All Your IFCException Are Belong To Us

Catalin Hritcu

(joint work with Michael Greenberg, Ben Karel,
Benjamin Pierce, Greg Morrisett, and more)

LY
I el ll l 2012-11-05 -- WG 2.8 meeting in Annapolis

ERSITY 0f PENNSYL

Information Flow Control]

//\

Static

N

Dynamic

[Fenton, 1974]

I
/
/

/
7/
Taint Tracking]/ -7

Sound]

7/
/
/
I

Coarse-grained]

[Krohn & Tromer, 2009]
OSes: Asbestos (2005), Flume, HiStar

Fine-grained]

[Sabelfeld & Russo, 2009]
[Austin & Flanagan, 2009]

JavaScript

Breeze

sound fine-grained dynamic IFC

label-based discretionary access control
— clearance helps prevent covert channels

functional core (A) + state(!) + concurrency (1)
— from Pict/CML towards something more Erlang-ish
dynamically typed

— directly reflects capabilities of CRASH/SAFE HW

— dynamically-checked first-class contracts

Exception handling

e we wanted all Breeze errors to be recoverable
— including IFC violations! (IFCException)

* however, existing work™ assumes errors are fatal
— makes some things easier ... at the expense of others
+secrecy +integrity -availability

*There are 2 very recent (partial) exceptions:
[Stefan et al., 2012] and [Hedin & Sabelfeld, 2012]

Poison-pill attacks

channels only do top-

let cin = chan low; o O level label checks

let cout = chan 1ow;o

fun process_max x y = 3@low <= 2@high = false@high
if x <=y then y else x pc=high - result is high
fun rec max_server_loop () =
let (x,y) = recv cin in x=3@low y=2@high
let res = process max x y in res=3@high

send cout res;| max_server gets killed because of IFC violation!?
max_server_loop ()

let client = send cin (3, 5)@low; recv cout =5
let bclient = send cin (3, 5)@high bclient gets killed
let attacker = send cin (3, 2@high)@low

Wishful thinking

let cin = chan low;
let cout = chan low;

All Your

fun process_max (x,y) = IFCException Are
if x <=y then y else x Belong to Us

fun rec max_server_loop' () =
try
send cout (process max (recv cin))
catch x => log x;
max_server_loop' ()

But there is a problem ... in fact two!

Sound

Fine-
Grained
Dynamic

i

But there is a problem ... in fact two!

A\

o

Labels are information channels

* well-known fact:
— changing labels are themselves information channels

* get soundness by preventing secrets from leaking
either into or out of label channel

enforce that labels don’t

an be observed
depend on secrets

labels must be hidden

channel
allow labels to depend on secrets

Problem #1: IFC exceptions make
labels public

... and that’s unsound if labels can depend on secrets

secret bit: h@high low <: high <: top
let href = ref high () in

try encode!lnﬂolabel
. R pc automatically restored
href := (if h then ()@high orks

to low once the if
else ()@top); branches merged n

true
catch IFCException => false

[SO false/trueijm

10

Solution to problem

1: brackets

* no longer automatically restore pc

— pc=low‘if h then ()@high else ()@top‘pc=high

* instead, restore pc manually using brackets
— choose label before branching on secrets

— pc=low‘§gg[if h then ()@high else ()@top]‘pc=low

— brackets are not declassification!

— sound even when annotation is incorrect (more later)

* |labels can now be soundly made public
— bracket annotations can be dynamically computed

labelOf

IFCException

11

Problem #2: exceptions destroy
control flow join points

* ending brackets have to be control flow join points

— try
let = high[if h then throw Ex] in
false

catch Ex => true

* brackets need to delay all exceptions!

— high[if true then throw Ex] => “(Inr Ex)@high”
— high[if false then throw Ex] => “(Inr ())@high”

Solution #2: Delayed exceptions

* delayed exceptions unavoidable
— still have a choice how to propagate them

* we studied two alternatives for error handling:
1. mix active and delayed exceptions (All,,)

2. only delayed exceptions (All,)

delayed exception = not-a-value (NaV)

NaVs are first-class replacement for values
NaVs propagated solely via data flow

NaVs are labeled and pervasive

more radical solution; implemented by Breeze

NaV-lax vs. NaV-strict behavior

all non-parametric operations are NaV-strict
— Nav@low + 42@high => NaV@high

for parametric operations we can chose:

NaV-lax or NaV-strict
— (fun x => 42) NaV => 42 or => NaV
— Cons NaV Nil => Cons NaV Nil or => NaV
— (r := NaV,r=7) => ((),r=NaV) or => (NaV,r=7)

NaV-strict behavior reveals errors earlier
— but it also introduces additional IFC constraints

in Breeze the programmer can choose
— in formal development NaV-lax everywhere

What’s in a NaV?

* error message
— 'EDivisionByZero (“can’t divide %1 by 0”, 42)
* stack trace

— pinpoints error origin
(not the billion-dollar mistake)

* propagation trace

.] Without these
— how did the error make it here?

debugging aids NaVs

are compiler writer’s
wet dream

(Greg Morrisett)

Formal results

e proved error-sensitive non-interference in Coq
for AL, AU, and ALl (termination-insensitive)

— for All,,,, even with all debugging aids

e conjecture: in our setting NaVs and catchable
exceptions have equivalent expressive power

— translations validated by quick-checking code extracted
from Coqg (working on Coq proofs)

N

AN, e S| Al

throw

Conclusion

* reliable error handling possible even for sound
fine-grained dynamic IFC systems

 we study two mechanisms (Al and All,,)
— all errors recoverable, even IFC violations

— necessary ingredients:
sound public labels (brackets) + delayed exceptions

— quite radical design (not backwards compatible!)

e practical experience with NaVs

— issues are surmountable
— writing good error recovery code is still hard

THE END

