throw)

2. only delayed exceptions (λ[]
NaV)

• delayed exception = not-a-value (NaV)

• NaVs are first-class replacement for values

• NaVs propagated solely via data flow

• NaVs are labeled and pervasive

• more radical solution; implemented by Breeze

13

NaV-lax vs. NaV-strict behavior
• all non-parametric operations are NaV-strict

– NaV@low + 42@high => NaV@high

• for parametric operations we can chose:
 NaV-lax or NaV-strict
– (fun x => 42) NaV => 42 or => NaV

– Cons NaV Nil => Cons NaV Nil or => NaV

– (r := NaV,r=7) => ((),r=NaV) or => (NaV,r=7)

• NaV-strict behavior reveals errors earlier
– but it also introduces additional IFC constraints

• in Breeze the programmer can choose
– in formal development NaV-lax everywhere

14

What’s in a NaV?

• error message
– `EDivisionByZero (“can’t divide %1 by 0”, 42)

• stack trace

– pinpoints error origin
(not the billion-dollar mistake)

• propagation trace

– how did the error make it here?

15

Without these
debugging aids NaVs
are compiler writer’s

wet dream
(Greg Morrisett)

Formal results

• proved error-sensitive non-interference in Coq
for λ[], λ[]

NaV, and λ[]
throw (termination-insensitive)

– for λ[]
NaV even with all debugging aids

• conjecture: in our setting NaVs and catchable
exceptions have equivalent expressive power

– translations validated by quick-checking code extracted
from Coq (working on Coq proofs)

16

λ[]

λ[]
throw λ[]

NaV

Conclusion

• reliable error handling possible even for sound
fine-grained dynamic IFC systems

• we study two mechanisms (λ[]
NaV and λ[]

throw)
– all errors recoverable, even IFC violations

– necessary ingredients:
sound public labels (brackets) + delayed exceptions

– quite radical design (not backwards compatible!)

• practical experience with NaVs
– issues are surmountable

– writing good error recovery code is still hard

17

THE END

18

